Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,146 +1,421 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
import
|
| 4 |
-
from diffusers import DiffusionPipeline
|
| 5 |
import torch
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
if torch.cuda.is_available():
|
| 10 |
-
torch.cuda.max_memory_allocated(device=device)
|
| 11 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", torch_dtype=torch.float16, variant="fp16", use_safetensors=True)
|
| 12 |
-
pipe.enable_xformers_memory_efficient_attention()
|
| 13 |
-
pipe = pipe.to(device)
|
| 14 |
-
else:
|
| 15 |
-
pipe = DiffusionPipeline.from_pretrained("stabilityai/sdxl-turbo", use_safetensors=True)
|
| 16 |
-
pipe = pipe.to(device)
|
| 17 |
-
|
| 18 |
-
MAX_SEED = np.iinfo(np.int32).max
|
| 19 |
-
MAX_IMAGE_SIZE = 1024
|
| 20 |
-
|
| 21 |
-
def infer(prompt, negative_prompt, seed, randomize_seed, width, height, guidance_scale, num_inference_steps):
|
| 22 |
-
|
| 23 |
-
if randomize_seed:
|
| 24 |
-
seed = random.randint(0, MAX_SEED)
|
| 25 |
-
|
| 26 |
-
generator = torch.Generator().manual_seed(seed)
|
| 27 |
-
|
| 28 |
-
image = pipe(
|
| 29 |
-
prompt = prompt,
|
| 30 |
-
negative_prompt = negative_prompt,
|
| 31 |
-
guidance_scale = guidance_scale,
|
| 32 |
-
num_inference_steps = num_inference_steps,
|
| 33 |
-
width = width,
|
| 34 |
-
height = height,
|
| 35 |
-
generator = generator
|
| 36 |
-
).images[0]
|
| 37 |
-
|
| 38 |
-
return image
|
| 39 |
-
|
| 40 |
-
examples = [
|
| 41 |
-
"Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
|
| 42 |
-
"An astronaut riding a green horse",
|
| 43 |
-
"A delicious ceviche cheesecake slice",
|
| 44 |
]
|
| 45 |
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
| 50 |
-
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
|
| 56 |
-
|
| 57 |
-
|
| 58 |
-
with gr.Blocks(css=css) as demo:
|
| 59 |
-
|
| 60 |
-
with gr.Column(elem_id="col-container"):
|
| 61 |
-
gr.Markdown(f"""
|
| 62 |
-
# Text-to-Image Gradio Template
|
| 63 |
-
Currently running on {power_device}.
|
| 64 |
-
""")
|
| 65 |
-
|
| 66 |
-
with gr.Row():
|
| 67 |
-
|
| 68 |
-
prompt = gr.Text(
|
| 69 |
-
label="Prompt",
|
| 70 |
-
show_label=False,
|
| 71 |
-
max_lines=1,
|
| 72 |
-
placeholder="Enter your prompt",
|
| 73 |
-
container=False,
|
| 74 |
-
)
|
| 75 |
-
|
| 76 |
-
run_button = gr.Button("Run", scale=0)
|
| 77 |
-
|
| 78 |
-
result = gr.Image(label="Result", show_label=False)
|
| 79 |
-
|
| 80 |
-
with gr.Accordion("Advanced Settings", open=False):
|
| 81 |
-
|
| 82 |
-
negative_prompt = gr.Text(
|
| 83 |
-
label="Negative prompt",
|
| 84 |
-
max_lines=1,
|
| 85 |
-
placeholder="Enter a negative prompt",
|
| 86 |
-
visible=False,
|
| 87 |
)
|
| 88 |
-
|
| 89 |
-
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 95 |
)
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
| 112 |
-
|
| 113 |
-
|
| 114 |
-
|
| 115 |
-
|
| 116 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 117 |
with gr.Row():
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
label="Guidance scale",
|
| 121 |
-
minimum=0.0,
|
