Spaces:
Running
on
Zero
Running
on
Zero
| import contextlib | |
| import os | |
| import random | |
| import warnings | |
| from dataclasses import dataclass | |
| from typing import Any, Callable, Dict, List, Optional, Union | |
| import numpy as np | |
| import torch | |
| import torch.utils.checkpoint as checkpoint | |
| from diffusers import FluxTransformer2DModel | |
| from diffusers.image_processor import PipelineImageInput | |
| from diffusers.pipelines.flux.pipeline_flux_kontext import PREFERRED_KONTEXT_RESOLUTIONS, calculate_shift, retrieve_timesteps | |
| from scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler | |
| from pipeline_flux_kontext import FluxKontextPipeline | |
| from transformers.utils import is_peft_available | |
| from trl.core import randn_tensor | |
| from trl.models.sd_utils import convert_state_dict_to_diffusers | |
| if is_peft_available(): | |
| from peft import LoraConfig, get_peft_model | |
| from peft.utils import get_peft_model_state_dict | |
| PREFERRED_KONTEXT_RESOLUTIONS = [(x[0]//2,x[1]//2) for x in PREFERRED_KONTEXT_RESOLUTIONS] | |
| class FluxPipelineOutput: | |
| """ | |
| Output class for the diffusers pipeline to be finetuned with the DDPO trainer | |
| Args: | |
| images (`torch.Tensor`): | |
| The generated images. | |
| latents (`list[torch.Tensor]`): | |
| The latents used to generate the images. | |
| log_probs (`list[torch.Tensor]`): | |
| The log probabilities of the latents. | |
| """ | |
| images: torch.Tensor | |
| latents: torch.Tensor | |
| log_probs: torch.Tensor | |
| latent_ids: torch.Tensor | |
| timesteps: torch.Tensor | |
| image_latents: torch.Tensor | |
| class DDPOFluxPipeline: | |
| """ | |
| Main class for the diffusers pipeline to be finetuned with the DDPO trainer | |
| """ | |
| def __call__(self, *args, **kwargs) -> FluxPipelineOutput: | |
| raise NotImplementedError | |
| def transformer(self): | |
| """ | |
| Returns the 2d U-Net model used for diffusion. | |
| """ | |
| raise NotImplementedError | |
| def vae(self): | |
| """ | |
| Returns the Variational Autoencoder model used from mapping images to and from the latent space | |
| """ | |
| raise NotImplementedError | |
| def tokenizer(self): | |
| """ | |
| Returns the tokenizer used for tokenizing text inputs | |
| """ | |
| raise NotImplementedError | |
| def tokenizer_2(self): | |
| """ | |
| Returns the tokenizer used for tokenizing text inputs | |
| """ | |
| raise NotImplementedError | |
| def scheduler(self): | |
| """ | |
| Returns the scheduler associated with the pipeline used for the diffusion process | |
| """ | |
| raise NotImplementedError | |
| def text_encoder(self): | |
| """ | |
| Returns the text encoder used for encoding text inputs | |
| """ | |
| raise NotImplementedError | |
| def text_encoder_2(self): | |
| """ | |
| Returns the text encoder used for encoding text inputs | |
| """ | |
| raise NotImplementedError | |
| def image_encoder(self): | |
| """ | |
| Returns the text encoder used for encoding text inputs | |
| """ | |
| raise NotImplementedError | |
| def feature_extractor(self): | |
| """ | |
| Returns the text encoder used for encoding text inputs | |
| """ | |
| raise NotImplementedError | |
| def autocast(self): | |
| """ | |
| Returns the autocast context manager | |
| """ | |
| raise NotImplementedError | |
| def set_progress_bar_config(self, *args, **kwargs): | |
| """ | |
| Sets the progress bar config for the pipeline | |
| """ | |
| raise NotImplementedError | |
| def save_pretrained(self, *args, **kwargs): | |
| """ | |
| Saves all of the model weights | |
| """ | |
| raise NotImplementedError | |
| def save_checkpoint(self, *args, **kwargs): | |
| """ | |
| Light wrapper around accelerate's register_save_state_pre_hook which is run before saving state | |
| """ | |
| raise NotImplementedError | |
| def load_checkpoint(self, *args, **kwargs): | |
| """ | |
| Light wrapper around accelerate's register_lad_state_pre_hook which is run before loading state | |
| """ | |
| raise NotImplementedError | |
| def pipeline_step( | |
| self, | |
| image: Optional[PipelineImageInput] = None, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| max_area: int = 1024**2, | |
| _auto_resize: bool = True, | |
| ): | |
| r""" | |
| Function invoked when calling the pipeline for generation. | |
| Args: | |
| image (`torch.Tensor`, `PIL.Image.Image`, `np.ndarray`, `List[torch.Tensor]`, `List[PIL.Image.Image]`, or `List[np.ndarray]`): | |
