Clémentine
commited on
Commit
·
0b4b222
1
Parent(s):
6e44082
run full sets
Browse files- app.py +1 -2
- globals.py +1 -1
- utils/io.py +20 -3
- utils/jobs.py +151 -61
app.py
CHANGED
|
@@ -164,8 +164,7 @@ job = run_job(
|
|
| 164 |
command=[
|
| 165 |
"lighteval", "endpoint", "inference-providers",
|
| 166 |
"model_name=MODEL,provider=PROVIDER",
|
| 167 |
-
"extended|ifeval|0,lighteval|
|
| 168 |
-
"--max-samples", "10",
|
| 169 |
"--push-to-hub", "--save-details",
|
| 170 |
"--results-org", "YOURORG"
|
| 171 |
],
|
|
|
|
| 164 |
command=[
|
| 165 |
"lighteval", "endpoint", "inference-providers",
|
| 166 |
"model_name=MODEL,provider=PROVIDER",
|
| 167 |
+
"extended|ifeval|0,lighteval|gpqa:diamond|0",
|
|
|
|
| 168 |
"--push-to-hub", "--save-details",
|
| 169 |
"--results-org", "YOURORG"
|
| 170 |
],
|
globals.py
CHANGED
|
@@ -15,7 +15,7 @@ NUM_MODELS_RUN: int = 100
|
|
| 15 |
NUM_RUNS_PER_JOB: int = 4 # Number of times to run each job for variance reduction
|
| 16 |
RESULTS_DATASET_NAME: str = "IPTesting/inference-provider-test-results"
|
| 17 |
LOCAL_CONFIG_FILE: str = "/home/user/app/model_providers.txt"
|
| 18 |
-
TASKS: str = "extended|ifeval|0,lighteval|
|
| 19 |
NAMESPACE: str = "huggingface"
|
| 20 |
|
| 21 |
|
|
|
|
| 15 |
NUM_RUNS_PER_JOB: int = 4 # Number of times to run each job for variance reduction
|
| 16 |
RESULTS_DATASET_NAME: str = "IPTesting/inference-provider-test-results"
|
| 17 |
LOCAL_CONFIG_FILE: str = "/home/user/app/model_providers.txt"
|
| 18 |
+
TASKS: str = "extended|ifeval|0,lighteval|gpqa:diamond|0"
|
| 19 |
NAMESPACE: str = "huggingface"
|
| 20 |
|
| 21 |
|
utils/io.py
CHANGED
|
@@ -120,7 +120,9 @@ def load_results() -> None:
|
|
| 120 |
"job_id": row["job_id"],
|
| 121 |
"start_time": row.get("start_time"),
|
| 122 |
"duration": row.get("duration"),
|
| 123 |
-
"completed_at": row.get("completed_at")
|
|
|
|
|
|
|
| 124 |
}
|
| 125 |
|
| 126 |
print(f"Loaded {len(globals.job_results)} results from dataset")
|
|
@@ -155,18 +157,31 @@ def get_summary_stats():
|
|
| 155 |
def get_results_table():
|
| 156 |
"""Return job results as a styled pandas DataFrame for Gradio DataFrame."""
|
| 157 |
if not globals.job_results:
|
| 158 |
-
return pd.DataFrame(columns=["Model", "Provider", "Last Run", "Status", "
|
| 159 |
|
| 160 |
table_data = []
|
| 161 |
for key, info in globals.job_results.items():
|
|
|
|
| 162 |
current_score = info.get("current_score", "N/A")
|
| 163 |
if current_score is not None and isinstance(current_score, (int, float)):
|
| 164 |
current_score = f"{current_score:.4f}"
|
| 165 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
previous_score = info.get("previous_score", "N/A")
|
| 167 |
if previous_score is not None and isinstance(previous_score, (int, float)):
|
| 168 |
previous_score = f"{previous_score:.4f}"
|
| 169 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 170 |
# Format duration
|
| 171 |
duration = info.get("duration")
|
| 172 |
if duration is not None and isinstance(duration, (int, float)):
|
|
@@ -196,9 +211,11 @@ def get_results_table():
|
|
| 196 |
table_data.append([
|
| 197 |
model,
|
| 198 |
provider,
|
|
|
|
| 199 |
info["last_run"],
|
| 200 |
info["status"],
|
| 201 |
current_score,
|
|
|
|
| 202 |
previous_score,
|
| 203 |
duration_str,
|
| 204 |
completed_at,
|
|
@@ -206,7 +223,7 @@ def get_results_table():
|
|
| 206 |
relaunch_link
|
| 207 |
])
|
| 208 |
|
| 209 |
-
df = pd.DataFrame(table_data, columns=["Model", "Provider", "Last Run", "Status", "
|
| 210 |
|
| 211 |
# Apply styling to the Status column
|
| 212 |
styled_df = df.style.map(style_status, subset=['Status'])
|
|
|
|
| 120 |
"job_id": row["job_id"],
|
| 121 |
"start_time": row.get("start_time"),
|
| 122 |
"duration": row.get("duration"),
|
| 123 |
+
"completed_at": row.get("completed_at"),
|
| 124 |
+
"runs": row.get("runs", []),
|
| 125 |
+
"score_variance": row.get("score_variance")
|
| 126 |
}
|
| 127 |
|
| 128 |
print(f"Loaded {len(globals.job_results)} results from dataset")
|
|
|
|
| 157 |
def get_results_table():
|
| 158 |
"""Return job results as a styled pandas DataFrame for Gradio DataFrame."""