| 122 |
-
maximum=10.0,
|
| 123 |
-
step=0.1,
|
| 124 |
-
value=0.0,
|
| 125 |
)
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
value=2,
|
| 133 |
)
|
| 134 |
-
|
| 135 |
-
gr.Examples(
|
| 136 |
-
examples = examples,
|
| 137 |
-
inputs = [prompt]
|
| 138 |
-
)
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 144 |
)
|
| 145 |
|
| 146 |
-
demo.queue().launch()
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import tempfile
|
| 3 |
+
import time
|
| 4 |
+
from contextlib import nullcontext
|
| 5 |
+
from functools import lru_cache
|
| 6 |
+
from typing import Any
|
| 7 |
+
|
| 8 |
import gradio as gr
|
| 9 |
import numpy as np
|
| 10 |
+
import rembg
|
|
|
|
| 11 |
import torch
|
| 12 |
+
from gradio_litmodel3d import LitModel3D
|
| 13 |
+
from PIL import Image
|
| 14 |
+
|
| 15 |
+
import sf3d.utils as sf3d_utils
|
| 16 |
+
from sf3d.system import SF3D
|
| 17 |
+
|
| 18 |
+
os.environ["GRADIO_TEMP_DIR"] = os.path.join(os.environ.get("TMPDIR", "/tmp"), "gradio")
|
| 19 |
+
|
| 20 |
+
rembg_session = rembg.new_session()
|
| 21 |
+
|
| 22 |
+
COND_WIDTH = 512
|
| 23 |
+
COND_HEIGHT = 512
|
| 24 |
+
COND_DISTANCE = 1.6
|
| 25 |
+
COND_FOVY_DEG = 40
|
| 26 |
+
BACKGROUND_COLOR = [0.5, 0.5, 0.5]
|
| 27 |
+
|
| 28 |
+
# Cached. Doesn't change
|
| 29 |
+
c2w_cond = sf3d_utils.default_cond_c2w(COND_DISTANCE)
|
| 30 |
+
intrinsic, intrinsic_normed_cond = sf3d_utils.create_intrinsic_from_fov_deg(
|
| 31 |
+
COND_FOVY_DEG, COND_HEIGHT, COND_WIDTH
|
| 32 |
+
)
|
| 33 |
+
|
| 34 |
+
generated_files = []
|
| 35 |
+
|
| 36 |
+
# Delete previous gradio temp dir folder
|
| 37 |
+
if os.path.exists(os.environ["GRADIO_TEMP_DIR"]):
|
| 38 |
+
print(f"Deleting {os.environ['GRADIO_TEMP_DIR']}")
|
| 39 |
+
import shutil
|
| 40 |
+
|
| 41 |
+
shutil.rmtree(os.environ["GRADIO_TEMP_DIR"])
|
| 42 |
+
|
| 43 |
+
device = sf3d_utils.get_device()
|
| 44 |
+
|
| 45 |
+
model = SF3D.from_pretrained(
|
| 46 |
+
"stabilityai/stable-fast-3d",
|
| 47 |
+
config_name="config.yaml",
|
| 48 |
+
weight_name="model.safetensors",
|
| 49 |
+
)
|
| 50 |
+
model.eval()
|
| 51 |
+
model = model.to(device)
|
| 52 |
|
| 53 |
+
example_files = [
|
| 54 |
+
os.path.join("demo_files/examples", f) for f in os.listdir("demo_files/examples")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
]
|
| 56 |
|
| 57 |
+
|
| 58 |
+
def run_model(input_image, remesh_option, vertex_count, texture_size):
|
| 59 |
+
start = time.time()
|
| 60 |
+
with torch.no_grad():
|
| 61 |
+
with torch.autocast(
|
| 62 |
+
device_type=device, dtype=torch.float16
|
| 63 |
+
) if "cuda" in device else nullcontext():
|
| 64 |
+
model_batch = create_batch(input_image)
|
| 65 |
+
model_batch = {k: v.to(device) for k, v in model_batch.items()}
|
| 66 |
+
trimesh_mesh, _glob_dict = model.generate_mesh(
|
| 67 |
+
model_batch, texture_size, remesh_option, vertex_count
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 68 |
)
|
| 69 |
+
trimesh_mesh = trimesh_mesh[0]
|
| 70 |
+
|
| 71 |
+
# Create new tmp file
|
| 72 |
+
tmp_file = tempfile.NamedTemporaryFile(delete=False, suffix=".glb")