| `Image`, numpy array or tensor representing an image batch to be used as the starting point. For both | |
| numpy array and pytorch tensor, the expected value range is between `[0, 1]` If it's a tensor or a list | |
| or tensors, the expected shape should be `(B, C, H, W)` or `(C, H, W)`. If it is a numpy array or a | |
| list of arrays, the expected shape should be `(B, H, W, C)` or `(H, W, C)` It can also accept image | |
| latents as `image`, but if passing latents directly it is not encoded again. | |
| prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
| instead. | |
| prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts to be sent to `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
| will be used instead. | |
| negative_prompt (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
| `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `true_cfg_scale` is | |
| not greater than `1`). | |
| negative_prompt_2 (`str` or `List[str]`, *optional*): | |
| The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
| `text_encoder_2`. If not defined, `negative_prompt` is used in all the text-encoders. | |
| true_cfg_scale (`float`, *optional*, defaults to 1.0): | |
| When > 1.0 and a provided `negative_prompt`, enables true classifier-free guidance. | |
| height (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): | |
| The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
| width (`int`, *optional*, defaults to self.transformer.config.sample_size * self.vae_scale_factor): | |
| The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
| num_inference_steps (`int`, *optional*, defaults to 50): | |
| The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
| expense of slower inference. | |
| sigmas (`List[float]`, *optional*): | |
| Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
| their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
| will be used. | |
| guidance_scale (`float`, *optional*, defaults to 3.5): | |
| Guidance scale as defined in [Classifier-Free Diffusion | |
| Guidance](https://huggingface.co/papers/2207.12598). `guidance_scale` is defined as `w` of equation 2. | |
| of [Imagen Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting | |
| `guidance_scale > 1`. Higher guidance scale encourages to generate images that are closely linked to | |
| the text `prompt`, usually at the expense of lower image quality. | |
| num_images_per_prompt (`int`, *optional*, defaults to 1): | |
| The number of images to generate per prompt. | |
| generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
| One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
| to make generation deterministic. | |
| latents (`torch.FloatTensor`, *optional*): | |
| Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
| generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
| tensor will ge generated by sampling using the supplied random `generator`. | |
| prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
| provided, text embeddings will be generated from `prompt` input argument. | |
| pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
| If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
| ip_adapter_image: (`PipelineImageInput`, *optional*): | |
| Optional image input to work with IP Adapters. | |
| ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| negative_ip_adapter_image: | |
| (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
| negative_ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
| Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
| IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. If not | |
| provided, embeddings are computed from the `ip_adapter_image` input argument. | |
| negative_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
| argument. | |
| negative_pooled_prompt_embeds (`torch.FloatTensor`, *optional*): | |
| Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
| weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
| input argument. | |
| output_type (`str`, *optional*, defaults to `"pil"`): | |
| The output format of the generate image. Choose between | |
| [PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
| return_dict (`bool`, *optional*, defaults to `True`): | |
| Whether or not to return a [`~pipelines.flux.FluxPipelineOutput`] instead of a plain tuple. | |
| joint_attention_kwargs (`dict`, *optional*): | |
| A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
| `self.processor` in | |
| [diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
| callback_on_step_end (`Callable`, *optional*): | |
