Spaces:
Running
on
Zero
Running
on
Zero
File size: 7,465 Bytes
fbba505 6e1abe1 46657b2 fed9294 7eff547 3ba81e2 fbba505 46657b2 fed9294 46657b2 fed9294 46657b2 fed9294 46657b2 fbba505 fed9294 46657b2 fed9294 46657b2 3ba81e2 79465f9 fed9294 46657b2 fbba505 46657b2 fbba505 46657b2 fbba505 46657b2 fbba505 46657b2 fbba505 46657b2 058ae01 46657b2 fbba505 46657b2 fbba505 46657b2 cab43e0 46657b2 fed9294 46657b2 fed9294 46657b2 fbba505 46657b2 fbba505 46657b2 fbba505 f1138b7 fbba505 cab43e0 fbba505 46657b2 fbba505 46657b2 fed9294 46657b2 fed9294 fbba505 46657b2 fbba505 46657b2 fbba505 46657b2 fbba505 46657b2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
import gradio as gr
import numpy as np
import random, torch
import spaces # [uncomment to use ZeroGPU]
from PIL import Image
from kontext.pipeline_flux_kontext import FluxKontextPipeline
from kontext.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler
from diffusers import FluxTransformer2DModel
from huggingface_hub import hf_hub_download
from safetensors.torch import load_file
# ---------------------------
# utils
# ---------------------------
def resize_by_bucket(images_pil, resolution=512):
assert len(images_pil) > 0, "images_pil 不能为空"
bucket_override = [
(336, 784), (344, 752), (360, 728), (376, 696),
(400, 664), (416, 624), (440, 592), (472, 552),
(512, 512),
(552, 472), (592, 440), (624, 416), (664, 400),
(696, 376), (728, 360), (752, 344), (784, 336),
]
# 按目标分辨率缩放,并对齐到 16
bucket_override = [(int(h / 512 * resolution), int(w / 512 * resolution)) for h, w in bucket_override]
bucket_override = [(h // 16 * 16, w // 16 * 16) for h, w in bucket_override]
aspect_ratios = [img.height / img.width for img in images_pil]
mean_aspect_ratio = float(np.mean(aspect_ratios))
new_h, new_w = bucket_override[0]
min_aspect_diff = abs(new_h / new_w - mean_aspect_ratio)
for h, w in bucket_override:
aspect_diff = abs(h / w - mean_aspect_ratio)
if aspect_diff < min_aspect_diff:
min_aspect_diff = aspect_diff
new_h, new_w = h, w
resized_images = [img.resize((new_w, new_h), resample=Image.BICUBIC) for img in images_pil]
return resized_images
# ---------------------------
# pipeline init
# ---------------------------
device = "cuda" if torch.cuda.is_available() else "cpu"
flux_pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev")
flux_pipeline.scheduler = FlowMatchEulerDiscreteScheduler.from_config(flux_pipeline.scheduler.config)
flux_pipeline.scheduler.config.stochastic_sampling = False
# precision & device
flux_pipeline.vae.to(device).to(torch.bfloat16)
flux_pipeline.text_encoder.to(device).to(torch.bfloat16)
flux_pipeline.text_encoder_2.to(device).to(torch.bfloat16)
# 替换 transformer 权重
ckpt_path = hf_hub_download("NoobDoge/Multi_Ref_Model", "full_ema_model.safetensors")
flux_pipeline.transformer = FluxTransformer2DModel.from_single_file(ckpt_path, torch_dtype=torch.bfloat16)
flux_pipeline.transformer.to(device).to(torch.bfloat16)
# ---------------------------
# constants
# ---------------------------
MAX_SEED = np.iinfo(np.int32).max
MAX_IMAGE_SIZE = 512 # 与下方滑块默认值 1024 保持一致
# ---------------------------
# inference
# ---------------------------
@spaces.GPU # [uncomment to use ZeroGPU]