|
| 73 |
+
|
| 74 |
+
trimesh_mesh.export(tmp_file.name, file_type="glb", include_normals=True)
|
| 75 |
+
generated_files.append(tmp_file.name)
|
| 76 |
+
|
| 77 |
+
print("Generation took:", time.time() - start, "s")
|
| 78 |
+
|
| 79 |
+
return tmp_file.name
|
| 80 |
+
|
| 81 |
+
|
| 82 |
+
def create_batch(input_image: Image) -> dict[str, Any]:
|
| 83 |
+
img_cond = (
|
| 84 |
+
torch.from_numpy(
|
| 85 |
+
np.asarray(input_image.resize((COND_WIDTH, COND_HEIGHT))).astype(np.float32)
|
| 86 |
+
/ 255.0
|
| 87 |
+
)
|
| 88 |
+
.float()
|
| 89 |
+
.clip(0, 1)
|
| 90 |
+
)
|
| 91 |
+
mask_cond = img_cond[:, :, -1:]
|
| 92 |
+
rgb_cond = torch.lerp(
|
| 93 |
+
torch.tensor(BACKGROUND_COLOR)[None, None, :], img_cond[:, :, :3], mask_cond
|
| 94 |
+
)
|
| 95 |
+
|
| 96 |
+
batch_elem = {
|
| 97 |
+
"rgb_cond": rgb_cond,
|
| 98 |
+
"mask_cond": mask_cond,
|
| 99 |
+
"c2w_cond": c2w_cond.unsqueeze(0),
|
| 100 |
+
"intrinsic_cond": intrinsic.unsqueeze(0),
|
| 101 |
+
"intrinsic_normed_cond": intrinsic_normed_cond.unsqueeze(0),
|
| 102 |
+
}
|
| 103 |
+
# Add batch dim
|
| 104 |
+
batched = {k: v.unsqueeze(0) for k, v in batch_elem.items()}
|
| 105 |
+
return batched
|
| 106 |
+
|
| 107 |
+
|
| 108 |
+
@lru_cache
|
| 109 |
+
def checkerboard(squares: int, size: int, min_value: float = 0.5):
|
| 110 |
+
base = np.zeros((squares, squares)) + min_value
|
| 111 |
+
base[1::2, ::2] = 1
|
| 112 |
+
base[::2, 1::2] = 1
|
| 113 |
+
|
| 114 |
+
repeat_mult = size // squares
|
| 115 |
+
return (
|
| 116 |
+
base.repeat(repeat_mult, axis=0)
|
| 117 |
+
.repeat(repeat_mult, axis=1)[:, :, None]
|
| 118 |
+
.repeat(3, axis=-1)
|
| 119 |
+
)
|
| 120 |
+
|
| 121 |
+
|
| 122 |
+
def remove_background(input_image: Image) -> Image:
|
| 123 |
+
return rembg.remove(input_image, session=rembg_session)
|
| 124 |
+
|
| 125 |
+
|
| 126 |
+
def resize_foreground(
|
| 127 |
+
image: Image,
|
| 128 |
+
ratio: float,
|
| 129 |
+
) -> Image:
|
| 130 |
+
image = np.array(image)
|
| 131 |
+
assert image.shape[-1] == 4
|
| 132 |
+
alpha = np.where(image[..., 3] > 0)
|
| 133 |
+
y1, y2, x1, x2 = (
|
| 134 |
+
alpha[0].min(),
|
| 135 |
+
alpha[0].max(),
|
| 136 |
+
alpha[1].min(),
|
| 137 |
+
alpha[1].max(),
|
| 138 |
+
)
|
| 139 |
+
# crop the foreground
|
| 140 |
+
fg = image[y1:y2, x1:x2]
|
| 141 |
+
# pad to square
|
| 142 |
+
size = max(fg.shape[0], fg.shape[1])
|
| 143 |
+
ph0, pw0 = (size - fg.shape[0]) // 2, (size - fg.shape[1]) // 2
|
| 144 |
+
ph1, pw1 = size - fg.shape[0] - ph0, size - fg.shape[1] - pw0
|
| 145 |
+
new_image = np.pad(
|
| 146 |
+
fg,
|
| 147 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 148 |
+
mode="constant",
|
| 149 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 150 |
+
)
|
| 151 |
+
|
| 152 |
+
# compute padding according to the ratio
|
| 153 |
+
new_size = int(new_image.shape[0] / ratio)
|
| 154 |
+
# pad to size, double side
|
| 155 |
+
ph0, pw0 = (new_size - size) // 2, (new_size - size) // 2
|
| 156 |
+
ph1, pw1 = new_size - size - ph0, new_size - size - pw0
|
| 157 |
+
new_image = np.pad(