| A function that calls at the end of each denoising steps during the inference. The function is called | |
| with the following arguments: `callback_on_step_end(self: DiffusionPipeline, step: int, timestep: int, | |
| callback_kwargs: Dict)`. `callback_kwargs` will include a list of all tensors as specified by | |
| `callback_on_step_end_tensor_inputs`. | |
| callback_on_step_end_tensor_inputs (`List`, *optional*): | |
| The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
| will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
| `._callback_tensor_inputs` attribute of your pipeline class. | |
| max_sequence_length (`int` defaults to 512): | |
| Maximum sequence length to use with the `prompt`. | |
| max_area (`int`, defaults to `1024 ** 2`): | |
| The maximum area of the generated image in pixels. The height and width will be adjusted to fit this | |
| area while maintaining the aspect ratio. | |
| Examples: | |
| Returns: | |
| [`~pipelines.flux.FluxPipelineOutput`] or `tuple`: [`~pipelines.flux.FluxPipelineOutput`] if `return_dict` | |
| is True, otherwise a `tuple`. When returning a tuple, the first element is a list with the generated | |
| images. | |
| """ | |
| height = height or self.default_sample_size * self.vae_scale_factor | |
| width = width or self.default_sample_size * self.vae_scale_factor | |
| original_height, original_width = height, width | |
| aspect_ratio = width / height | |
| width = round((max_area * aspect_ratio) ** 0.5) | |
| height = round((max_area / aspect_ratio) ** 0.5) | |
| multiple_of = self.vae_scale_factor * 2 | |
| width = width // multiple_of * multiple_of | |
| height = height // multiple_of * multiple_of | |
| if height != original_height or width != original_width: | |
| logger.warning( | |
| f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements." | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| self.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| self._guidance_scale = guidance_scale | |
| self._joint_attention_kwargs = joint_attention_kwargs | |
| self._current_timestep = None | |
| self._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = self._execution_device | |
| lora_scale = ( | |
| self.joint_attention_kwargs.get("scale", None) if self.joint_attention_kwargs is not None else None | |
| ) | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = self.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| negative_text_ids, | |
| ) = self.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3. Preprocess image | |
| if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == self.latent_channels): | |
| imgs = image if isinstance(image, list) else [image] | |
| images = [] | |
| for img in imgs: | |
| img_0 = img[0] if isinstance(img, list) else img | |
| image_height, image_width = self.image_processor.get_default_height_width(img_0) | |
| aspect_ratio = image_width / image_height | |
| if _auto_resize: | |
| _, image_width, image_height = min( | |
| (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| image_width = image_width // multiple_of * multiple_of | |
| image_height = image_height // multiple_of * multiple_of | |
| resized = self.image_processor.resize(img, image_height, image_width) | |
| print(image_height, image_width) | |
| processed = self.image_processor.preprocess(resized, image_height, image_width) | |
| images.append(processed) | |
| # 4. Prepare latent variables | |
| num_channels_latents = self.transformer.config.in_channels // 4 | |
| latents, image_latents, latent_ids, image_ids = self.prepare_latents( | |
| images, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if image_ids is not None: | |
| latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| self.scheduler.config.get("base_image_seq_len", 256), | |
| self.scheduler.config.get("max_image_seq_len", 4096), | |
| self.scheduler.config.get("base_shift", 0.5), | |
| self.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| self.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
| self._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if self.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| negative_ip_adapter_image = [negative_ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| ip_adapter_image = [ip_adapter_image] * self.transformer.encoder_hid_proj.num_ip_adapters | |
| if self.joint_attention_kwargs is None: | |
| self._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = self.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = self.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| # 6. Denoising loop | |
