File size: 6,036 Bytes
fbba505
 
 
fed9294
 
 
7eff547
fbba505
3ba81e2
 
fbba505
fed9294
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fbba505
 
fed9294
 
 
 
 
 
3ba81e2
 
 
fed9294
 
fbba505
fed9294
fbba505
 
fed9294
fbba505
 
fed9294
fbba505
 
 
 
 
 
 
 
 
 
0f3e6bf
fbba505
 
fed9294
 
 
 
 
 
 
 
 
 
fbba505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed9294
fbba505
 
 
 
 
 
 
 
 
 
 
fed9294
 
 
 
 
fbba505
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
fed9294
fbba505
 
 
 
 
 
fed9294
fbba505
 
 
 
 
 
 
 
fed9294
fbba505
 
 
 
 
 
fed9294
fbba505
 
fed9294
 
 
 
 
fbba505
 
 
 
 
 
0f3e6bf
fbba505
 
 
 
 
 
 
 
 
 
 
fed9294
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
import gradio as gr
import numpy as np
import random
import spaces #[uncomment to use ZeroGPU]
from kontext.pipeline_flux_kontext import FluxKontextPipeline
from kontext.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from diffusers import FluxTransformer2DModel
import torch
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file

def resize_by_bucket(images_pil, resolution=512):
    assert len(images_pil) > 0, "images_pil 不能为空"
    bucket_override = [
        (336, 784), (344, 752), (360, 728), (376, 696),
        (400, 664), (416, 624), (440, 592), (472, 552),
        (512, 512),
        (552, 472), (592, 440), (624, 416), (664, 400),
        (696, 376), (728, 360), (752, 344), (784, 336),
    ]
    bucket_override = [
        (int(h / 512 * resolution), int(w / 512 * resolution)) 
        for h, w in bucket_override
    ]
    bucket_override = [
        (h // 16 * 16, w // 16 * 16) 
        for h, w in bucket_override
    ]

    aspect_ratios = [img.height / img.width for img in images_pil]
    mean_aspect_ratio = float(np.mean(aspect_ratios))

    new_h, new_w = bucket_override[0]
    min_aspect_diff = abs(new_h / new_w - mean_aspect_ratio)
    for h, w in bucket_override:
        aspect_diff = abs(h / w - mean_aspect_ratio)
        if aspect_diff < min_aspect_diff:
            min_aspect_diff = aspect_diff
            new_h, new_w = h, w

    resized_images = [
        img.resize((new_w, new_h), resample=Image.BICUBIC) for img in images_pil
    ]
    return resized_images

device = "cuda" if torch.cuda.is_available() else "cpu"

flux_pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev")
flux_pipeline.scheduler = FlowMatchEulerDiscreteScheduler.from_config(flux_pipeline.scheduler.config)
flux_pipeline.vae.to(device).to(torch.bfloat16)
flux_pipeline.text_encoder.to(device).to(torch.bfloat16)
flux_pipeline.text_encoder_2.to(device).to(torch.bfloat16)
flux_pipeline.scheduler.config.stochastic_sampling = False
ckpt_path = hf_hub_download("NoobDoge/Multi_Ref_Model", "full_ema_model.safetensors")
new_weight = load_file(ckpt_path)
flux_pipeline.transformer.load_state_dict(new_weight)
flux_pipeline.transformer.to(device).to(torch.bfloat16)

MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512


@spaces.GPU #[uncomment to use ZeroGPU]
def infer(
    prompt,
    raw_images,
    seed,
    randomize_seed,
    width,
    height,
    guidance_scale,
    num_inference_steps,
    progress=gr.Progress(track_tqdm=True),
):
    if randomize_seed:
        seed = random.randint(0, MAX_SEED)
    raw_images = [resize_by_bucket(x) for x in raw_images]
    generator = torch.Generator().manual_seed(seed)

    with torch.no_grad():
        output_img = flux_pipeline(
            image = raw_images,
            prompt = prompts,
            height = height,
            width = width,
            num_inference_steps = num_inference_steps,
            max_area=MAX_IMAGE_SIZE**2,
            generator=generator,
        ).images[0]

    return image, seed


examples = [
    "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k",
    "An astronaut riding a green horse",
    "A delicious ceviche cheesecake slice",
]

css = """
#col-container {
    margin: 0 auto;
    max-width: 640px;
}
"""

with gr.Blocks(css=css) as demo:
    with gr.Column(elem_id="col-container"):
        gr.Markdown("# Text-to-Image Gradio Template")

        with gr.Row():
            prompt = gr.Text(
                label="Prompt",
                show_label=False,
                max_lines=1,
                placeholder="Enter your prompt",
                container=False,
            )
            run_button = gr.Button("Run", scale=0, variant="primary")

        # 新增:两张输入图片
        with gr.Row():
            ref1 = gr.Image(label="Input Image 1", type="pil")
            ref2 = gr.Image(label="Input Image 2", type="pil")

        result = gr.Image(label="Result", show_label=False)

        with gr.Accordion("Advanced Settings", open=False):
            seed = gr.Slider(
                label="Seed",
                minimum=0,
                maximum=MAX_SEED,
                step=1,
                value=0,
            )
            randomize_seed = gr.Checkbox(label="Randomize seed", value=True)

            with gr.Row():
                width = gr.Slider(
                    label="Width",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )
                height = gr.Slider(
                    label="Height",
                    minimum=256,
                    maximum=MAX_IMAGE_SIZE,
                    step=32,
                    value=1024,
                )

            with gr.Row():
                guidance_scale = gr.Slider(
                    label="Guidance scale",
                    minimum=0.0,
                    maximum=10.0,
                    step=0.1,
                    value=0.0,
                )
                num_inference_steps = gr.Slider(
                    label="Number of inference steps",
                    minimum=1,
                    maximum=50,
                    step=1,
                    value=2,
                )

        # 如果 examples 只包含文本 prompt,保持如下即可
        examples = [
            ["a cute corgi in a wizard hat"],
            ["a watercolor painting of yosemite valley at sunrise"],
        ]
        gr.Examples(examples=examples, inputs=[prompt])
    gr.on(
        triggers=[run_button.click, prompt.submit],
        fn=infer,
        inputs=[
            prompt,
            [ref1, ref2],                # 新增:两张图
            seed,
            randomize_seed,
            width,
            height,
            guidance_scale,
            num_inference_steps,
        ],
        outputs=[result, seed],
    )

if __name__ == "__main__":
    demo.launch()