|
| 158 |
+
new_image,
|
| 159 |
+
((ph0, ph1), (pw0, pw1), (0, 0)),
|
| 160 |
+
mode="constant",
|
| 161 |
+
constant_values=((0, 0), (0, 0), (0, 0)),
|
| 162 |
+
)
|
| 163 |
+
new_image = Image.fromarray(new_image, mode="RGBA").resize(
|
| 164 |
+
(COND_WIDTH, COND_HEIGHT)
|
| 165 |
+
)
|
| 166 |
+
return new_image
|
| 167 |
+
|
| 168 |
+
|
| 169 |
+
def square_crop(input_image: Image) -> Image:
|
| 170 |
+
# Perform a center square crop
|
| 171 |
+
min_size = min(input_image.size)
|
| 172 |
+
left = (input_image.size[0] - min_size) // 2
|
| 173 |
+
top = (input_image.size[1] - min_size) // 2
|
| 174 |
+
right = (input_image.size[0] + min_size) // 2
|
| 175 |
+
bottom = (input_image.size[1] + min_size) // 2
|
| 176 |
+
return input_image.crop((left, top, right, bottom)).resize(
|
| 177 |
+
(COND_WIDTH, COND_HEIGHT)
|
| 178 |
+
)
|
| 179 |
+
|
| 180 |
+
|
| 181 |
+
def show_mask_img(input_image: Image) -> Image:
|
| 182 |
+
img_numpy = np.array(input_image)
|
| 183 |
+
alpha = img_numpy[:, :, 3] / 255.0
|
| 184 |
+
chkb = checkerboard(32, 512) * 255
|
| 185 |
+
new_img = img_numpy[..., :3] * alpha[:, :, None] + chkb * (1 - alpha[:, :, None])
|
| 186 |
+
return Image.fromarray(new_img.astype(np.uint8), mode="RGB")
|
| 187 |
+
|
| 188 |
+
|
| 189 |
+
def run_button(
|
| 190 |
+
run_btn,
|
| 191 |
+
input_image,
|
| 192 |
+
background_state,
|
| 193 |
+
foreground_ratio,
|
| 194 |
+
remesh_option,
|
| 195 |
+
vertex_count,
|
| 196 |
+
texture_size,
|
| 197 |
+
):
|
| 198 |
+
if run_btn == "Run":
|
| 199 |
+
if torch.cuda.is_available():
|
| 200 |
+
torch.cuda.reset_peak_memory_stats()
|
| 201 |
+
glb_file: str = run_model(
|
| 202 |
+
background_state, remesh_option.lower(), vertex_count, texture_size
|
| 203 |
+
)
|
| 204 |
+
if torch.cuda.is_available():
|
| 205 |
+
print("Peak Memory:", torch.cuda.max_memory_allocated() / 1024 / 1024, "MB")
|
| 206 |
+
elif torch.backends.mps.is_available():
|
| 207 |
+
print(
|
| 208 |
+
"Peak Memory:", torch.mps.driver_allocated_memory() / 1024 / 1024, "MB"
|
| 209 |
)
|
| 210 |
+
|
| 211 |
+
return (
|
| 212 |
+
gr.update(),
|
| 213 |
+
gr.update(),
|
| 214 |
+
gr.update(),
|
| 215 |
+
gr.update(),
|
| 216 |
+
gr.update(value=glb_file, visible=True),
|
| 217 |
+
gr.update(visible=True),
|
| 218 |
+
)
|
| 219 |
+
elif run_btn == "Remove Background":
|
| 220 |
+
rem_removed = remove_background(input_image)
|
| 221 |
+
|
| 222 |
+
sqr_crop = square_crop(rem_removed)
|
| 223 |
+
fr_res = resize_foreground(sqr_crop, foreground_ratio)
|
| 224 |
+
|
| 225 |
+
return (
|
| 226 |
+
gr.update(value="Run", visible=True),
|
| 227 |
+
sqr_crop,
|
| 228 |
+
fr_res,
|
| 229 |
+
gr.update(value=show_mask_img(fr_res), visible=True),
|
| 230 |
+
gr.update(value=None, visible=False),
|
| 231 |
+
gr.update(visible=False),
|
| 232 |
+
)
|
| 233 |
+
|
| 234 |
+
|
| 235 |
+
def requires_bg_remove(image, fr):
|
| 236 |
+
if image is None:
|
| 237 |
+
return (
|
| 238 |
+
gr.update(visible=False, value="Run"),
|
| 239 |
+
None,
|
| 240 |
+
None,
|
| 241 |
+
gr.update(value=None, visible=False),
