import os import argparse import torch import numpy as np from safetensors.torch import save_file from safetensors import safe_open from typing import Dict, Tuple from gguf import GGUFReader, dequantize from gguf.constants import GGML_QUANT_SIZES, GGMLQuantizationType, Keys def load_gguf_and_extract_metadata(gguf_path: str) -> Tuple[GGUFReader, list]: """Load GGUF file and extract metadata and tensors.""" reader = GGUFReader(gguf_path) tensors_metadata = [] for tensor in reader.tensors: tensor_metadata = { 'name': tensor.name, 'shape': tuple(tensor.shape.tolist()), 'n_elements': tensor.n_elements, 'n_bytes': tensor.n_bytes, 'data_offset': tensor.data_offset, 'type': tensor.tensor_type, } tensors_metadata.append(tensor_metadata) return reader, tensors_metadata def convert_gguf_to_safetensors(gguf_path: str, output_path: str, use_bf16: bool) -> None: reader, tensors_metadata = load_gguf_and_extract_metadata(gguf_path) print(f"Extracted {len(tensors_metadata)} tensors from GGUF file") tensors_dict: dict[str, torch.Tensor] = {} for i, tensor_info in enumerate(tensors_metadata): tensor_name = tensor_info['name'] tensor_data = reader.get_tensor(i) weights = dequantize(tensor_data.data, tensor_data.tensor_type).copy() try: # デバイスを確認し、適切なデータ型を設定 if use_bf16: print(f"Attempting BF16 conversion") weights_tensor = torch.from_numpy(weights).to(dtype=torch.float32) weights_tensor = weights_tensor.to(torch.bfloat16) else: print("Using FP16 conversion.") weights_tensor = torch.from_numpy(weights).to(dtype=torch.float16) weights_hf = weights_tensor except Exception as e: print(f"Error during BF16 conversion for tensor '{tensor_name}': {e}") weights_tensor = torch.from_numpy(weights.astype(np.float32)).to(torch.float16) weights_hf = weights_tensor print(f"dequantize tensor: {tensor_name} | Shape: {weights_hf.shape} | Type: {weights_tensor.dtype}") del weights_tensor del weights tensors_dict[tensor_name] = weights_hf del weights_hf metadata = {"modelspec.architecture": f"{reader.get_field(Keys.General.FILE_TYPE)}", "description": "Model converted from gguf."} save_file(tensors_dict, output_path, metadata=metadata) print("Conversion complete!") def main(): parser = argparse.ArgumentParser(description="Convert GGUF files to safetensors format.") parser.add_argument("--input", required=True, help="Path to the input GGUF file.") parser.add_argument("--output", required=True, help="Path to the output safetensors file.") parser.add_argument("--bf16", action="store_true", help="(onry cuda)Convert tensors to BF16 format instead of FP16.") args = parser.parse_args() convert_gguf_to_safetensors(args.input, args.output, args.bf16) if __name__ == "__main__": main()