Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
|
@@ -6,41 +6,24 @@ import base64
|
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
| 8 |
|
| 9 |
-
# Import smolagents
|
| 10 |
-
from smolagents import
|
| 11 |
-
from smolagents.models import InferenceClientModel as SmolInferenceClientModel # Alias to avoid conflict
|
| 12 |
|
| 13 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 14 |
print("Access token loaded.")
|
| 15 |
|
| 16 |
-
#
|
| 17 |
-
|
| 18 |
try:
|
| 19 |
image_generation_tool = Tool.from_space(
|
| 20 |
-
"black-forest-labs/FLUX.1-schnell",
|
| 21 |
name="image_generator",
|
| 22 |
-
description="Generates an image from a
|
| 23 |
-
# Ensure the HF_TOKEN is available to gradio-client if the space is private or requires auth
|
| 24 |
-
token=ACCESS_TOKEN if ACCESS_TOKEN and ACCESS_TOKEN.strip() != "" else None
|
| 25 |
)
|
| 26 |
print("Image generation tool loaded successfully.")
|
| 27 |
-
|
| 28 |
-
# Initialize a model for the CodeAgent. This can be a simpler/faster model
|
| 29 |
-
# as it's mainly for orchestrating the tool call.
|
| 30 |
-
# Using a default InferenceClientModel from smolagents
|
| 31 |
-
smol_agent_model = SmolInferenceClientModel(token=ACCESS_TOKEN if ACCESS_TOKEN and ACCESS_TOKEN.strip() != "" else None)
|
| 32 |
-
print(f"Smolagent model initialized with: {smol_agent_model.model_id if hasattr(smol_agent_model, 'model_id') else 'default'}")
|
| 33 |
-
|
| 34 |
-
image_agent = CodeAgent(
|
| 35 |
-
tools=[image_generation_tool],
|
| 36 |
-
model=smol_agent_model,
|
| 37 |
-
verbosity_level=1 # Set to 0 for less verbose agent logging, 1 for info, 2 for debug
|
| 38 |
-
)
|
| 39 |
-
print("Image generation agent initialized successfully.")
|
| 40 |
except Exception as e:
|
| 41 |
-
print(f"Error
|
| 42 |
-
|
| 43 |
-
# --- End Smolagents Setup ---
|
| 44 |
|
| 45 |
# Function to encode image to base64
|
| 46 |
def encode_image(image_path):
|
|
@@ -64,7 +47,7 @@ def encode_image(image_path):
|
|
| 64 |
|
| 65 |
# Encode to base64
|
| 66 |
buffered = io.BytesIO()
|
| 67 |
-
image.save(buffered, format="JPEG")
|
| 68 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 69 |
print("Image encoded successfully")
|
| 70 |
return img_str
|
|
@@ -73,9 +56,9 @@ def encode_image(image_path):
|
|
| 73 |
return None
|
| 74 |
|
| 75 |
def respond(
|
| 76 |
-
message
|
| 77 |
-
image_files, #
|
| 78 |
-
history: list[
|
| 79 |
system_message,
|
| 80 |
max_tokens,
|
| 81 |
temperature,
|
|
@@ -88,9 +71,9 @@ def respond(
|
|
| 88 |
model_search_term,
|
| 89 |
selected_model
|
| 90 |
):
|
| 91 |
-
print(f"Received message: {
|
| 92 |
-
print(f"Received {len(image_files) if image_files else 0}
|
| 93 |
-
print(f"History: {history}")
|
| 94 |
print(f"System message: {system_message}")
|
| 95 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 96 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
@@ -100,136 +83,106 @@ def respond(
|
|
| 100 |
print(f"Model search term: {model_search_term}")
|
| 101 |
print(f"Selected model from radio: {selected_model}")
|
| 102 |
|
| 103 |
-
#
|
| 104 |
-
if
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 108 |
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 112 |
return
|
| 113 |
|
| 114 |
-
print(f"Image generation requested with prompt: {prompt_for_agent}")
|
| 115 |
try:
|
| 116 |
-
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
if isinstance(agent_response, str) and agent_response.lower().startswith("error"):
|
| 121 |
-
yield f"Agent error: {agent_response}"
|
| 122 |
-
elif hasattr(agent_response, 'to_string'): # Check if it's an AgentImage or similar
|
| 123 |
-
image_path = agent_response.to_string() # This is a local path to the generated image
|
| 124 |
-
print(f"Agent returned image path: {image_path}")
|
| 125 |
-
# Gradio's chatbot can display images if the content is a file path string
|
| 126 |
-
# or a tuple (filepath, alt_text)
|
| 127 |
-
yield image_path
|
| 128 |
-
else:
|
| 129 |
-
yield f"Agent returned an unexpected response: {str(agent_response)}"
|
| 130 |
return
|
| 131 |
except Exception as e:
|
| 132 |
-
print(f"Error
|
| 133 |
-
yield f"
|
| 134 |
return
|
| 135 |
-
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
#
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
if custom_api_key.strip() != "":
|
| 141 |
-
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
| 142 |
-
else:
|
| 143 |
-
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
| 144 |
-
|
| 145 |
-
# Initialize the Inference Client with the provider and appropriate token
|
| 146 |
client = InferenceClient(token=token_to_use, provider=provider)
|
| 147 |
-
print(f"Hugging Face Inference Client initialized with {provider} provider
|
| 148 |
|
| 149 |
-
# Convert seed to None if -1 (meaning random)
|
| 150 |
if seed == -1:
|
| 151 |
seed = None
|
| 152 |
|
| 153 |
-
#
|
| 154 |
-
|
| 155 |
-
|
| 156 |
-
|
| 157 |
-
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
for img_path in image_files: # Assuming image_files contains paths from MultimodalTextbox
|
| 162 |
-
if img_path is not None:
|
| 163 |
try:
|
| 164 |
-
encoded_image = encode_image(img_path) # img_path is already a path
|
| 165 |
if encoded_image:
|
| 166 |
-
|
| 167 |
"type": "image_url",
|
| 168 |
-
"image_url": {
|
| 169 |
-
"url": f"data:image/jpeg;base64,{encoded_image}"
|
| 170 |
-
}
|
| 171 |
})
|
| 172 |
except Exception as e:
|
| 173 |
-
print(f"Error encoding image: {e}")
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
|
|
|
|
|
|
| 177 |
|
| 178 |
-
|
| 179 |
-
messages
|
| 180 |
-
print("Initial messages array constructed.")
