Spaces:
Sleeping
Sleeping
File size: 7,877 Bytes
1eb76aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 |
#!/usr/bin/env python3
"""
Complete Pipeline Test
Tests the full pipeline including Langfuse transcription download
"""
import os
import sys
import time
from pathlib import Path
from datetime import datetime
# Add the current directory to Python path
sys.path.append(os.path.dirname(os.path.abspath(__file__)))
def test_complete_pipeline():
"""Test the complete pipeline including Langfuse transcription download."""
print("π₯ Complete Medical Document Pipeline Test")
print("=" * 70)
print("This test will:")
print("1. Download transcriptions from Langfuse")
print("2. Run the complete document processing pipeline")
print("3. Validate the results")
print("=" * 70)
# Step 1: Download transcriptions from Langfuse
print("\nπ₯ Step 1: Downloading transcriptions from Langfuse...")
try:
from medical_transcription_retriever import MedicalTranscriptionRetriever
retriever = MedicalTranscriptionRetriever()
saved_files = retriever.run(
limit=5, save_to_file=True, save_by_user=True)
if not saved_files:
print("β No transcriptions downloaded from Langfuse")
print("Please check your Langfuse configuration and try again")
return None
print(
f"β
Successfully downloaded transcriptions: {len(saved_files)} files")
except Exception as e:
print(f"β Error downloading transcriptions: {e}")
print("Continuing with existing transcriptions if available...")
# Step 2: Check if we have transcription files
transcriptions_dir = "transcriptions"
if not os.path.exists(transcriptions_dir):
print(f"β Transcriptions directory not found: {transcriptions_dir}")
return None
transcription_files = list(Path(transcriptions_dir).glob("*.json"))
if not transcription_files:
print(f"β No transcription files found in {transcriptions_dir}")
return None
print(f"π Found {len(transcription_files)} transcription files")
# Step 3: Test with the first transcription file
first_transcription = transcription_files[0]
print(f"π Using transcription file: {first_transcription.name}")
try:
# Step 4: Initialize the orchestrator
print(
"\nπ Step 2: Initializing orchestrator with automatic SFTP model detection...")
from langchain_medical_agents_refactored import MedicalDocumentOrchestrator
orchestrator = MedicalDocumentOrchestrator(
template_path=None, # Let the SFTP agent find the template
transcription_path=str(first_transcription),
transcriptions_dir=transcriptions_dir
)
# Step 5: Run the complete pipeline
print("\nπ Step 3: Running complete pipeline...")
print("This will include:")
print(" π₯ Step 0: SFTP Download (.rtf β .doc) - AUTOMATIC MODEL DETECTION")
print(" π Step 1: Template Analysis")
print(" βοΈ Step 2: Transcription Correction")
print(" π¬ Step 3: Medical Data Analysis")
print(" π Step 4: Title Generation")
print(" π Step 5: Section Generation")
print(" π Step 6: Document Assembly")
print(" π Step 7: Validation")
start_time = time.time()
output_file = orchestrator.run_full_pipeline()
end_time = time.time()
execution_time = end_time - start_time
print(f"\nβ±οΈ Pipeline execution time: {execution_time:.2f} seconds")
print(f"\nπ Pipeline completed successfully!")
print(f"π Output file: {output_file}")
# Step 6: Show SFTP download summary
if orchestrator.downloaded_models:
successful_downloads = [
m for m in orchestrator.downloaded_models if m['status'] == 'success']
failed_downloads = [
m for m in orchestrator.downloaded_models if m['status'] == 'error']
print(f"\nπ₯ SFTP Download Summary:")
print(
f" β
Successfully downloaded: {len(successful_downloads)} models")
print(f" β Failed downloads: {len(failed_downloads)} models")
if successful_downloads:
print(" π Downloaded models:")
for model in successful_downloads[:5]: # Show first 5
print(
f" - {model['model_id']}: {model['local_filename']}")
if len(successful_downloads) > 5:
print(f" ... and {len(successful_downloads) - 5} more")
# Step 7: Verify output file exists
if os.path.exists(output_file):
file_size = os.path.getsize(output_file)
print(f"\nβ
Output file verified:")
print(f" π File: {output_file}")
print(f" π Size: {file_size} bytes")
# Check if file is readable
try:
from docx import Document
doc = Document(output_file)
paragraph_count = len(doc.paragraphs)
print(f" π Paragraphs: {paragraph_count}")
print(f" β
Document is readable and valid")
except Exception as e:
print(f" β οΈ Document validation failed: {e}")
else:
print(f"\nβ Output file not found: {output_file}")
return output_file
except Exception as e:
print(f"β Error running pipeline: {str(e)}")
import traceback
traceback.print_exc()
return None
def cleanup_test_files():
"""Clean up test files after testing."""
print("\nπ§Ή Cleaning up test files...")
# Remove generated documents
for file in Path("./transcriptions").glob("*.json"):
try:
os.remove(file)
print(f"ποΈ Removed: {file}")
except Exception as e:
print(f"β οΈ Could not remove {file}: {e}")
for file in Path("./").glob("*.docx"):
try:
os.remove(file)
print(f"ποΈ Removed: {file}")
except Exception as e:
print(f"β οΈ Could not remove {file}: {e}")
for file in Path("./").glob("*.json"):
try:
os.remove(file)
print(f"ποΈ Removed: {file}")
except Exception as e:
print(f"β οΈ Could not remove {file}: {e}")
# Remove downloaded models
models_dir = "models"
if os.path.exists(models_dir):
for file in Path(models_dir).glob("*.doc"):
try:
os.remove(file)
print(f"ποΈ Removed: {file}")
except Exception as e:
print(f"β οΈ Could not remove {file}: {e}")
def main():
"""Main test function."""
print("π§ͺ Complete Pipeline Test with Langfuse Integration")
print("=" * 70)
# Check if we're in the right directory
if not os.path.exists("transcriptions"):
print("β Please run this script from the project root directory")
print(" (where the 'transcriptions' folder is located)")
return
# Show current configuration
try:
from sftp_config import print_sftp_config
print_sftp_config()
except ImportError:
print("β οΈ SFTP config not available")
# Run the complete pipeline test
result = test_complete_pipeline()
if result:
print(f"\nπ Complete pipeline test completed successfully!")
print(f"π Generated document: {result}")
# Ask if user wants to clean up
cleanup = input(
"\nπ§Ή Do you want to clean up test files? (y/n): ").lower().strip()
if cleanup in ['y', 'yes']:
cleanup_test_files()
else:
print(f"\nβ Complete pipeline test failed")
if __name__ == "__main__":
main()
|