import gradio as gr import numpy as np import random import spaces # [uncomment to use ZeroGPU] from PIL import Image from kontext.pipeline_flux_kontext import FluxKontextPipeline from kontext.scheduling_flow_match_euler_discrete import FlowMatchEulerDiscreteScheduler from diffusers import FluxTransformer2DModel import torch from huggingface_hub import hf_hub_download from safetensors.torch import load_file # --------------------------- # utils # --------------------------- def resize_by_bucket(images_pil, resolution=512): assert len(images_pil) > 0, "images_pil 不能为空" bucket_override = [ (336, 784), (344, 752), (360, 728), (376, 696), (400, 664), (416, 624), (440, 592), (472, 552), (512, 512), (552, 472), (592, 440), (624, 416), (664, 400), (696, 376), (728, 360), (752, 344), (784, 336), ] # 按目标分辨率缩放,并对齐到 16 bucket_override = [(int(h / 512 * resolution), int(w / 512 * resolution)) for h, w in bucket_override] bucket_override = [(h // 16 * 16, w // 16 * 16) for h, w in bucket_override] aspect_ratios = [img.height / img.width for img in images_pil] mean_aspect_ratio = float(np.mean(aspect_ratios)) new_h, new_w = bucket_override[0] min_aspect_diff = abs(new_h / new_w - mean_aspect_ratio) for h, w in bucket_override: aspect_diff = abs(h / w - mean_aspect_ratio) if aspect_diff < min_aspect_diff: min_aspect_diff = aspect_diff new_h, new_w = h, w resized_images = [img.resize((new_w, new_h), resample=Image.BICUBIC) for img in images_pil] return resized_images # --------------------------- # pipeline init # --------------------------- device = "cuda" if torch.cuda.is_available() else "cpu" flux_pipeline = FluxKontextPipeline.from_pretrained("black-forest-labs/FLUX.1-Kontext-dev") flux_pipeline.scheduler = FlowMatchEulerDiscreteScheduler.from_config(flux_pipeline.scheduler.config) flux_pipeline.scheduler.config.stochastic_sampling = False # precision & device flux_pipeline.vae.to(device).to(torch.bfloat16) flux_pipeline.text_encoder.to(device).to(torch.bfloat16) flux_pipeline.text_encoder_2.to(device).to(torch.bfloat16) # 替换 transformer 权重 ckpt_path = hf_hub_download("NoobDoge/Multi_Ref_Model", "full_ema_model.safetensors") flux_pipeline.transformer.from_single_file(ckpt_path, torch_dtype=torch.bfloat16) flux_pipeline.transformer.to(device).to(torch.bfloat16) # --------------------------- # constants # --------------------------- MAX_SEED = np.iinfo(np.int32).max MAX_IMAGE_SIZE = 512 # 与下方滑块默认值 1024 保持一致 # --------------------------- # inference # --------------------------- @spaces.GPU # [uncomment to use ZeroGPU] def infer( prompt, ref1, # PIL.Image 或 None ref2, # PIL.Image 或 None(可选) seed, randomize_seed, width, height, guidance_scale, # 目前没传入 pipeline,如需要可在下面调用里加上 num_inference_steps, progress=gr.Progress(track_tqdm=True), ): # 组装可选参考图列表 refs = [x for x in (ref1, ref2) if x is not None] if len(refs) == 0: raise gr.Error("请至少上传一张参考图(ref1 或 ref2)。") # 规范宽高:不超过 MAX_IMAGE_SIZE 且对齐到 16 width = max(16, min(width, MAX_IMAGE_SIZE)) // 16 * 16 height = max(16, min(height, MAX_IMAGE_SIZE)) // 16 * 16 # 随机种子 if randomize_seed: seed = random.randint(0, MAX_SEED) generator = torch.Generator(device=device).manual_seed(int(seed)) # 参考图按桶缩放 base_res = min(width, height, MAX_IMAGE_SIZE) raw_images = resize_by_bucket(refs, resolution=base_res) if len(raw_images) == 2: raw_images = [[raw_images[0]],[raw_images[1]]] # 推理 with torch.no_grad(): out = flux_pipeline( image=raw_images, prompt=prompt, height=height, width=width, num_inference_steps=int(num_inference_steps), max_area=MAX_IMAGE_SIZE ** 2, generator=generator, # 如需 guidance_scale,确保 pipeline 支持这个参数后再打开: # guidance_scale=float(guidance_scale), ) output_img = out.images[0] return output_img, int(seed) # --------------------------- # UI # --------------------------- examples = [ "Astronaut in a jungle, cold color palette, muted colors, detailed, 8k", "An astronaut riding a green horse", "A delicious ceviche cheesecake slice", ] css = """ #col-container { margin: 0 auto; max-width: 640px; } """ with gr.Blocks(css=css) as demo: with gr.Column(elem_id="col-container"): gr.Markdown("# Text-to-Image Gradio Template") with gr.Row(): prompt = gr.Text( label="Prompt", show_label=False, max_lines=1, placeholder="Enter your prompt", container=False, ) run_button = gr.Button("Run", scale=0, variant="primary") # 两张输入图片(ref2 可空) with gr.Row(): ref1_comp = gr.Image(label="Input Image 1", type="pil") ref2_comp = gr.Image(label="Input Image 2 (optional)", type="pil") result = gr.Image(label="Result", show_label=False) with gr.Accordion("Advanced Settings", open=False): seed_comp = gr.Slider( label="Seed", minimum=0, maximum=MAX_SEED, step=1, value=0, ) randomize_seed_comp = gr.Checkbox(label="Randomize seed", value=True) with gr.Row(): width_comp = gr.Slider( label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) height_comp = gr.Slider( label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=512, ) with gr.Row(): guidance_scale_comp = gr.Slider( label="Guidance scale", minimum=0.0, maximum=10.0, step=0.1, value=2.5, ) num_inference_steps_comp = gr.Slider( label="Number of inference steps", minimum=1, maximum=50, step=1, value=28, ) gr.Examples(examples=[[e] for e in examples], inputs=[prompt]) # 注意:不要把 [ref1, ref2] 当作列表传给 inputs! gr.on( triggers=[run_button.click, prompt.submit], fn=infer, inputs=[ prompt, ref1_comp, ref2_comp, # ref2 可为空 seed_comp, randomize_seed_comp, width_comp, height_comp, guidance_scale_comp, num_inference_steps_comp, ], outputs=[result, seed_comp], ) if __name__ == "__main__": demo.launch()