Multi_Ref_Edit / kontext /ddpo_edit_trainer.py
bo.l
pipe
fed9294
import os, pickle, random, json, os, base64, io
import torch
import torch.nn as nn
import matplotlib.pyplot as plt
from PIL import Image
import numpy as np
from glob import glob
from tqdm import tqdm, trange
from concurrent.futures import ThreadPoolExecutor, as_completed
from collections import defaultdict
from concurrent import futures
from pathlib import Path
from accelerate import Accelerator
from typing import Any, Callable, Optional, Union
from warnings import warn
from peft import LoraConfig, get_peft_model
from accelerate.logging import get_logger
from accelerate.utils import ProjectConfiguration, set_seed
from huggingface_hub import PyTorchModelHubMixin
from modeling_flux_base import DefaultDDPOFluxPipeline
from ddpo_flux_config import DDPOFluxConfig
from transformers import is_wandb_available
if is_wandb_available():
import wandb
logger = get_logger(__name__)
class DDPOTrainer_edit(PyTorchModelHubMixin):
def __init__(
self,
config: DDPOFluxConfig,
reward_function: Callable[[], tuple[str, Any]],
prompt_function: Callable[[], tuple[str, Any]],
edit_pipeline: DefaultDDPOFluxPipeline,
image_samples_hook: Optional[Callable[[Any, Any, Any], Any]] = None,
):
if image_samples_hook is None:
warn("No image_samples_hook provided; no images will be logged")
self.prompt_fn = prompt_function
self.reward_fn = reward_function
self.config = config
self.image_samples_callback = image_samples_hook
accelerator_project_config = ProjectConfiguration(**self.config.project_kwargs)
self.project_dir = accelerator_project_config.project_dir
if self.config.resume_from:
if self.config.resume_from == "latest":
dirs = os.listdir(self.project_dir)
dirs = [d for d in dirs if d.startswith("checkpoint_lora")]
dirs = sorted(dirs, key=lambda x: int(x.split("-")[1]))
if len(dirs) == 0:
print(f"Checkpoint '{self.config.resume_from}' does not exist. Starting a new training run.")
self.config.resume_from = ""
path = dirs[-1]
else:
path = os.path.basename(self.config.resume_from)
self.config.resume_from = os.path.join(self.project_dir, path)
accelerator_project_config.iteration = int(path.split("-")[1])+1
# number of timesteps within each trajectory to train on
self.num_train_timesteps = int(self.config.sample_num_steps * self.config.train_timestep_fraction - 1)
self.accelerator = Accelerator(
log_with=self.config.log_with,
mixed_precision=self.config.mixed_precision,
project_config=accelerator_project_config,
# we always accumulate gradients across timesteps; we want config.train.gradient_accumulation_steps to be the
# number of *samples* we accumulate across, so we need to multiply by the number of training timesteps to get
# the total number of optimizer steps to accumulate across.
gradient_accumulation_steps=self.config.train_gradient_accumulation_steps * self.num_train_timesteps,
**self.config.accelerator_kwargs,
)
is_using_tensorboard = config.log_with is not None and config.log_with == "tensorboard"
if self.accelerator.is_main_process:
self.accelerator.init_trackers(
self.config.tracker_project_name,
config=dict(ddpo_trainer_config=config.to_dict()) if not is_using_tensorboard else config.to_dict(),
init_kwargs=self.config.tracker_kwargs,
)
is_okay, message = self._config_check()
if not is_okay:
raise ValueError(message)
logger.info(f"\n{config}")
set_seed(self.config.seed, device_specific=True)
self.edit_pipeline = edit_pipeline
self.edit_pipeline.set_progress_bar_config(
position=1,
disable=not self.accelerator.is_local_main_process,
leave=False,
desc="Timestep",
dynamic_ncols=True,
)
# For mixed precision training we cast all non-trainable weights (vae, non-lora text_encoder and non-lora transformer) to half-precision