|
| 181 |
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
if isinstance(user_part, str) and user_part.startswith(":
|
| 190 |
-
# This is an image path from a previous agent generation
|
| 191 |
-
# or a user upload represented as markdown
|
| 192 |
-
history_image_path = user_part.replace(".replace(")", "")
|
| 193 |
-
encoded_history_image = encode_image(history_image_path)
|
| 194 |
-
if encoded_history_image:
|
| 195 |
-
messages.append({"role": "user", "content": [{
|
| 196 |
-
"type": "image_url",
|
| 197 |
-
"image_url": {"url": f"data:image/jpeg;base64,{encoded_history_image}"}
|
| 198 |
-
}]})
|
| 199 |
-
elif isinstance(user_part, tuple) and len(user_part) == 2: # Multimodal input from user
|
| 200 |
-
history_content_list = []
|
| 201 |
-
if user_part[0]: # Text part
|
| 202 |
-
history_content_list.append({"type": "text", "text": user_part[0]})
|
| 203 |
-
for img_hist_path in user_part[1]: # List of image paths
|
| 204 |
-
encoded_img_hist = encode_image(img_hist_path)
|
| 205 |
-
if encoded_img_hist:
|
| 206 |
-
history_content_list.append({
|
| 207 |
-
"type": "image_url",
|
| 208 |
-
"image_url": {"url": f"data:image/jpeg;base64,{encoded_img_hist}"}
|
| 209 |
-
})
|
| 210 |
-
if history_content_list:
|
| 211 |
-
messages.append({"role": "user", "content": history_content_list})
|
| 212 |
-
else: # Regular text message
|
| 213 |
-
messages.append({"role": "user", "content": user_part})
|
| 214 |
-
print(f"Added user message to context (type: {type(user_part)})")
|
| 215 |
|
| 216 |
-
if
|
| 217 |
-
|
| 218 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 219 |
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
print(f"Latest user message appended (content type: {type(user_content)})")
|
| 223 |
|
| 224 |
-
# Determine which model to use, prioritizing custom_model if provided
|
| 225 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
| 226 |
-
print(f"Model selected for inference: {model_to_use}")
|
| 227 |
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
print(f"Sending request to {provider} provider.")
|
| 231 |
|
| 232 |
-
# Prepare parameters for the chat completion request
|
| 233 |
parameters = {
|
| 234 |
"max_tokens": max_tokens,
|
| 235 |
"temperature": temperature,
|
|
@@ -240,58 +193,50 @@ def respond(
|
|
| 240 |
if seed is not None:
|
| 241 |
parameters["seed"] = seed
|
| 242 |
|
| 243 |
-
# Use the InferenceClient for making the request
|
| 244 |
try:
|
| 245 |
-
# Create a generator for the streaming response
|
| 246 |
stream = client.chat_completion(
|
| 247 |
model=model_to_use,
|
| 248 |
-
messages=
|
| 249 |
stream=True,
|
| 250 |
**parameters
|
| 251 |
)
|
| 252 |
|
| 253 |
-
print("Received tokens: ", end="", flush=True)
|
| 254 |
|
| 255 |
-
# Process the streaming response
|
| 256 |
for chunk in stream:
|
| 257 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
| 258 |
-
# Extract the content from the response
|
| 259 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
| 260 |
token_text = chunk.choices[0].delta.content
|
| 261 |
if token_text:
|
| 262 |
print(token_text, end="", flush=True)
|
| 263 |
-
|
| 264 |
-
yield
|
| 265 |
|
| 266 |
print()
|
| 267 |
except Exception as e:
|
| 268 |
-
print(f"Error during inference: {e}")
|
| 269 |
-
|
| 270 |
-
yield
|
| 271 |
|
| 272 |
-
print("Completed response generation.")
|
| 273 |
|
| 274 |
-
# Function to validate provider selection based on BYOK
|
| 275 |
def validate_provider(api_key, provider):
|
| 276 |
if not api_key.strip() and provider != "hf-inference":
|
| 277 |
return gr.update(value="hf-inference")
|
| 278 |
return gr.update(value=provider)
|
| 279 |
|
| 280 |
-
# GRADIO UI
|
| 281 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
| 282 |
-
# Create the chatbot component
|
| 283 |
chatbot = gr.Chatbot(
|
| 284 |
height=600,
|
| 285 |
show_copy_button=True,
|
| 286 |
-
placeholder="Select a model and begin chatting.
|
| 287 |
layout="panel",
|
| 288 |
-
|
| 289 |
)
|
| 290 |
print("Chatbot interface created.")
|
| 291 |
|
| 292 |
-
# Multimodal textbox for messages (combines text and file uploads)
|
| 293 |
msg = gr.MultimodalTextbox(
|
| 294 |
-
placeholder="Type a message or upload images...