|
| 242 |
+
gr.update(visible=False),
|
| 243 |
+
gr.update(visible=False),
|
| 244 |
+
)
|
| 245 |
+
alpha_channel = np.array(image.getchannel("A"))
|
| 246 |
+
min_alpha = alpha_channel.min()
|
| 247 |
+
|
| 248 |
+
if min_alpha == 0:
|
| 249 |
+
print("Already has alpha")
|
| 250 |
+
sqr_crop = square_crop(image)
|
| 251 |
+
fr_res = resize_foreground(sqr_crop, fr)
|
| 252 |
+
return (
|
| 253 |
+
gr.update(value="Run", visible=True),
|
| 254 |
+
sqr_crop,
|
| 255 |
+
fr_res,
|
| 256 |
+
gr.update(value=show_mask_img(fr_res), visible=True),
|
| 257 |
+
gr.update(visible=False),
|
| 258 |
+
gr.update(visible=False),
|
| 259 |
+
)
|
| 260 |
+
return (
|
| 261 |
+
gr.update(value="Remove Background", visible=True),
|
| 262 |
+
None,
|
| 263 |
+
None,
|
| 264 |
+
gr.update(value=None, visible=False),
|
| 265 |
+
gr.update(visible=False),
|
| 266 |
+
gr.update(visible=False),
|
| 267 |
+
)
|
| 268 |
+
|
| 269 |
+
|
| 270 |
+
def update_foreground_ratio(img_proc, fr):
|
| 271 |
+
foreground_res = resize_foreground(img_proc, fr)
|
| 272 |
+
return (
|
| 273 |
+
foreground_res,
|
| 274 |
+
gr.update(value=show_mask_img(foreground_res)),
|
| 275 |
+
)
|
| 276 |
+
|
| 277 |
+
|
| 278 |
+
with gr.Blocks() as demo:
|
| 279 |
+
img_proc_state = gr.State()
|
| 280 |
+
background_remove_state = gr.State()
|
| 281 |
+
gr.Markdown("""
|
| 282 |
+
# SF3D: Stable Fast 3D Mesh Reconstruction with UV-unwrapping and Illumination Disentanglement
|
| 283 |
+
|
| 284 |
+
**SF3D** is a state-of-the-art method for 3D mesh reconstruction from a single image.
|
| 285 |
+
This demo allows you to upload an image and generate a 3D mesh model from it.
|
| 286 |
+
|
| 287 |
+
**Tips**
|
| 288 |
+
1. If the image already has an alpha channel, you can skip the background removal step.
|
| 289 |
+
2. You can adjust the foreground ratio to control the size of the foreground object. This can influence the shape
|
| 290 |
+
3. You can select the remeshing option to control the mesh topology. This can introduce artifacts in the mesh on thin surfaces and should be turned off in such cases.
|
| 291 |
+
4. You can upload your own HDR environment map to light the 3D model.
|
| 292 |
+
""")
|
| 293 |
+
with gr.Row(variant="panel"):
|
| 294 |
+
with gr.Column():
|
| 295 |
with gr.Row():
|
| 296 |
+
input_img = gr.Image(
|
| 297 |
+
type="pil", label="Input Image", sources="upload", image_mode="RGBA"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 298 |
)
|
| 299 |
+
preview_removal = gr.Image(
|
| 300 |
+
label="Preview Background Removal",
|
| 301 |
+
type="pil",
|
| 302 |
+
image_mode="RGB",
|
| 303 |
+
interactive=False,
|
| 304 |
+
visible=False,
|
|
|
|
| 305 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 306 |
|
| 307 |
+
foreground_ratio = gr.Slider(
|
| 308 |
+
label="Foreground Ratio",
|
| 309 |
+
minimum=0.5,
|
| 310 |
+
maximum=1.0,
|
| 311 |
+
value=0.85,
|
| 312 |
+
step=0.05,
|
| 313 |
+
)
|
| 314 |
+
|
| 315 |
+
foreground_ratio.change(
|
| 316 |
+
update_foreground_ratio,
|
| 317 |
+
inputs=[img_proc_state, foreground_ratio],