# as these weights are only used for inference, keeping weights in full precision is not required.
if self.accelerator.mixed_precision == "fp16":
inference_dtype = torch.float16
elif self.accelerator.mixed_precision == "bf16":
inference_dtype = torch.bfloat16
else:
inference_dtype = torch.float32
self.edit_pipeline.vae.to(self.accelerator.device, dtype=inference_dtype)
self.edit_pipeline.text_encoder.to(self.accelerator.device, dtype=inference_dtype)
self.edit_pipeline.text_encoder_2.to(self.accelerator.device, dtype=inference_dtype)
lora_config = LoraConfig(
r=self.config.lora_rank,
lora_alpha=self.config.lora_alpha,
init_lora_weights="gaussian",
target_modules=["to_k", "to_q", "to_v", "to_out.0"],
)
self.edit_pipeline.flux_pipeline.transformer.requires_grad_(False)
self.edit_pipeline.flux_pipeline.transformer = get_peft_model(self.edit_pipeline.flux_pipeline.transformer, lora_config)
trainable_params = [p for p in list(self.edit_pipeline.flux_pipeline.transformer.parameters()) if p.requires_grad]
total_params = sum(p.numel() for p in trainable_params)
self.optimizer = torch.optim.AdamW(
trainable_params,
lr=self.config.train_learning_rate,
betas=(self.config.train_adam_beta1, self.config.train_adam_beta2),
weight_decay=self.config.train_adam_weight_decay,
eps=self.config.train_adam_epsilon,
)
(
self.negative_prompt_embeds,
self.negative_pooled_prompt_embeds,
self.negative_text_ids,
) = self.edit_pipeline.flux_pipeline.encode_prompt(
prompt=[""] if self.config.negative_prompts is None else self.config.negative_prompts,
prompt_2=[""],
device=self.accelerator.device,
)
# NOTE: for some reason, autocast is necessary for non-lora training but for lora training it isn't necessary and it uses
# more memory
self.autocast = self.edit_pipeline.autocast or self.accelerator.autocast
if self.config.resume_from:
print(f"Resuming from {self.config.resume_from}")
logger.info(f"Resuming from {self.config.resume_from}")
self.edit_pipeline.flux_pipeline.transformer.load_adapter(self.config.resume_from, adapter_name="default", is_trainable=True)
self.edit_pipeline.flux_pipeline.transformer.train()
self.first_epoch = accelerator_project_config.iteration
else:
self.first_epoch = 0
self.edit_pipeline.flux_pipeline.transformer, self.optimizer = self.accelerator.prepare(self.edit_pipeline.flux_pipeline.transformer, self.optimizer)
self.trainable_layers = list(filter(lambda p: p.requires_grad, self.edit_pipeline.flux_pipeline.transformer.parameters()))
self.executor = futures.ThreadPoolExecutor(max_workers=self.config.max_workers)#config.max_workers
def compute_rewards(self, prompt_image_pairs):
all_rewards = []
all_meta_data = []
for img, prompt, raw_img, img_path in prompt_image_pairs:
data_pair_vllm = []
for idx in range(len(img)):
data_pair_vllm.append((raw_img[idx][0],raw_img[idx][1], prompt[idx], img[idx]))
# rewards = self.executor.map(lambda x: self.reward_fn(*x), data_pair_vllm)
# -------- submit + as_completed --------
fut_to_idx = {
self.executor.submit(self.reward_fn, *triple): idx
for idx, triple in enumerate(data_pair_vllm)
}
# Collect results in original order
rewards = [None] * len(data_pair_vllm)
for fut in futures.as_completed(fut_to_idx):
idx = fut_to_idx[fut]
rewards[idx] = fut.result()
rewards_ = [torch.as_tensor(reward, device=self.accelerator.device) for reward, reward_metadata in rewards]
rewards_ = torch.stack(rewards_)
all_rewards.append(rewards_)
all_meta_data.append(img_path)
return all_rewards, all_meta_data
def step(self, epoch: int, global_step: int):
"""
Perform a single step of training.
Args:
epoch (int): The current epoch.
global_step (int): The current global step.
Side Effects:
- Model weights are updated
- Logs the statistics to the accelerator trackers.
- If `self.image_samples_callback` is not None, it will be called with the prompt_image_pairs, global_step,
and the accelerator tracker.
Returns:
global_step (int): The updated global step.
"""
samples, prompt_image_data = self._generate_samples(
iterations=self.config.sample_num_batches_per_epoch,
batch_size=self.config.sample_batch_size,
)