| # We set the index here to remove DtoH sync, helpful especially during compilation. | |
| # Check out more details here: https://github.com/huggingface/diffusers/pull/11696 | |
| all_latents = [latents] | |
| all_log_probs = [] | |
| all_timesteps = [] | |
| self.scheduler.set_begin_index(0) | |
| with self.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if self.interrupt: | |
| continue | |
| self._current_timestep = t | |
| if image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| latent_model_input = latents | |
| latent_model_input = latent_model_input.to(self.transformer.device) | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latents, image_latents], dim=1) | |
| timestep = t.expand(latents.shape[0]).to(torch.float32) | |
| noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred[:, : latents.size(1)] | |
| if do_true_cfg: | |
| if negative_image_embeds is not None: | |
| self._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| neg_noise_pred = self.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=self.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| neg_noise_pred = neg_noise_pred[:, : latents.size(1)] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| scheduler_output = self.scheduler.step(noise_pred, t, latents, return_dict=True) | |
| latents = scheduler_output.latents | |
| log_probs = scheduler_output.log_probs | |
| all_latents.append(latents) | |
| all_log_probs.append(log_probs) | |
| all_timesteps.append(timestep) | |
| if latents.dtype != latents_dtype: | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
| progress_bar.update() | |
| self._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = self._unpack_latents(latents, height, width, self.vae_scale_factor) | |
| latents = (latents / self.vae.config.scaling_factor) + self.vae.config.shift_factor | |
| image = self.vae.decode(latents, return_dict=False)[0] | |
| image = self.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| self.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(image, all_latents, all_log_probs, latent_ids, all_timesteps, image_latents) | |
| def pipeline_step_with_grad( | |
| pipeline, | |
| image: Optional[PipelineImageInput] = None, | |
| prompt: Union[str, List[str]] = None, | |
| prompt_2: Optional[Union[str, List[str]]] = None, | |
| negative_prompt: Union[str, List[str]] = None, | |
| negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
| true_cfg_scale: float = 1.0, | |
| height: Optional[int] = None, | |
| width: Optional[int] = None, | |
| num_inference_steps: int = 28, | |
| sigmas: Optional[List[float]] = None, | |
| guidance_scale: float = 3.5, | |
| truncated_backprop: bool = True, | |
| truncated_backprop_rand: bool = True, | |
| gradient_checkpoint: bool = True, | |
| truncated_backprop_timestep: int = 49, | |
| truncated_rand_backprop_minmax: tuple = (0, 50), | |
| num_images_per_prompt: Optional[int] = 1, | |
| generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
| latents: Optional[torch.FloatTensor] = None, | |
| prompt_embeds: Optional[torch.FloatTensor] = None, | |
| pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| ip_adapter_image: Optional[PipelineImageInput] = None, | |
| ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_ip_adapter_image: Optional[PipelineImageInput] = None, | |
| negative_ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
| negative_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| negative_pooled_prompt_embeds: Optional[torch.FloatTensor] = None, | |
| output_type: Optional[str] = "pil", | |
| return_dict: bool = True, | |
| joint_attention_kwargs: Optional[Dict[str, Any]] = None, | |
| callback_on_step_end: Optional[Callable[[int, int, Dict], None]] = None, | |
| callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
| max_sequence_length: int = 512, | |
| max_area: int = 512**2, | |
| _auto_resize: bool = True, | |
| ): | |
| height = height or pipeline.default_sample_size * pipeline.vae_scale_factor | |
| width = width or pipeline.default_sample_size * pipeline.vae_scale_factor | |
| original_height, original_width = height, width | |
| aspect_ratio = width / height | |
| width = round((max_area * aspect_ratio) ** 0.5) | |
| height = round((max_area / aspect_ratio) ** 0.5) | |
| multiple_of = pipeline.vae_scale_factor * 2 | |
| width = width // multiple_of * multiple_of | |
| height = height // multiple_of * multiple_of | |