|
| 295 |
show_label=False,
|
| 296 |
container=False,
|
| 297 |
scale=12,
|
|
@@ -300,226 +245,138 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 300 |
sources=["upload"]
|
| 301 |
)
|
| 302 |
|
| 303 |
-
# Create accordion for settings
|
| 304 |
with gr.Accordion("Settings", open=False):
|
| 305 |
-
# System message
|
| 306 |
system_message_box = gr.Textbox(
|
| 307 |
-
value="You are a helpful AI assistant that can understand images and text. If asked to generate an image,
|
| 308 |
placeholder="You are a helpful assistant.",
|
| 309 |
label="System Prompt"
|
| 310 |
)
|
| 311 |
|
| 312 |
-
# Generation parameters
|
| 313 |
with gr.Row():
|
| 314 |
with gr.Column():
|
| 315 |
-
max_tokens_slider = gr.Slider(
|
| 316 |
-
|
| 317 |
-
|
| 318 |
-
value=512,
|
| 319 |
-
step=1,
|
| 320 |
-
label="Max tokens"
|
| 321 |
-
)
|
| 322 |
-
|
| 323 |
-
temperature_slider = gr.Slider(
|
| 324 |
-
minimum=0.1,
|
| 325 |
-
maximum=4.0,
|
| 326 |
-
value=0.7,
|
| 327 |
-
step=0.1,
|
| 328 |
-
label="Temperature"
|
| 329 |
-
)
|
| 330 |
-
|
| 331 |
-
top_p_slider = gr.Slider(
|
| 332 |
-
minimum=0.1,
|
| 333 |
-
maximum=1.0,
|
| 334 |
-
value=0.95,
|
| 335 |
-
step=0.05,
|
| 336 |
-
label="Top-P"
|
| 337 |
-
)
|
| 338 |
-
|
| 339 |
with gr.Column():
|
| 340 |
-
frequency_penalty_slider = gr.Slider(
|
| 341 |
-
|
| 342 |
-
maximum=2.0,
|
| 343 |
-
value=0.0,
|
| 344 |
-
step=0.1,
|
| 345 |
-
label="Frequency Penalty"
|
| 346 |
-
)
|
| 347 |
-
|
| 348 |
-
seed_slider = gr.Slider(
|
| 349 |
-
minimum=-1,
|
| 350 |
-
maximum=65535,
|
| 351 |
-
value=-1,
|
| 352 |
-
step=1,
|
| 353 |
-
label="Seed (-1 for random)"
|
| 354 |
-
)
|
| 355 |
|
| 356 |
-
|
| 357 |
-
providers_list =
|
| 358 |
-
|
| 359 |
-
|
| 360 |
-
|
| 361 |
-
"sambanova", # SambaNova
|
| 362 |
-
"novita", # Novita AI
|
| 363 |
-
"cohere", # Cohere
|
| 364 |
-
"fireworks-ai", # Fireworks AI
|
| 365 |
-
"hyperbolic", # Hyperbolic
|
| 366 |
-
"nebius", # Nebius
|
| 367 |
-
]
|
| 368 |
-
|
| 369 |
-
provider_radio = gr.Radio(
|
| 370 |
-
choices=providers_list,
|
| 371 |
-
value="hf-inference",
|
| 372 |
-
label="Inference Provider",
|
| 373 |
-
)
|
| 374 |
-
|
| 375 |
-
# New BYOK textbox
|
| 376 |
-
byok_textbox = gr.Textbox(
|
| 377 |
-
value="",
|
| 378 |
-
label="BYOK (Bring Your Own Key)",
|
| 379 |
-
info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.",
|
| 380 |
-
placeholder="Enter your Hugging Face API token",
|
| 381 |
-
type="password" # Hide the API key for security
|
| 382 |
-
)
|
| 383 |
-
|
| 384 |
-
# Custom model box
|
| 385 |
-
custom_model_box = gr.Textbox(
|
| 386 |
-
value="",
|
| 387 |
-
label="Custom Model",
|
| 388 |
-
info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.",
|
| 389 |
-
placeholder="meta-llama/Llama-3.3-70B-Instruct"
|
| 390 |
-
)
|
| 391 |
|
| 392 |
-
# Model search
|
| 393 |
-
model_search_box = gr.Textbox(
|
| 394 |
-
label="Filter Models",
|
| 395 |
-
placeholder="Search for a featured model...",
|
| 396 |
-
lines=1
|
| 397 |
-
)
|
| 398 |
-
|
| 399 |
-
# Featured models list
|
| 400 |
-
# Updated to include multimodal models
|
| 401 |
models_list = [
|
| 402 |
-
"meta-llama/Llama-3.2-11B-Vision-Instruct",
|
| 403 |
-
"meta-llama/Llama-3.
|
| 404 |
-
"meta-llama/Llama-3.1-
|
| 405 |
-
"
|
| 406 |
-
"
|
| 407 |
-
"
|
| 408 |
-
"
|
| 409 |
-
"NousResearch/Hermes-3-Llama-3.1-8B",
|
| 410 |
-
"NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
| 411 |
-
"mistralai/Mistral-Nemo-Instruct-2407",
|
| 412 |
-
"mistralai/Mixtral-8x7B-Instruct-v0.1",
|
| 413 |
-
"mistralai/Mistral-7B-Instruct-v0.3",
|
| 414 |
-
"mistralai/Mistral-7B-Instruct-v0.2",
|
| 415 |
-
"Qwen/Qwen3-235B-A22B",
|
| 416 |
-
"Qwen/Qwen3-32B",
|
| 417 |
-
"Qwen/Qwen2.5-72B-Instruct",
|
| 418 |
-
"Qwen/Qwen2.5-3B-Instruct",
|
| 419 |
-
"Qwen/Qwen2.5-0.5B-Instruct",
|
| 420 |
-
"Qwen/QwQ-32B",
|
| 421 |
-
"Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 422 |
-
"microsoft/Phi-3.5-mini-instruct",
|
| 423 |
-
"microsoft/Phi-3-mini-128k-instruct",
|
| 424 |
-
"microsoft/Phi-3-mini-4k-instruct",
|
| 425 |
]
|
| 426 |
-
|
| 427 |
-
featured_model_radio = gr.Radio(
|
| 428 |
-
label="Select a model below",
|
| 429 |
-
choices=models_list,
|
| 430 |
-
value="meta-llama/Llama-3.2-11B-Vision-Instruct", # Default to a multimodal model
|
| 431 |
-
interactive=True
|
| 432 |
-
)
|
| 433 |
|
| 434 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
| 435 |
|
| 436 |
-
# Chat history state
|
| 437 |
chat_history = gr.State([])
|
| 438 |
|
| 439 |
-
# Function to filter models
|
| 440 |
def filter_models(search_term):
|
| 441 |
print(f"Filtering models with search term: {search_term}")
|
| 442 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 443 |
print(f"Filtered models: {filtered}")
|
| 444 |
-
return gr.update(choices=filtered
|
| 445 |
|
| 446 |
-
|
| 447 |
-
# Function to set custom model from radio
|
| 448 |
def set_custom_model_from_radio(selected):
|
| 449 |
print(f"Featured model selected: {selected}")
|
| 450 |
return selected
|
| 451 |
|
| 452 |
-
|
| 453 |
-
|
| 454 |
-
print(f"User message object received: {user_message_obj}")
|
| 455 |
-
|
| 456 |
-
text_content = user_message_obj.get("text", "").strip()
|
| 457 |
-
files = user_message_obj.get("files", []) # files is a list of temp file paths
|
| 458 |
|
| 459 |
-
|
| 460 |
-
|
| 461 |
-
return history # Or raise gr.Error("Please enter a message or upload an image.")