# collate samples into dict where each entry has shape (num_batches_per_epoch * sample.batch_size, ...)
local_rank = self.accelerator.local_process_index
samples = {k: torch.cat([s[k] for s in samples]) for k in samples[0].keys()}
rewards, rewards_metadata = self.compute_rewards(prompt_image_data)
for i, image_data in enumerate(prompt_image_data):
image_data.extend([rewards[i], rewards_metadata[i]])
if self.image_samples_callback is not None and self.accelerator.is_main_process:
self.image_samples_callback(prompt_image_data, global_step, self.accelerator.trackers[0])
rewards = torch.cat(rewards)
rewards = self.accelerator.gather(rewards).cpu().numpy()
if self.accelerator.is_main_process:
print(rewards.mean())
self.accelerator.log(
{
"reward": rewards,
"epoch": epoch,
"reward_mean": rewards.mean(),
"reward_std": rewards.std(),
},
step=global_step,
)
advantages = (rewards - rewards.mean()) / (rewards.std() + 1e-8)
# ungather advantages; keep the entries corresponding to the samples on this process
samples["advantages"] = (
torch.as_tensor(advantages)
.reshape(self.accelerator.num_processes, -1)[self.accelerator.process_index]
.to(self.accelerator.device)
)
del samples["prompt_ids"]
del samples["text_ids"]
del samples["latent_ids"]
del samples["negative_text_ids"]
total_batch_size, num_timesteps = samples["timesteps"].shape
self.accelerator.wait_for_everyone()
for inner_epoch in range(self.config.train_num_inner_epochs):
# shuffle samples along batch dimension
perm = torch.randperm(total_batch_size, device=self.accelerator.device)
samples = {k: v[perm] for k, v in samples.items()}
# shuffle along time dimension independently for each sample
# still trying to understand the code below
perms = torch.stack(
[torch.randperm(num_timesteps, device=self.accelerator.device) for _ in range(total_batch_size)]
)
for key in ["timesteps", "latents", "next_latents", "log_probs"]:
samples[key] = samples[key][
torch.arange(total_batch_size, device=self.accelerator.device)[:, None],
perms,
]
original_keys = samples.keys()
original_values = samples.values()
# rebatch them as user defined train_batch_size is different from sample_batch_size
reshaped_values = [v.reshape(-1, self.config.train_batch_size, *v.shape[1:]) for v in original_values]
# Transpose the list of original values
transposed_values = zip(*reshaped_values)
# Create new dictionaries for each row of transposed values
samples_batched = [dict(zip(original_keys, row_values)) for row_values in transposed_values]
self.edit_pipeline.transformer.train()
global_step = self._train_batched_samples(inner_epoch, epoch, global_step, samples_batched)
# ensure optimization step at the end of the inner epoch
if not self.accelerator.sync_gradients:
raise ValueError(
"Optimization step should have been performed by this point. Please check calculated gradient accumulation settings."
)
if self.accelerator.sync_gradients:
if self.accelerator.is_main_process:
print("Save checkpoint on epoch", epoch)
save_model = self.edit_pipeline.flux_pipeline.transformer
unwrapped_model = self.accelerator.unwrap_model(save_model)
unwrapped_model.save_pretrained(
f"{self.project_dir}/checkpoint_lora-{epoch}",
is_main_process=self.accelerator.is_main_process,
save_function=self.accelerator.save,
state_dict=self.accelerator.get_state_dict(save_model),
)
self.accelerator.wait_for_everyone()
return global_step, rewards.mean()
def calculate_loss(self, latents, image_latents, timestep, next_latents, log_probs, advantages, pooled_prompt_embeds, prompt_embeds, negative_pooled_prompt_embeds, negative_prompt_embeds):
"""
Calculate the loss for a batch of an unpacked sample
Args:
latents (torch.Tensor):
The latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height, width]
timesteps (torch.Tensor):
The timesteps sampled from the diffusion model, shape: [batch_size]
next_latents (torch.Tensor):
The next latents sampled from the diffusion model, shape: [batch_size, num_channels_latents, height,
width]
log_probs (torch.Tensor):
The log probabilities of the latents, shape: [batch_size]
advantages (torch.Tensor):
The advantages of the latents, shape: [batch_size]
embeds (torch.Tensor):
The embeddings of the prompts, shape: [2*batch_size or batch_size, ...] Note: the "or" is because if
train_cfg is True, the expectation is that negative prompts are concatenated to the embeds
Returns:
loss (torch.Tensor), approx_kl (torch.Tensor), clipfrac (torch.Tensor) (all of these are of shape (1,))
"""
torch.autograd.set_detect_anomaly(True)
with self.autocast():
latent_model_input = torch.cat([latents, image_latents], dim=1)
latent_model_input = latent_model_input.detach()
pooled_prompt_embeds = pooled_prompt_embeds.detach()
prompt_embeds = prompt_embeds.detach()
guidance = torch.full([1], self.config.sample_guidance, device=self.edit_pipeline.transformer.device, dtype=torch.bfloat16)
guidance = guidance.expand(latent_model_input.shape[0])
noise_pred = self.edit_pipeline.transformer(
hidden_states=latent_model_input,
timestep=timestep.detach() / 1000,
guidance=guidance.detach(),
pooled_projections=pooled_prompt_embeds,
encoder_hidden_states=prompt_embeds,
txt_ids=self.text_ids.detach(),
img_ids=self.latent_ids.detach(),
return_dict=False,
)[0]
noise_pred = noise_pred[:, : latents.size(1)]
if self.config.train_cfg:
neg_noise_pred = self.edit_pipeline.transformer(
hidden_states=latent_model_input,
timestep=timestep / 1000,
guidance=self.config.sample_guidance,
pooled_projections=negative_pooled_prompt_embeds,
encoder_hidden_states=negative_prompt_embeds,
txt_ids=self.negative_text_ids,
img_ids=self.latent_ids,
return_dict=False,
)[0]
neg_noise_pred = neg_noise_pred[:, : latents.size(1)]
noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred)
# compute the log prob of next_latents given latents under the current model
scheduler_step_output = self.edit_pipeline.scheduler.step(
noise_pred,
timestep.detach(),
latents.detach(),
prev_sample=next_latents.detach(),
return_dict=True,
init_step=True,
)
log_prob = scheduler_step_output.log_probs
advantages = torch.clamp(
advantages,
-self.config.train_adv_clip_max,
self.config.train_adv_clip_max,
)
ratio = torch.exp(log_prob - log_probs)
loss = self.loss(advantages, self.config.train_clip_range, ratio)
approx_kl = 0.5 * torch.mean((log_prob - log_probs) ** 2)
clipfrac = torch.mean((torch.abs(ratio - 1.0) > self.config.train_clip_range).float())
return loss, approx_kl, clipfrac
def loss(
self,
advantages: torch.Tensor,
clip_range: float,
ratio: torch.Tensor,
):
unclipped_loss = -advantages * ratio
clipped_loss = -advantages * torch.clamp(
ratio,
1.0 - clip_range,
1.0 + clip_range,
)
return torch.mean(torch.maximum(unclipped_loss, clipped_loss))
def _generate_samples(self, iterations, batch_size):
"""
Generate samples from the model
Args:
iterations (int): Number of iterations to generate samples for
batch_size (int): Batch size to use for sampling
Returns:
samples (list[dict[str, torch.Tensor]]), prompt_image_pairs (list[list[Any]])
"""
samples = []
prompt_image_pairs = []
self.edit_pipeline.transformer.eval()
sample_neg_prompt_embeds = self.negative_prompt_embeds.repeat(batch_size, 1, 1)
sample_neg_pooled_prompt_embeds = self.negative_pooled_prompt_embeds.repeat(batch_size, 1)
sample_neg_text_ids = self.negative_text_ids
for iters in range(iterations):
prompts, raw_images, img_paths = map(list, zip(*[self.prompt_fn('multi') for _ in range(batch_size)]))
if len(raw_images) == batch_size:
raw_images = list(map(list, zip(*raw_images)))
(
prompt_embeds,
pooled_prompt_embeds,
text_ids,
) = self.edit_pipeline.flux_pipeline.encode_prompt(
prompt=prompts,
prompt_2=prompts,
device=self.accelerator.device,
)
prompt_ids = self.edit_pipeline.tokenizer(
prompts,
padding="max_length",
max_length=self.edit_pipeline.flux_pipeline.tokenizer_max_length,
truncation=True,
return_tensors="pt",
).input_ids.to(self.accelerator.device)
generator = torch.Generator(device='cuda')
generator.seed()
with self.autocast():
with torch.no_grad():
edit_output = self.edit_pipeline(
image=raw_images,
height=self.config.height,
width=self.config.width,
prompt_embeds=prompt_embeds,
pooled_prompt_embeds=pooled_prompt_embeds,
negative_prompt_embeds=sample_neg_prompt_embeds,
negative_pooled_prompt_embeds=sample_neg_pooled_prompt_embeds,
num_inference_steps=self.config.sample_num_steps,
guidance_scale=self.config.sample_guidance,
generator=generator,
output_type="pt",
max_area=self.config.max_size**2,
)
images = edit_output.images
latents = edit_output.latents
log_probs = edit_output.log_probs
timesteps = edit_output.timesteps
latent_ids = edit_output.latent_ids
image_latents = edit_output.image_latents
latents = torch.stack(latents, dim=1) # (batch_size, num_steps + 1, ...)