| if height != original_height or width != original_width: | |
| logger.warning( | |
| f"Generation `height` and `width` have been adjusted to {height} and {width} to fit the model requirements." | |
| ) | |
| # 1. Check inputs. Raise error if not correct | |
| pipeline.check_inputs( | |
| prompt, | |
| prompt_2, | |
| height, | |
| width, | |
| negative_prompt=negative_prompt, | |
| negative_prompt_2=negative_prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| negative_prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| callback_on_step_end_tensor_inputs=callback_on_step_end_tensor_inputs, | |
| max_sequence_length=max_sequence_length, | |
| ) | |
| pipeline._guidance_scale = guidance_scale | |
| pipeline._joint_attention_kwargs = joint_attention_kwargs | |
| pipeline._current_timestep = None | |
| pipeline._interrupt = False | |
| # 2. Define call parameters | |
| if prompt is not None and isinstance(prompt, str): | |
| batch_size = 1 | |
| elif prompt is not None and isinstance(prompt, list): | |
| batch_size = len(prompt) | |
| else: | |
| batch_size = prompt_embeds.shape[0] | |
| device = pipeline._execution_device | |
| lora_scale = ( | |
| pipeline.joint_attention_kwargs.get("scale", None) if pipeline.joint_attention_kwargs is not None else None | |
| ) | |
| has_neg_prompt = negative_prompt is not None or ( | |
| negative_prompt_embeds is not None and negative_pooled_prompt_embeds is not None | |
| ) | |
| do_true_cfg = true_cfg_scale > 1 and has_neg_prompt | |
| ( | |
| prompt_embeds, | |
| pooled_prompt_embeds, | |
| text_ids, | |
| ) = pipeline.encode_prompt( | |
| prompt=prompt, | |
| prompt_2=prompt_2, | |
| prompt_embeds=prompt_embeds, | |
| pooled_prompt_embeds=pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| if do_true_cfg: | |
| ( | |
| negative_prompt_embeds, | |
| negative_pooled_prompt_embeds, | |
| negative_text_ids, | |
| ) = pipeline.encode_prompt( | |
| prompt=negative_prompt, | |
| prompt_2=negative_prompt_2, | |
| prompt_embeds=negative_prompt_embeds, | |
| pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
| device=device, | |
| num_images_per_prompt=num_images_per_prompt, | |
| max_sequence_length=max_sequence_length, | |
| lora_scale=lora_scale, | |
| ) | |
| # 3. Preprocess image | |
| # if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == pipeline.latent_channels): | |
| # img = image[0] if isinstance(image, list) else image | |
| # image_height, image_width = pipeline.image_processor.get_default_height_width(img) | |
| # aspect_ratio = image_width / image_height | |
| # if _auto_resize: | |
| # # Kontext is trained on specific resolutions, using one of them is recommended | |
| # _, image_width, image_height = min( | |
| # (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| # ) | |
| # image_width = image_width // multiple_of * multiple_of | |
| # image_height = image_height // multiple_of * multiple_of | |
| # image = pipeline.image_processor.resize(image, image_height, image_width) | |
| # image = pipeline.image_processor.preprocess(image, image_height, image_width) | |
| if image is not None and not (isinstance(image, torch.Tensor) and image.size(1) == pipeline.latent_channels): | |
| imgs = image if isinstance(image, list) else [image] | |
| images = [] | |
| for img in imgs: | |
| img_0 = img[0] if isinstance(img, list) else img | |
| image_height, image_width = pipeline.image_processor.get_default_height_width(img_0) | |
| aspect_ratio = image_width / image_height | |
| if _auto_resize: | |
| _, image_width, image_height = min( | |
| (abs(aspect_ratio - w / h), w, h) for w, h in PREFERRED_KONTEXT_RESOLUTIONS | |
| ) | |
| image_width = image_width // multiple_of * multiple_of | |
| image_height = image_height // multiple_of * multiple_of | |
| resized = pipeline.image_processor.resize(img, image_height, image_width) | |
| processed = pipeline.image_processor.preprocess(resized, image_height, image_width) | |
| images.append(processed) | |
| # 4. Prepare latent variables | |
| # num_channels_latents = pipeline.transformer.module.config.in_channels // 4 | |
| num_channels_latents = pipeline.transformer.config.in_channels // 4 | |
| latents, image_latents, latent_ids, image_ids = pipeline.prepare_latents( | |
| images, | |
| batch_size * num_images_per_prompt, | |
| num_channels_latents, | |
| height, | |
| width, | |
| prompt_embeds.dtype, | |
| device, | |
| generator, | |
| latents, | |
| ) | |
| if image_ids is not None: | |
| latent_ids = torch.cat([latent_ids, image_ids], dim=0) # dim 0 is sequence dimension | |