|
| 159 |
if not globals.job_results:
|
| 160 |
+
return pd.DataFrame(columns=["Model", "Provider", "Runs", "Last Run", "Status", "Mean Score", "Variance", "Previous Score", "Duration", "Completed At", "Latest Job Id"])
|
| 161 |
|
| 162 |
table_data = []
|
| 163 |
for key, info in globals.job_results.items():
|
| 164 |
+
# Format mean score
|
| 165 |
current_score = info.get("current_score", "N/A")
|
| 166 |
if current_score is not None and isinstance(current_score, (int, float)):
|
| 167 |
current_score = f"{current_score:.4f}"
|
| 168 |
|
| 169 |
+
# Format variance
|
| 170 |
+
variance = info.get("score_variance", "N/A")
|
| 171 |
+
if variance is not None and isinstance(variance, (int, float)):
|
| 172 |
+
variance = f"{variance:.6f}"
|
| 173 |
+
|
| 174 |
+
# Format previous score
|
| 175 |
previous_score = info.get("previous_score", "N/A")
|
| 176 |
if previous_score is not None and isinstance(previous_score, (int, float)):
|
| 177 |
previous_score = f"{previous_score:.4f}"
|
| 178 |
|
| 179 |
+
# Count runs
|
| 180 |
+
runs = info.get("runs", [])
|
| 181 |
+
completed_runs = sum(1 for run in runs if run.get("status") == "COMPLETED")
|
| 182 |
+
total_runs = len(runs)
|
| 183 |
+
runs_str = f"{completed_runs}/{total_runs}" if runs else "0/0"
|
| 184 |
+
|
| 185 |
# Format duration
|
| 186 |
duration = info.get("duration")
|
| 187 |
if duration is not None and isinstance(duration, (int, float)):
|
|
|
|
| 211 |
table_data.append([
|
| 212 |
model,
|
| 213 |
provider,
|
| 214 |
+
runs_str,
|
| 215 |
info["last_run"],
|
| 216 |
info["status"],
|
| 217 |
current_score,
|
| 218 |
+
variance,
|
| 219 |
previous_score,
|
| 220 |
duration_str,
|
| 221 |
completed_at,
|
|
|
|
| 223 |
relaunch_link
|
| 224 |
])
|
| 225 |
|
| 226 |
+
df = pd.DataFrame(table_data, columns=["Model", "Provider", "Runs", "Last Run", "Status", "Mean Score", "Variance", "Previous Score", "Duration", "Completed At", "Job Id and Logs", "Actions"])
|
| 227 |
|
| 228 |
# Apply styling to the Status column
|
| 229 |
styled_df = df.style.map(style_status, subset=['Status'])
|
utils/jobs.py
CHANGED
|
@@ -57,22 +57,29 @@ def extract_score_from_job(job_id: str) -> Optional[float]:
|
|
| 57 |
return None
|
| 58 |
|
| 59 |
|
| 60 |
-
def run_single_job(model: str, provider: str, tasks: str = globals.TASKS) -> Optional[str]:
|
| 61 |
-
"""Run a single job for a model-provider combination.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 62 |
|
| 63 |
if not model or not provider:
|
| 64 |
print("Missing model or provider")
|
| 65 |
return -1
|
| 66 |
|
| 67 |
-
# Check if
|
| 68 |
key = globals.get_model_provider_key(model, provider)
|
| 69 |
if key in globals.job_results:
|
| 70 |
current_status = globals.job_results[key].get("status")
|
| 71 |
if current_status == "RUNNING":
|
| 72 |
-
print(
|
| 73 |
return -1
|
| 74 |
|
| 75 |
-
print(f"Starting job for model={model}, provider={provider}")
|
| 76 |
|
| 77 |
job = run_job(
|
| 78 |
image="hf.co/spaces/OpenEvals/EvalsOnTheHub",
|
|
@@ -82,7 +89,6 @@ def run_single_job(model: str, provider: str, tasks: str = globals.TASKS) -> Opt
|
|
| 82 |
tasks,
|
| 83 |
"--push-to-hub", "--save-details",
|
| 84 |
"--results-org", "IPTesting",