def infer(
prompt,
ref1, # PIL.Image 或 None
ref2, # PIL.Image 或 None(可选)
seed,
randomize_seed,
width,
height,
guidance_scale, # 目前没传入 pipeline,如需要可在下面调用里加上
num_inference_steps,
progress=gr.Progress(track_tqdm=True),
):
# 组装可选参考图列表
refs = [x for x in (ref1, ref2) if x is not None]
if len(refs) == 0:
raise gr.Error("请至少上传一张参考图(ref1 或 ref2)。")
# 规范宽高:不超过 MAX_IMAGE_SIZE 且对齐到 16
width = max(16, min(width, MAX_IMAGE_SIZE)) // 16 * 16
height = max(16, min(height, MAX_IMAGE_SIZE)) // 16 * 16
# 随机种子
if randomize_seed:
seed = random.randint(0, MAX_SEED)
generator = torch.Generator(device=device).manual_seed(int(seed))
# 参考图按桶缩放
raw_images = resize_by_bucket(refs, resolution=MAX_IMAGE_SIZE)
# 推理
with torch.no_grad():
out = flux_pipeline(
image=raw_images,
prompt=prompt,
height=height,
width=width,
num_inference_steps=int(num_inference_steps),
max_area=MAX_IMAGE_SIZE ** 2,
generator=generator,
# 如需 guidance_scale,确保 pipeline 支持这个参数后再打开:
# guidance_scale=float(guidance_scale),
)
output_img = out.images[0]
return output_img, int(seed)
# ---------------------------
# UI
# ---------------------------
examples = [
"Place the butterfly from the first image onto the landscape of the second image, positioning it either flying above the river near the bridge or perched on one of the trees in the foreground. Adjust the butterfly's size and blending to ensure it fits naturally in the scene.",
"An astronaut riding a green horse",
"A delicious ceviche cheesecake slice",
]
css = """
#col-container {
margin: 0 auto;
max-width: 640px;
}
"""
with gr.Blocks(css=css) as demo:
with gr.Column(elem_id="col-container"):
gr.Markdown("# Multi Ref Edit Demo")
with gr.Row():
prompt = gr.Text(
label="Prompt",
show_label=False,
max_lines=1,
placeholder="Enter your prompt",
container=False,
)
run_button = gr.Button("Run", scale=0, variant="primary")
# 两张输入图片(ref2 可空)
with gr.Row():
ref1_comp = gr.Image(label="Input Image 1", type="pil")
ref2_comp = gr.Image(label="Input Image 2 (optional)", type="pil")
result = gr.Image(label="Result", show_label=False)
with gr.Accordion("Advanced Settings", open=False):
seed_comp = gr.Slider(
label="Seed",
minimum=0,
maximum=MAX_SEED,
step=1,
value=0,
)
randomize_seed_comp = gr.Checkbox(label="Randomize seed", value=True)
with gr.Row():
width_comp = gr.Slider(
label="Width",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
height_comp = gr.Slider(
label="Height",
minimum=256,
maximum=MAX_IMAGE_SIZE,
step=32,
value=512,
)
with gr.Row():
guidance_scale_comp = gr.Slider(
label="Guidance scale",
minimum=0.0,
maximum=10.0,
step=0.1,
value=2.5,
)
num_inference_steps_comp = gr.Slider(
label="Number of inference steps",
minimum=1,
maximum=50,
step=1,
value=28,
)
gr.Examples(examples=[[e] for e in examples], inputs=[prompt])
# 注意:不要把 [ref1, ref2] 当作列表传给 inputs!
gr.on(
triggers=[run_button.click, prompt.submit],
fn=infer,
inputs=[
prompt,
ref1_comp,
ref2_comp, # ref2 可为空
seed_comp,
randomize_seed_comp,
width_comp,
height_comp,
guidance_scale_comp,
num_inference_steps_comp,
],
outputs=[result, seed_comp],
)
if __name__ == "__main__":
demo.launch()
|