|
| 462 |
|
| 463 |
-
|
| 464 |
-
|
| 465 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 466 |
if text_content:
|
| 467 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 468 |
|
| 469 |
-
processed_files_for_history = []
|
| 470 |
-
if files:
|
| 471 |
-
for file_path_obj in files:
|
| 472 |
-
# Gradio's MultimodalTextbox provides file objects with a .name attribute for the path
|
| 473 |
-
file_path = file_path_obj.name if hasattr(file_path_obj, 'name') else str(file_path_obj)
|
| 474 |
-
display_message_parts.append(f"")
|
| 475 |
-
processed_files_for_history.append(file_path) # Store the actual path for 'respond'
|
| 476 |
-
|
| 477 |
-
# For history, we store the text and a list of file paths
|
| 478 |
-
# The 'respond' function will then re-encode these for the API
|
| 479 |
-
history_entry_user = (text_content, processed_files_for_history)
|
| 480 |
-
history.append([history_entry_user, None])
|
| 481 |
-
print(f"History updated with user input: {history_entry_user}")
|
| 482 |
return history
|
| 483 |
|
| 484 |
-
# Define bot response function
|
| 485 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
| 486 |
-
if not history or
|
| 487 |
-
print("No user message in
|
| 488 |
-
yield history
|
| 489 |
return
|
| 490 |
|
| 491 |
-
|
| 492 |
-
text_message_from_history = user_input_tuple[0]
|
| 493 |
-
image_files_from_history = user_input_tuple[1]
|
| 494 |
-
|
| 495 |
-
print(f"Bot processing: text='{text_message_from_history}', images={image_files_from_history}")
|
| 496 |
|
| 497 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 498 |
|
| 499 |
-
#
|
| 500 |
for response_chunk in respond(
|
| 501 |
-
|
| 502 |
-
|
| 503 |
-
history
|
| 504 |
-
|
| 505 |
-
|
| 506 |
-
temperature=temperature,
|
| 507 |
-
top_p=top_p,
|
| 508 |
-
frequency_penalty=freq_penalty,
|
| 509 |
-
seed=seed,
|
| 510 |
-
provider=provider,
|
| 511 |
-
custom_api_key=api_key,
|
| 512 |
-
custom_model=custom_model,
|
| 513 |
-
model_search_term=search_term,
|
| 514 |
-
selected_model=selected_model
|
| 515 |
):
|
| 516 |
-
history[-1][1]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 517 |
yield history
|
| 518 |
-
|
| 519 |
-
# Event handlers
|
| 520 |
msg.submit(
|
| 521 |
user,
|
| 522 |
-
[msg, chatbot],
|
| 523 |
[chatbot],
|
| 524 |
queue=False
|
| 525 |
).then(
|
|
@@ -529,45 +386,25 @@ with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
| 529 |
model_search_box, featured_model_radio],
|
| 530 |
[chatbot]
|
| 531 |
).then(
|
| 532 |
-
lambda:
|
| 533 |
None,
|
| 534 |
[msg]
|
| 535 |
)
|
| 536 |
|
| 537 |
-
|
| 538 |
-
model_search_box.change(
|
| 539 |
-
fn=filter_models,
|
| 540 |
-
inputs=model_search_box,
|
| 541 |
-
outputs=featured_model_radio
|
| 542 |
-
)
|
| 543 |
print("Model search box change event linked.")
|
| 544 |
|
| 545 |
-
|
| 546 |
-
featured_model_radio.change(
|
| 547 |
-
fn=set_custom_model_from_radio,
|
| 548 |
-
inputs=featured_model_radio,
|
| 549 |
-
outputs=custom_model_box
|
| 550 |
-
)
|
| 551 |
print("Featured model radio button change event linked.")
|
| 552 |
|
| 553 |
-
|
| 554 |
-
byok_textbox.change(
|
| 555 |
-
fn=validate_provider,
|
| 556 |
-
inputs=[byok_textbox, provider_radio],
|
| 557 |
-
outputs=provider_radio
|
| 558 |
-
)
|
| 559 |
print("BYOK textbox change event linked.")
|
| 560 |
|
| 561 |
-
|
| 562 |
-
provider_radio.change(
|
| 563 |
-
fn=validate_provider,
|
| 564 |
-
inputs=[byok_textbox, provider_radio],
|
| 565 |
-
outputs=provider_radio
|
| 566 |
-
)
|
| 567 |
print("Provider radio button change event linked.")
|
| 568 |
|
| 569 |
print("Gradio interface initialized.")
|
| 570 |
|
| 571 |
if __name__ == "__main__":
|
| 572 |
print("Launching the demo application.")
|
| 573 |
-
demo.launch(show_api=
|
|
|
|
| 6 |
from PIL import Image
|
| 7 |
import io
|
| 8 |
|
| 9 |
+
# Import smolagents Tool
|
| 10 |
+
from smolagents import Tool
|
|
|
|
| 11 |
|
| 12 |
ACCESS_TOKEN = os.getenv("HF_TOKEN")
|
| 13 |
print("Access token loaded.")
