File size: 3,153 Bytes
22115d9
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
import os
import argparse
import torch
import numpy as np
from safetensors.torch import save_file
from safetensors import safe_open
from typing import Dict, Tuple
from gguf import GGUFReader, dequantize
from gguf.constants import GGML_QUANT_SIZES, GGMLQuantizationType, Keys

def load_gguf_and_extract_metadata(gguf_path: str) -> Tuple[GGUFReader, list]:
    """Load GGUF file and extract metadata and tensors."""
    reader = GGUFReader(gguf_path)
    tensors_metadata = []
    for tensor in reader.tensors:
        tensor_metadata = {
            'name': tensor.name,
            'shape': tuple(tensor.shape.tolist()),
            'n_elements': tensor.n_elements,
            'n_bytes': tensor.n_bytes,
            'data_offset': tensor.data_offset,
            'type': tensor.tensor_type,
        }
        tensors_metadata.append(tensor_metadata)
    return reader, tensors_metadata


def convert_gguf_to_safetensors(gguf_path: str, output_path: str, use_bf16: bool) -> None:
    reader, tensors_metadata = load_gguf_and_extract_metadata(gguf_path)
    print(f"Extracted {len(tensors_metadata)} tensors from GGUF file")

    tensors_dict: dict[str, torch.Tensor] = {}

    for i, tensor_info in enumerate(tensors_metadata):
        tensor_name = tensor_info['name']

        tensor_data = reader.get_tensor(i)
        weights = dequantize(tensor_data.data, tensor_data.tensor_type).copy()

        try:
            # デバイスを確認し、適切なデータ型を設定
            if use_bf16:
                print(f"Attempting BF16 conversion")
                weights_tensor = torch.from_numpy(weights).to(dtype=torch.float32)
                weights_tensor = weights_tensor.to(torch.bfloat16)
            else:
                print("Using FP16 conversion.")
                weights_tensor = torch.from_numpy(weights).to(dtype=torch.float16)

            weights_hf = weights_tensor
        except Exception as e:
            print(f"Error during BF16 conversion for tensor '{tensor_name}': {e}")
            weights_tensor = torch.from_numpy(weights.astype(np.float32)).to(torch.float16)
            weights_hf = weights_tensor

        print(f"dequantize tensor: {tensor_name} | Shape: {weights_hf.shape} | Type: {weights_tensor.dtype}")
        del weights_tensor
        del weights

        tensors_dict[tensor_name] = weights_hf
        del weights_hf

    metadata = {"modelspec.architecture": f"{reader.get_field(Keys.General.FILE_TYPE)}", "description": "Model converted from gguf."}

    save_file(tensors_dict, output_path, metadata=metadata)
    print("Conversion complete!")

def main():
    parser = argparse.ArgumentParser(description="Convert GGUF files to safetensors format.")
    parser.add_argument("--input", required=True, help="Path to the input GGUF file.")
    parser.add_argument("--output", required=True, help="Path to the output safetensors file.")
    parser.add_argument("--bf16", action="store_true", help="(onry cuda)Convert tensors to BF16 format instead of FP16.")

    args = parser.parse_args()

    convert_gguf_to_safetensors(args.input, args.output, args.bf16)

if __name__ == "__main__":
    main()