|
| 318 |
+
outputs=[background_remove_state, preview_removal],
|
| 319 |
+
)
|
| 320 |
+
|
| 321 |
+
remesh_option = gr.Radio(
|
| 322 |
+
choices=["None", "Triangle", "Quad"],
|
| 323 |
+
label="Remeshing",
|
| 324 |
+
value="None",
|
| 325 |
+
visible=True,
|
| 326 |
+
)
|
| 327 |
+
|
| 328 |
+
vertex_count_slider = gr.Slider(
|
| 329 |
+
label="Target Vertex Count",
|
| 330 |
+
minimum=1000,
|
| 331 |
+
maximum=20000,
|
| 332 |
+
value=10000,
|
| 333 |
+
step=1000,
|
| 334 |
+
visible=True,
|
| 335 |
+
)
|
| 336 |
+
|
| 337 |
+
texture_size = gr.Slider(
|
| 338 |
+
label="Texture Size",
|
| 339 |
+
minimum=512,
|
| 340 |
+
maximum=2048,
|
| 341 |
+
value=1024,
|
| 342 |
+
step=256,
|
| 343 |
+
visible=True,
|
| 344 |
+
)
|
| 345 |
+
|
| 346 |
+
run_btn = gr.Button("Run", variant="primary", visible=False)
|
| 347 |
+
|
| 348 |
+
with gr.Column():
|
| 349 |
+
output_3d = LitModel3D(
|
| 350 |
+
label="3D Model",
|
| 351 |
+
visible=False,
|
| 352 |
+
clear_color=[0.0, 0.0, 0.0, 0.0],
|
| 353 |
+
tonemapping="aces",
|
| 354 |
+
contrast=1.0,
|
| 355 |
+
scale=1.0,
|
| 356 |
+
)
|
| 357 |
+
with gr.Column(visible=False, scale=1.0) as hdr_row:
|
| 358 |
+
gr.Markdown("""## HDR Environment Map
|
| 359 |
+
|
| 360 |
+
Select an HDR environment map to light the 3D model. You can also upload your own HDR environment maps.
|
| 361 |
+
""")
|
| 362 |
+
|
| 363 |
+
with gr.Row():
|
| 364 |
+
hdr_illumination_file = gr.File(
|
| 365 |
+
label="HDR Env Map", file_types=[".hdr"], file_count="single"
|
| 366 |
+
)
|
| 367 |
+
example_hdris = [
|
| 368 |
+
os.path.join("demo_files/hdri", f)
|
| 369 |
+
for f in os.listdir("demo_files/hdri")
|
| 370 |
+
]
|
| 371 |
+
hdr_illumination_example = gr.Examples(
|
| 372 |
+
examples=example_hdris,
|
| 373 |
+
inputs=hdr_illumination_file,
|
| 374 |
+
)
|
| 375 |
+
|
| 376 |
+
hdr_illumination_file.change(
|
| 377 |
+
lambda x: gr.update(env_map=x.name if x is not None else None),
|
| 378 |
+
inputs=hdr_illumination_file,
|
| 379 |
+
outputs=[output_3d],
|
| 380 |
+
)
|
| 381 |
+
|
| 382 |
+
examples = gr.Examples(
|
| 383 |
+
examples=example_files,
|
| 384 |
+
inputs=input_img,
|
| 385 |
+
)
|
| 386 |
+
|
| 387 |
+
input_img.change(
|
| 388 |
+
requires_bg_remove,
|
| 389 |
+
inputs=[input_img, foreground_ratio],
|
| 390 |
+
outputs=[
|
| 391 |
+
run_btn,
|
| 392 |
+
img_proc_state,
|
| 393 |
+
background_remove_state,
|
| 394 |
+
preview_removal,
|
| 395 |
+
output_3d,
|
| 396 |
+
hdr_row,
|
| 397 |
+
],
|
| 398 |
+
)
|
| 399 |
+
|
| 400 |
+
run_btn.click(
|
| 401 |
+
run_button,
|
| 402 |
+
inputs=[
|
| 403 |
+
run_btn,
|
| 404 |
+
input_img,
|
| 405 |
+
background_remove_state,
|
| 406 |
+
foreground_ratio,
|
| 407 |
+
remesh_option,
|
| 408 |
+
vertex_count_slider,
|
| 409 |
+
texture_size,
|
| 410 |
+
],
|
| 411 |
+
outputs=[
|
| 412 |
+
run_btn,
|
| 413 |
+
img_proc_state,
|
| 414 |
+
background_remove_state,
|
| 415 |
+
preview_removal,
|
| 416 |
+
output_3d,
|
| 417 |
+
hdr_row,
|
| 418 |
+
],
|
| 419 |
)
|
| 420 |
|
| 421 |
+
demo.queue().launch(share=False)
|