|
| 14 |
|
| 15 |
+
# Initialize the image generation tool
|
| 16 |
+
# This can be defined globally as it doesn't change per request
|
| 17 |
try:
|
| 18 |
image_generation_tool = Tool.from_space(
|
| 19 |
+
"black-forest-labs/FLUX.1-schnell",
|
| 20 |
name="image_generator",
|
| 21 |
+
description="Generates an image from a text prompt. Use it when the user asks to 'generate an image of ...' or 'draw a picture of ...'. The input should be the descriptive prompt for the image."
|
|
|
|
|
|
|
| 22 |
)
|
| 23 |
print("Image generation tool loaded successfully.")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 24 |
except Exception as e:
|
| 25 |
+
print(f"Error loading image generation tool: {e}")
|
| 26 |
+
image_generation_tool = None
|
|
|
|
| 27 |
|
| 28 |
# Function to encode image to base64
|
| 29 |
def encode_image(image_path):
|
|
|
|
| 47 |
|
| 48 |
# Encode to base64
|
| 49 |
buffered = io.BytesIO()
|
| 50 |
+
image.save(buffered, format="JPEG")
|
| 51 |
img_str = base64.b64encode(buffered.getvalue()).decode("utf-8")
|
| 52 |
print("Image encoded successfully")
|
| 53 |
return img_str
|
|
|
|
| 56 |
return None
|
| 57 |
|
| 58 |
def respond(
|
| 59 |
+
message_text, # Changed from 'message' to be explicit about text part
|
| 60 |
+
image_files, # This will be a list of paths from gr.MultimodalTextbox
|
| 61 |
+
history: list[list[Any, str | None]], # History can now contain complex user messages
|
| 62 |
system_message,
|
| 63 |
max_tokens,
|
| 64 |
temperature,
|
|
|
|
| 71 |
model_search_term,
|
| 72 |
selected_model
|
| 73 |
):
|
| 74 |
+
print(f"Received message text: {message_text}")
|
| 75 |
+
print(f"Received {len(image_files) if image_files else 0} image files: {image_files}")
|
| 76 |
+
# print(f"History: {history}") # Can be very verbose
|
| 77 |
print(f"System message: {system_message}")
|
| 78 |
print(f"Max tokens: {max_tokens}, Temperature: {temperature}, Top-P: {top_p}")
|
| 79 |
print(f"Frequency Penalty: {frequency_penalty}, Seed: {seed}")
|
|
|
|
| 83 |
print(f"Model search term: {model_search_term}")
|
| 84 |
print(f"Selected model from radio: {selected_model}")
|
| 85 |
|
| 86 |
+
# Determine which token to use
|
| 87 |
+
token_to_use = custom_api_key if custom_api_key.strip() != "" else ACCESS_TOKEN
|
| 88 |
+
|
| 89 |
+
if custom_api_key.strip() != "":
|
| 90 |
+
print("USING CUSTOM API KEY: BYOK token provided by user is being used for authentication")
|
| 91 |
+
else:
|
| 92 |
+
print("USING DEFAULT API KEY: Environment variable HF_TOKEN is being used for authentication")
|
| 93 |
+
|
| 94 |
+
user_text_message_lower = message_text.lower() if message_text else ""
|
| 95 |
|
| 96 |
+
image_keywords = ["generate image", "draw a picture of", "create an image of", "make an image of"]
|
| 97 |
+
is_image_generation_request = any(keyword in user_text_message_lower for keyword in image_keywords)
|
| 98 |
+
|
| 99 |
+
if is_image_generation_request and image_generation_tool:
|
| 100 |
+
print("Image generation request detected.")
|
| 101 |
+
image_prompt = message_text
|
| 102 |
+
for keyword in image_keywords:
|
| 103 |
+
if keyword in user_text_message_lower:
|
| 104 |
+
# Find the keyword in the original case-sensitive message text to split
|
| 105 |
+
keyword_start_index = user_text_message_lower.find(keyword)
|
| 106 |
+
image_prompt = message_text[keyword_start_index + len(keyword):].strip()
|
| 107 |
+
break
|
| 108 |
+
|
| 109 |
+
print(f"Extracted image prompt: {image_prompt}")
|
| 110 |
+
if not image_prompt:
|
| 111 |
+
yield {"type": "text", "content": "Please provide a description for the image you want to generate."}
|
| 112 |
return
|
| 113 |
|
|
|
|
| 114 |
try:
|
| 115 |
+
generated_image_path = image_generation_tool(prompt=image_prompt)
|
| 116 |
+
print(f"Image generated by tool, path: {generated_image_path}")
|
| 117 |
+
yield {"type": "image", "path": str(generated_image_path)} # Ensure path is string
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
return
|
| 119 |
except Exception as e:
|
| 120 |
+
print(f"Error during image generation tool call: {e}")
|
| 121 |
+
yield {"type": "text", "content": f"Sorry, I couldn't generate the image. Error: {str(e)}"}
|
| 122 |
return
|
| 123 |
+
elif is_image_generation_request and not image_generation_tool:
|
| 124 |
+
yield {"type": "text", "content": "Image generation tool is not available or failed to load."}
|
| 125 |
+
return
|
| 126 |
|
| 127 |
+
# If not an image generation request, proceed with text/multimodal LLM call
|
| 128 |
+
print("Proceeding with LLM call (text or multimodal).")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 129 |
client = InferenceClient(token=token_to_use, provider=provider)
|
| 130 |
+
print(f"Hugging Face Inference Client initialized with {provider} provider.")