| # 5. Prepare timesteps | |
| sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps) if sigmas is None else sigmas | |
| image_seq_len = latents.shape[1] | |
| mu = calculate_shift( | |
| image_seq_len, | |
| pipeline.scheduler.config.get("base_image_seq_len", 256), | |
| pipeline.scheduler.config.get("max_image_seq_len", 4096), | |
| pipeline.scheduler.config.get("base_shift", 0.5), | |
| pipeline.scheduler.config.get("max_shift", 1.15), | |
| ) | |
| timesteps, num_inference_steps = retrieve_timesteps( | |
| pipeline.scheduler, | |
| num_inference_steps, | |
| device, | |
| sigmas=sigmas, | |
| mu=mu, | |
| ) | |
| num_warmup_steps = max(len(timesteps) - num_inference_steps * pipeline.scheduler.order, 0) | |
| pipeline._num_timesteps = len(timesteps) | |
| # handle guidance | |
| if pipeline.transformer.config.guidance_embeds: | |
| guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float32) | |
| guidance = guidance.expand(latents.shape[0]) | |
| else: | |
| guidance = None | |
| if (ip_adapter_image is not None or ip_adapter_image_embeds is not None) and ( | |
| negative_ip_adapter_image is None and negative_ip_adapter_image_embeds is None | |
| ): | |
| negative_ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| negative_ip_adapter_image = [negative_ip_adapter_image] * pipeline.transformer.encoder_hid_proj.num_ip_adapters | |
| elif (ip_adapter_image is None and ip_adapter_image_embeds is None) and ( | |
| negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None | |
| ): | |
| ip_adapter_image = np.zeros((width, height, 3), dtype=np.uint8) | |
| ip_adapter_image = [ip_adapter_image] * pipeline.transformer.encoder_hid_proj.num_ip_adapters | |
| if pipeline.joint_attention_kwargs is None: | |
| pipeline._joint_attention_kwargs = {} | |
| image_embeds = None | |
| negative_image_embeds = None | |
| if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
| image_embeds = pipeline.prepare_ip_adapter_image_embeds( | |
| ip_adapter_image, | |
| ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| if negative_ip_adapter_image is not None or negative_ip_adapter_image_embeds is not None: | |
| negative_image_embeds = pipeline.prepare_ip_adapter_image_embeds( | |
| negative_ip_adapter_image, | |
| negative_ip_adapter_image_embeds, | |
| device, | |
| batch_size * num_images_per_prompt, | |
| ) | |
| all_latents = [latents] | |
| all_log_probs = [] | |
| all_timesteps = [] | |
| pipeline.scheduler.set_begin_index(0) | |
| with pipeline.progress_bar(total=num_inference_steps) as progress_bar: | |
| for i, t in enumerate(timesteps): | |
| if pipeline.interrupt: | |
| continue | |
| pipeline._current_timestep = t | |
| if image_embeds is not None: | |
| pipeline._joint_attention_kwargs["ip_adapter_image_embeds"] = image_embeds | |
| latent_model_input = latents | |
| if image_latents is not None: | |
| latent_model_input = torch.cat([latents, image_latents], dim=1) | |
| timestep = t.expand(latents.shape[0]).to(latents.dtype) | |
| if gradient_checkpoint: | |
| noise_pred = checkpoint.checkpoint( | |
| pipeline.transformer, | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=pipeline.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| else: | |
| noise_pred = pipeline.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=pooled_prompt_embeds, | |
| encoder_hidden_states=prompt_embeds, | |
| txt_ids=text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=pipeline.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| noise_pred = noise_pred[:, : latents.size(1)] | |
| if truncated_backprop: | |
| # Randomized truncation randomizes the truncation process (https://huggingface.co/papers/2310.03739) | |
| # the range of truncation is defined by truncated_rand_backprop_minmax | |
| # Setting truncated_rand_backprop_minmax[0] to be low will allow the model to update earlier timesteps in the diffusion chain, while setitng it high will reduce the memory usage. | |
| if truncated_backprop_rand: | |
| rand_timestep = random.randint( | |
| truncated_rand_backprop_minmax[0], truncated_rand_backprop_minmax[1] | |
| ) | |
| if i < rand_timestep: | |
| noise_pred = noise_pred.detach() | |
| else: | |
| # fixed truncation process | |
| if i < truncated_backprop_timestep: | |
| noise_pred = noise_pred.detach() | |
| if do_true_cfg: | |
| if negative_image_embeds is not None: | |
| pipeline._joint_attention_kwargs["ip_adapter_image_embeds"] = negative_image_embeds | |
| neg_noise_pred = pipeline.transformer( | |
