Spaces:
Running
on
CPU Upgrade
Running
on
CPU Upgrade
| import gradio as gr | |
| from dotenv import load_dotenv | |
| # from llm_in_context_leaderboard import create_llm_in_context_tab | |
| from reranking_leaderboard import create_reranking_tab | |
| from retrieval_leaderboard import create_retrieval_tab | |
| load_dotenv() | |
| HEADER = """<div style="text-align: center; margin-bottom: 20px;"> | |
| <h1>The Arabic RAG Leaderboard</h1> | |
| <p style="font-size: 16px; color: #888;">The only leaderboard you will require for your RAG needs π</p> | |
| </div> | |
| This leaderboard presents the first comprehensive benchmark for Arabic RAG systems, evaluating both retrieval and re-ranking components. Our framework combines real-world queries with synthetic contexts in a dynamic evaluation cycle, ensuring fair and robust assessment of Arabic information retrieval systems. | |
| <br> | |
| <br> | |
| For technical details, check our blog post <a href="https://huggingface.co/blog/Navid-AI/arabic-rag-leaderboard">here</a>. | |
| """ | |
| CITATION_BUTTON_LABEL = """ | |
| Copy the following snippet to cite these results | |
| """ | |
| CITATION_BUTTON_TEXT = """ | |
| @misc{TARL, | |
| author = {Mohaned A. Rashad, Hamza Shahid}, | |
| title = {The Arabic RAG Leaderboard}, | |
| year = {2025}, | |
| publisher = {Navid-AI}, | |
| howpublished = "url{https://huggingface.co/spaces/Navid-AI/The-Arabic-Rag-Leaderboard}" | |
| } | |
| """ | |
| def create_app(): | |
| with gr.Blocks() as app: | |
| gr.HTML(HEADER) | |
| with gr.Tabs(): | |
| with gr.Tab("π΅οΈββοΈ Retrieval"): | |
| create_retrieval_tab() | |
| with gr.Tab("π Reranking"): | |
| create_reranking_tab() | |
| # with gr.Tab("π§ LLM in Context"): | |
| # create_llm_in_context_tab() | |
| with gr.Row(): | |
| with gr.Accordion("π Citation", open=False): | |
| gr.Textbox( | |
| value=CITATION_BUTTON_TEXT, | |
| label=CITATION_BUTTON_LABEL, | |
| lines=20, | |
| elem_id="citation-button", | |
| show_copy_button=True, | |
| ) | |
| return app | |
| if __name__ == "__main__": | |
| app = create_app() | |
| app.queue().launch(ssr_mode=True) | |