|
| 131 |
|
|
|
|
| 132 |
if seed == -1:
|
| 133 |
seed = None
|
| 134 |
|
| 135 |
+
# Prepare messages for LLM
|
| 136 |
+
llm_user_content = []
|
| 137 |
+
if message_text and message_text.strip():
|
| 138 |
+
llm_user_content.append({"type": "text", "text": message_text})
|
| 139 |
+
|
| 140 |
+
if image_files: # image_files is a list of paths from gr.MultimodalTextbox
|
| 141 |
+
for img_path in image_files:
|
| 142 |
+
if img_path:
|
|
|
|
|
|
|
| 143 |
try:
|
| 144 |
+
encoded_image = encode_image(img_path) # img_path is already a path
|
| 145 |
if encoded_image:
|
| 146 |
+
llm_user_content.append({
|
| 147 |
"type": "image_url",
|
| 148 |
+
"image_url": {"url": f"data:image/jpeg;base64,{encoded_image}"}
|
|
|
|
|
|
|
| 149 |
})
|
| 150 |
except Exception as e:
|
| 151 |
+
print(f"Error encoding image for LLM: {e}")
|
| 152 |
+
|
| 153 |
+
if not llm_user_content: # Should not happen if user() function filters empty messages
|
| 154 |
+
print("No content for LLM, aborting.")
|
| 155 |
+
yield {"type": "text", "content": "Please provide some input."}
|
| 156 |
+
return
|
| 157 |
|
| 158 |
+
messages_for_llm = [{"role": "system", "content": system_message}]
|
| 159 |
+
print("Initial messages array constructed for LLM.")
|
|
|
|
| 160 |
|
| 161 |
+
for val in history: # history item is [user_content_list, assistant_response_str_or_dict]
|
| 162 |
+
user_content_list_hist = val[0]
|
| 163 |
+
assistant_response_hist = val[1]
|
| 164 |
+
|
| 165 |
+
if user_content_list_hist:
|
| 166 |
+
# user_content_list_hist is already in the correct format (list of dicts)
|
| 167 |
+
messages_for_llm.append({"role": "user", "content": user_content_list_hist})
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 168 |
|
| 169 |
+
if assistant_response_hist:
|
| 170 |
+
# Assistant response could be text or an image dict from a previous tool call
|
| 171 |
+
if isinstance(assistant_response_hist, dict) and assistant_response_hist.get("type") == "image":
|
| 172 |
+
messages_for_llm.append({"role": "assistant", "content": [{"type": "text", "text": f"Assistant previously displayed image: {assistant_response_hist.get('path')}"}]})
|
| 173 |
+
elif isinstance(assistant_response_hist, str):
|
| 174 |
+
messages_for_llm.append({"role": "assistant", "content": assistant_response_hist})
|
| 175 |
+
# Else, if it's a dict but not an image type we understand for history, we might skip or log an error
|
| 176 |
|
| 177 |
+
messages_for_llm.append({"role": "user", "content": llm_user_content})
|
| 178 |
+
# print(f"Full messages_for_llm: {messages_for_llm}") # Can be very verbose
|
|
|
|
| 179 |
|
|
|
|
| 180 |
model_to_use = custom_model.strip() if custom_model.strip() != "" else selected_model
|
| 181 |
+
print(f"Model selected for LLM inference: {model_to_use}")
|
| 182 |
|
| 183 |
+
response_text = ""
|
| 184 |
+
print(f"Sending request to {provider} provider for LLM.")
|
|
|
|
| 185 |
|
|
|
|
| 186 |
parameters = {
|
| 187 |
"max_tokens": max_tokens,
|
| 188 |
"temperature": temperature,
|
|
|
|
| 193 |
if seed is not None:
|
| 194 |
parameters["seed"] = seed
|
| 195 |
|
|
|
|
| 196 |
try:
|
|
|
|
| 197 |
stream = client.chat_completion(
|
| 198 |
model=model_to_use,
|
| 199 |
+
messages=messages_for_llm,
|
| 200 |
stream=True,
|
| 201 |
**parameters
|
| 202 |
)
|
| 203 |
|
| 204 |
+
print("Received LLM tokens: ", end="", flush=True)
|
| 205 |
|
|
|
|
| 206 |
for chunk in stream:
|
| 207 |
if hasattr(chunk, 'choices') and len(chunk.choices) > 0:
|
|
|
|
| 208 |
if hasattr(chunk.choices[0], 'delta') and hasattr(chunk.choices[0].delta, 'content'):
|
| 209 |
token_text = chunk.choices[0].delta.content
|
| 210 |
if token_text:
|
| 211 |
print(token_text, end="", flush=True)
|
| 212 |
+
response_text += token_text
|
| 213 |
+
yield {"type": "text", "content": response_text}
|
| 214 |
|
| 215 |
print()
|
| 216 |
except Exception as e:
|
| 217 |
+
print(f"Error during LLM inference: {e}")
|
| 218 |
+
response_text += f"\nError: {str(e)}"
|
| 219 |
+
yield {"type": "text", "content": response_text}
|
| 220 |
|
| 221 |
+
print("Completed LLM response generation.")
|
| 222 |
|
|
|
|
| 223 |
def validate_provider(api_key, provider):
|
| 224 |
if not api_key.strip() and provider != "hf-inference":
|
| 225 |
return gr.update(value="hf-inference")
|
| 226 |
return gr.update(value=provider)
|
| 227 |
|
|
|
|
| 228 |
with gr.Blocks(theme="Nymbo/Nymbo_Theme") as demo:
|
|
|
|
| 229 |
chatbot = gr.Chatbot(
|
| 230 |
height=600,
|
| 231 |
show_copy_button=True,
|
| 232 |
+
placeholder="Select a model and begin chatting. Now supports multiple inference providers and multimodal inputs. Try 'generate image of a cat playing chess'.",
|
| 233 |
layout="panel",
|
| 234 |
+
bubble_full_width=False
|
| 235 |
)
|
| 236 |
print("Chatbot interface created.")