| hidden_states=latent_model_input, | |
| timestep=timestep / 1000, | |
| guidance=guidance, | |
| pooled_projections=negative_pooled_prompt_embeds, | |
| encoder_hidden_states=negative_prompt_embeds, | |
| txt_ids=negative_text_ids, | |
| img_ids=latent_ids, | |
| joint_attention_kwargs=pipeline.joint_attention_kwargs, | |
| return_dict=False, | |
| )[0] | |
| neg_noise_pred = neg_noise_pred[:, : latents.size(1)] | |
| noise_pred = neg_noise_pred + true_cfg_scale * (noise_pred - neg_noise_pred) | |
| # compute the previous noisy sample x_t -> x_t-1 | |
| latents_dtype = latents.dtype | |
| scheduler_output = pipeline.scheduler.step(noise_pred, t, latents, return_dict=True) | |
| latents = scheduler_output.latents | |
| log_probs = scheduler_output.log_probs | |
| all_latents.append(latents) | |
| all_log_probs.append(log_probs) | |
| all_timesteps.append(timestep) | |
| if latents.dtype != latents_dtype: | |
| if torch.backends.mps.is_available(): | |
| # some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
| latents = latents.to(latents_dtype) | |
| if callback_on_step_end is not None: | |
| callback_kwargs = {} | |
| for k in callback_on_step_end_tensor_inputs: | |
| callback_kwargs[k] = locals()[k] | |
| callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
| latents = callback_outputs.pop("latents", latents) | |
| prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
| # call the callback, if provided | |
| if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % pipeline.scheduler.order == 0): | |
| progress_bar.update() | |
| pipeline._current_timestep = None | |
| if output_type == "latent": | |
| image = latents | |
| else: | |
| latents = pipeline._unpack_latents(latents, height, width, pipeline.vae_scale_factor) | |
| latents = (latents / pipeline.vae.config.scaling_factor) + pipeline.vae.config.shift_factor | |
| image = pipeline.vae.decode(latents, return_dict=False)[0] | |
| image = pipeline.image_processor.postprocess(image, output_type=output_type) | |
| # Offload all models | |
| pipeline.maybe_free_model_hooks() | |
| if not return_dict: | |
| return (image,) | |
| return FluxPipelineOutput(image, all_latents, all_log_probs, latent_ids, all_timesteps, image_latents) | |
| class DefaultDDPOFluxPipeline(DDPOFluxPipeline): | |
| def __init__(self, pretrained_model_name: str, finetuned_model_path: str=''): | |
| self.flux_pipeline = FluxKontextPipeline.from_pretrained( | |
| pretrained_model_name | |
| ) | |
| self.pretrained_model = pretrained_model_name | |
| self.flux_pipeline.scheduler = FlowMatchEulerDiscreteScheduler.from_config(self.flux_pipeline.scheduler.config) | |
| self.flux_pipeline.scheduler.config.stochastic_sampling = True | |
| # memory optimization | |
| self.flux_pipeline.vae.requires_grad_(False) | |
| self.flux_pipeline.text_encoder.requires_grad_(False) | |
| self.flux_pipeline.text_encoder_2.requires_grad_(False) | |
| self.flux_pipeline.transformer.requires_grad_(False) | |
| if finetuned_model_path: | |
| print(f"load finetuned model from {finetuned_model_path}") | |
| self.flux_pipeline.transformer = FluxTransformer2DModel.from_single_file(finetuned_model_path, torch_dtype="bfloat16") | |
| def __call__(self, *args, **kwargs) -> FluxPipelineOutput: | |
| return pipeline_step(self.flux_pipeline, *args, **kwargs) | |
| def rgb_with_grad(self, *args, **kwargs) -> FluxPipelineOutput: | |
| return pipeline_step_with_grad(self.flux_pipeline, *args, **kwargs) | |
| def transformer(self): | |
| return self.flux_pipeline.transformer | |
| def vae(self): | |
| return self.flux_pipeline.vae | |
| def tokenizer(self): | |
| return self.flux_pipeline.tokenizer | |
| def tokenizer_2(self): | |
| return self.flux_pipeline.tokenizer_2 | |
| def scheduler(self): | |
| return self.flux_pipeline.scheduler | |
| def text_encoder(self): | |
| return self.flux_pipeline.text_encoder | |
| def text_encoder_2(self): | |
| return self.flux_pipeline.text_encoder_2 | |
| def image_encoder(self): | |
| return self.flux_pipeline.image_encoder | |
| def feature_extractor(self): | |
| return self.flux_pipeline.feature_extractor | |
| def autocast(self): | |
| return contextlib.nullcontext | |
| def save_pretrained(self, output_dir): | |
| state_dict = convert_state_dict_to_diffusers(get_peft_model_state_dict(self.flux_pipeline.transformer)) | |
| self.flux_pipeline.transformer.save_pretrained(output_dir) | |
| def set_progress_bar_config(self, *args, **kwargs): | |
| self.flux_pipeline.set_progress_bar_config(*args, **kwargs) | |