log_probs = torch.stack(log_probs, dim=1) # (batch_size, num_steps, 1)
timesteps = torch.stack(timesteps, dim=1)
samples.append(
{
"prompt_ids": prompt_ids.float(),
"timesteps": timesteps[:, :-1],
"latents": latents[:, :-2], # each entry is the latent before timestep t
"next_latents": latents[:, 1:-1], # each entry is the latent after timestep t
"log_probs": log_probs[:, :-1],
"pooled_prompt_embeds":pooled_prompt_embeds,
"prompt_embeds":prompt_embeds,
"negative_prompt_embeds":sample_neg_prompt_embeds,
"negative_pooled_prompt_embeds":sample_neg_pooled_prompt_embeds,
"text_ids":text_ids,
"latent_ids":latent_ids,
"negative_text_ids":sample_neg_text_ids,
"image_latents":image_latents,
}
)
raw_images = [list(x) for x in zip(*raw_images)]
prompt_image_pairs.append([images, prompts, raw_images, img_paths])
local_rank = self.accelerator.local_process_index
self.text_ids = samples[0]['text_ids']
self.latent_ids = samples[0]['latent_ids']
self.negative_text_ids = samples[0]['negative_text_ids']
return samples, prompt_image_pairs
def _train_batched_samples(self, inner_epoch, epoch, global_step, batched_samples):
"""
Train on a batch of samples. Main training segment
Args:
inner_epoch (int): The current inner epoch
epoch (int): The current epoch
global_step (int): The current global step
batched_samples (list[dict[str, torch.Tensor]]): The batched samples to train on
Side Effects:
- Model weights are updated
- Logs the statistics to the accelerator trackers.
Returns:
global_step (int): The updated global step
"""
info = defaultdict(list)
for _i, sample in enumerate(batched_samples):
for j in trange(self.num_train_timesteps):
with self.accelerator.accumulate(self.edit_pipeline.transformer):
loss, approx_kl, clipfrac = self.calculate_loss(
sample["latents"][:, j],
sample["image_latents"],
sample["timesteps"][:, j],
sample["next_latents"][:, j],
sample["log_probs"][:, j],
sample["advantages"],
sample["pooled_prompt_embeds"],
sample["prompt_embeds"],
sample["negative_pooled_prompt_embeds"],
sample["negative_prompt_embeds"],
)
info["approx_kl"].append(approx_kl)
info["clipfrac"].append(clipfrac)
info["loss"].append(loss)
self.accelerator.backward(loss)
if self.accelerator.sync_gradients:
self.accelerator.clip_grad_norm_(
self.trainable_layers.parameters()
if not isinstance(self.trainable_layers, list)
else self.trainable_layers,
self.config.train_max_grad_norm,
)
self.optimizer.step()
self.optimizer.zero_grad()
# Checks if the accelerator has performed an optimization step behind the scenes
if self.accelerator.sync_gradients:
# log training-related stuff
info = {k: torch.mean(torch.stack(v)) for k, v in info.items()}
info = self.accelerator.reduce(info, reduction="mean")
info.update({"epoch": epoch, "inner_epoch": inner_epoch})
self.accelerator.log(info, step=global_step)
global_step += 1
info = defaultdict(list)
return global_step
def _config_check(self) -> tuple[bool, str]:
samples_per_epoch = (
self.config.sample_batch_size * self.accelerator.num_processes * self.config.sample_num_batches_per_epoch
)
total_train_batch_size = (
self.config.train_batch_size
* self.accelerator.num_processes
* self.config.train_gradient_accumulation_steps
)
if not self.config.sample_batch_size >= self.config.train_batch_size:
return (
False,
f"Sample batch size ({self.config.sample_batch_size}) must be greater than or equal to the train batch size ({self.config.train_batch_size})",
)
if not self.config.sample_batch_size % self.config.train_batch_size == 0:
return (
False,
f"Sample batch size ({self.config.sample_batch_size}) must be divisible by the train batch size ({self.config.train_batch_size})",
)
if not samples_per_epoch % total_train_batch_size == 0:
return (
False,
f"Number of samples per epoch ({samples_per_epoch}) must be divisible by the total train batch size ({total_train_batch_size})",
)
return True, ""
def train(self, epochs: Optional[int] = None):
"""
Train the model for a given number of epochs
"""
global_step = 0
rewards_curve = []
if epochs is None:
epochs = self.config.num_epochs
for epoch in range(self.first_epoch, epochs):
global_step, reward_mean = self.step(epoch, global_step)
rewards_curve.append(reward_mean)
return rewards_curve