|
| 237 |
|
|
|
|
| 238 |
msg = gr.MultimodalTextbox(
|
| 239 |
+
placeholder="Type a message or upload images...",
|
| 240 |
show_label=False,
|
| 241 |
container=False,
|
| 242 |
scale=12,
|
|
|
|
| 245 |
sources=["upload"]
|
| 246 |
)
|
| 247 |
|
|
|
|
| 248 |
with gr.Accordion("Settings", open=False):
|
|
|
|
| 249 |
system_message_box = gr.Textbox(
|
| 250 |
+
value="You are a helpful AI assistant that can understand images and text. If asked to generate an image, respond by saying you will call the image_generator tool.",
|
| 251 |
placeholder="You are a helpful assistant.",
|
| 252 |
label="System Prompt"
|
| 253 |
)
|
| 254 |
|
|
|
|
| 255 |
with gr.Row():
|
| 256 |
with gr.Column():
|
| 257 |
+
max_tokens_slider = gr.Slider(minimum=1, maximum=4096, value=512, step=1, label="Max tokens")
|
| 258 |
+
temperature_slider = gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature")
|
| 259 |
+
top_p_slider = gr.Slider(minimum=0.1, maximum=1.0, value=0.95, step=0.05, label="Top-P")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 260 |
with gr.Column():
|
| 261 |
+
frequency_penalty_slider = gr.Slider(minimum=-2.0, maximum=2.0, value=0.0, step=0.1, label="Frequency Penalty")
|
| 262 |
+
seed_slider = gr.Slider(minimum=-1, maximum=65535, value=-1, step=1, label="Seed (-1 for random)")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 263 |
|
| 264 |
+
providers_list = ["hf-inference", "cerebras", "together", "sambanova", "novita", "cohere", "fireworks-ai", "hyperbolic", "nebius"]
|
| 265 |
+
provider_radio = gr.Radio(choices=providers_list, value="hf-inference", label="Inference Provider")
|
| 266 |
+
byok_textbox = gr.Textbox(value="", label="BYOK (Bring Your Own Key)", info="Enter a custom Hugging Face API key here. When empty, only 'hf-inference' provider can be used.", placeholder="Enter your Hugging Face API token", type="password")
|
| 267 |
+
custom_model_box = gr.Textbox(value="", label="Custom Model", info="(Optional) Provide a custom Hugging Face model path. Overrides any selected featured model.", placeholder="meta-llama/Llama-3.3-70B-Instruct")
|
| 268 |
+
model_search_box = gr.Textbox(label="Filter Models", placeholder="Search for a featured model...", lines=1)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 270 |
models_list = [
|
| 271 |
+
"meta-llama/Llama-3.2-11B-Vision-Instruct", "meta-llama/Llama-3.3-70B-Instruct", "meta-llama/Llama-3.1-70B-Instruct",
|
| 272 |
+
"meta-llama/Llama-3.0-70B-Instruct", "meta-llama/Llama-3.2-3B-Instruct", "meta-llama/Llama-3.2-1B-Instruct",
|
| 273 |
+
"meta-llama/Llama-3.1-8B-Instruct", "NousResearch/Hermes-3-Llama-3.1-8B", "NousResearch/Nous-Hermes-2-Mixtral-8x7B-DPO",
|
| 274 |
+
"mistralai/Mistral-Nemo-Instruct-2407", "mistralai/Mixtral-8x7B-Instruct-v0.1", "mistralai/Mistral-7B-Instruct-v0.3",
|
| 275 |
+
"mistralai/Mistral-7B-Instruct-v0.2", "Qwen/Qwen3-235B-A22B", "Qwen/Qwen3-32B", "Qwen/Qwen2.5-72B-Instruct",
|
| 276 |
+
"Qwen/Qwen2.5-3B-Instruct", "Qwen/Qwen2.5-0.5B-Instruct", "Qwen/QwQ-32B", "Qwen/Qwen2.5-Coder-32B-Instruct",
|
| 277 |
+
"microsoft/Phi-3.5-mini-instruct", "microsoft/Phi-3-mini-128k-instruct", "microsoft/Phi-3-mini-4k-instruct",
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
]
|
| 279 |
+
featured_model_radio = gr.Radio(label="Select a model below", choices=models_list, value="meta-llama/Llama-3.2-11B-Vision-Instruct", interactive=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
gr.Markdown("[View all Text-to-Text models](https://huggingface.co/models?inference_provider=all&pipeline_tag=text-generation&sort=trending) | [View all multimodal models](https://huggingface.co/models?inference_provider=all&pipeline_tag=image-text-to-text&sort=trending)")
|
| 282 |
|
|
|
|
| 283 |
chat_history = gr.State([])
|
| 284 |
|
|
|
|
| 285 |
def filter_models(search_term):
|
| 286 |
print(f"Filtering models with search term: {search_term}")
|
| 287 |
filtered = [m for m in models_list if search_term.lower() in m.lower()]
|
| 288 |
print(f"Filtered models: {filtered}")
|
| 289 |
+
return gr.update(choices=filtered)
|
| 290 |
|
|
|
|
|
|
|
| 291 |
def set_custom_model_from_radio(selected):
|
| 292 |
print(f"Featured model selected: {selected}")
|
| 293 |
return selected
|
| 294 |
|
| 295 |
+
def user(user_multimodal_input, history):
|
| 296 |
+
print(f"User input (raw from gr.MultimodalTextbox): {user_multimodal_input}")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 297 |
|
| 298 |
+
text_content = user_multimodal_input.get("text", "").strip()
|
| 299 |
+
files = user_multimodal_input.get("files", []) # These are temp file paths from Gradio
|
|
|
|
| 300 |
|
| 301 |
+
if not text_content and not files:
|
| 302 |
+
print("Empty input, skipping history append.")
|
| 303 |
+
# Optionally, could raise gr.Error("Please enter a message or upload an image.")
|
| 304 |
+
# For now, let's allow the bot to respond if history is not empty,
|
| 305 |
+
# or do nothing if history is also empty.
|
| 306 |
+
return history
|
| 307 |
+
|
| 308 |
+
# Prepare content for history: a list of dicts for multimodal display
|
| 309 |
+
history_user_entry_content = []
|
| 310 |
if text_content:
|
| 311 |
+
history_user_entry_content.append({"type": "text", "text": text_content})
|
| 312 |
+
|
| 313 |
+
for file_path_obj in files: # file_path_obj is a FileData object from Gradio
|
| 314 |
+
if file_path_obj and hasattr(file_path_obj, 'name') and file_path_obj.name:
|
| 315 |
+
# Gradio's Chatbot can display images directly from file paths
|
| 316 |
+
# We store it in a format that `respond` can also understand
|
| 317 |
+
# The path is temporary, Gradio handles making it accessible for display
|
| 318 |
+
history_user_entry_content.append({"type": "image_url", "image_url": {"url": file_path_obj.name}})
|
| 319 |
+
print(f"Adding image to history entry: {file_path_obj.name}")
|
| 320 |
+
|
| 321 |
+
if history_user_entry_content:
|
| 322 |
+
history.append([history_user_entry_content, None]) # User part, Bot part (initially None)
|
| 323 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 324 |
return history
|
| 325 |
|
|
|
|
| 326 |
def bot(history, system_msg, max_tokens, temperature, top_p, freq_penalty, seed, provider, api_key, custom_model, search_term, selected_model):
|
| 327 |
+
if not history or not history[-1][0]: # If no user message or empty user message content
|
| 328 |
+
print("No user message to process in bot function or user message content is empty.")
|
| 329 |
+
yield history # Return current history without processing
|
| 330 |
return
|
| 331 |
|
| 332 |
+
user_content_list = history[-1][0] # This is now a list of content dicts
|
|
|
|
|
|
|
|
|
|
|
|
|
| 333 |
|
| 334 |
+
# Extract text and image file paths from the user_content_list for the `respond` function
|
| 335 |
+
text_for_respond = ""
|
| 336 |
+
image_files_for_respond = []
|
| 337 |
+
|
| 338 |
+
for item in user_content_list:
|
| 339 |
+
if item["type"] == "text":
|
| 340 |
+
text_for_respond = item["text"]
|
| 341 |
+
elif item["type"] == "image_url":
|
| 342 |
+
image_files_for_respond.append(item["image_url"]["url"])
|
| 343 |
+
|
| 344 |
+
history[-1][1] = "" # Clear placeholder for bot response / Initialize bot response
|
| 345 |
|
| 346 |
+
# Call the respond function which is now a generator
|
| 347 |
for response_chunk in respond(
|
| 348 |
+
text_for_respond,
|
| 349 |
+
image_files_for_respond,
|
| 350 |
+
history[:-1], # Pass previous history
|
| 351 |
+
system_msg, max_tokens, temperature, top_p, freq_penalty, seed,
|
| 352 |
+
provider, api_key, custom_model, search_term, selected_model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 353 |
):
|
| 354 |
+
current_bot_response = history[-1][1]
|
| 355 |
+
if isinstance(response_chunk, dict):
|
| 356 |
+
if response_chunk["type"] == "text":
|
| 357 |
+
# If current bot response is already an image dict, we can't append text.
|
| 358 |
+
# This indicates a new text response after an image, or just text.
|
| 359 |
+
if isinstance(current_bot_response, dict) and current_bot_response.get("type") == "image":
|
| 360 |
+
# This case should ideally not happen if an image is the final response from a tool.
|
| 361 |
+
# If it does, we might need to start a new bot message in history.
|
| 362 |
+
# For now, we'll overwrite if the new chunk is text.
|
| 363 |
+
history[-1][1] = response_chunk["content"]
|
| 364 |
+
elif isinstance(current_bot_response, str):
|
| 365 |
+
history[-1][1] = response_chunk["content"] # Accumulate text
|
| 366 |
+
else: # current_bot_response is likely "" or None
|
| 367 |
+
history[-1][1] = response_chunk["content"]
|
| 368 |
+
|
| 369 |
+
elif response_chunk["type"] == "image":
|
| 370 |
+
# Image response from tool. Gradio Chatbot displays this as an image.
|
| 371 |
+
# The path should be accessible by Gradio.
|
| 372 |
+
# If there was prior text content for this turn, it's now overwritten by the image.
|
| 373 |
+
# This means a tool call that produces an image is considered the primary response for that turn.
|
| 374 |
+
history[-1][1] = {"path": response_chunk["path"], "mime_type": "image/jpeg"} # Assuming JPEG, could be PNG
|
| 375 |
yield history
|
| 376 |
+
|
|
|
|
| 377 |
msg.submit(
|
| 378 |
user,
|
| 379 |
+
[msg, chatbot],
|
| 380 |
[chatbot],
|
| 381 |
queue=False
|
| 382 |
).then(
|
|
|
|
| 386 |
model_search_box, featured_model_radio],
|
| 387 |
[chatbot]
|
| 388 |
).then(
|
| 389 |
+
lambda: {"text": "", "files": []}, # Clear MultimodalTextbox
|
| 390 |
None,
|
| 391 |
[msg]
|
| 392 |
)
|
| 393 |
|
| 394 |
+
model_search_box.change(fn=filter_models, inputs=model_search_box, outputs=featured_model_radio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
print("Model search box change event linked.")
|
| 396 |
|
| 397 |
+
featured_model_radio.change(fn=set_custom_model_from_radio, inputs=featured_model_radio, outputs=custom_model_box)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 398 |
print("Featured model radio button change event linked.")
|
| 399 |
|
| 400 |
+
byok_textbox.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 401 |
print("BYOK textbox change event linked.")
|
| 402 |
|
| 403 |
+
provider_radio.change(fn=validate_provider, inputs=[byok_textbox, provider_radio], outputs=provider_radio)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 404 |
print("Provider radio button change event linked.")
|
| 405 |
|
| 406 |
print("Gradio interface initialized.")
|
| 407 |
|
| 408 |
if __name__ == "__main__":
|
| 409 |
print("Launching the demo application.")
|
| 410 |
+
demo.launch(show_api=True)
|