|
| 85 |
-
"--max-samples", "10"
|
| 86 |
],
|
| 87 |
namespace=globals.NAMESPACE,
|
| 88 |
secrets={"HF_TOKEN": os.getenv("HF_TOKEN")},
|
|
@@ -90,35 +96,69 @@ def run_single_job(model: str, provider: str, tasks: str = globals.TASKS) -> Opt
|
|
| 90 |
)
|
| 91 |
|
| 92 |
job_id = job.id
|
| 93 |
-
|
| 94 |
|
| 95 |
with globals.results_lock:
|
| 96 |
-
#
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
previous_score =
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 109 |
"job_id": job_id,
|
|
|
|
|
|
|
| 110 |
"start_time": start_time.isoformat(),
|
| 111 |
"duration": None,
|
| 112 |
"completed_at": None
|
| 113 |
-
}
|
| 114 |
|
| 115 |
# Don't save immediately - let the periodic save handle it
|
| 116 |
-
print(f"Job launched: ID={job_id}, model={model}, provider={provider}")
|
| 117 |
return job_id
|
| 118 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
# Todo: factorize both following functions
|
| 120 |
def launch_jobs(tasks: str = globals.TASKS, config_file: str = globals.LOCAL_CONFIG_FILE):
|
| 121 |
-
"""Launch jobs for all models and providers."""
|
| 122 |
models_providers = load_models_providers(config_file)
|
| 123 |
|
| 124 |
if not models_providers:
|
|
@@ -126,17 +166,19 @@ def launch_jobs(tasks: str = globals.TASKS, config_file: str = globals.LOCAL_CON
|
|
| 126 |
return "No valid model-provider combinations found"
|
| 127 |
|
| 128 |
print(f"Found {len(models_providers)} model-provider combinations")
|
|
|
|
| 129 |
|
| 130 |
launched_count = 0
|
| 131 |
for model, provider in models_providers:
|
| 132 |
-
|
| 133 |
-
if
|
| 134 |
-
launched_count +=
|
| 135 |
|
| 136 |
# Save all results once after launching all jobs
|
| 137 |
save_results()
|
| 138 |
-
|
| 139 |
-
|
|
|
|
| 140 |
|
| 141 |
def relaunch_failed_jobs():
|
| 142 |
"""Relaunch only failed model-provider combinations from job results."""
|
|
@@ -164,50 +206,98 @@ def relaunch_failed_jobs():
|
|
| 164 |
|
| 165 |
|
| 166 |
def update_job_statuses() -> None:
|
| 167 |
-
"""Check and update the status of active jobs."""
|
| 168 |
try:
|
| 169 |
keys = list(globals.job_results.keys())
|
| 170 |
|
| 171 |
for key in keys:
|
| 172 |
try:
|
| 173 |
-
job_id = globals.job_results[key]["job_id"]
|
| 174 |
-
|
| 175 |
-
job_info = inspect_job(job_id=job_id, namespace=globals.NAMESPACE)
|
| 176 |
-
new_status = job_info.status.stage
|
| 177 |
-
|
| 178 |
with globals.results_lock:
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
if
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
if
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 206 |
|
| 207 |
except Exception as e:
|
| 208 |
print(f"Error checking job: {str(e)}")
|
|
|
|
|
|
|
| 209 |
|
| 210 |
save_results()
|
| 211 |
|
| 212 |
except Exception as e:
|
| 213 |
print(f"Error in update_job_statuses: {str(e)}")
|
|
|
|
|
|
|
|
|
| 57 |
return None
|
| 58 |
|
| 59 |
|
| 60 |
+
def run_single_job(model: str, provider: str, tasks: str = globals.TASKS, run_number: int = 1) -> Optional[str]:
|
| 61 |
+
"""Run a single job for a model-provider combination.
|
| 62 |
+
|
| 63 |
+
Args:
|
| 64 |
+
model: Model ID
|
| 65 |
+
provider: Provider name
|
| 66 |
+
tasks: Tasks to run
|
| 67 |
+
run_number: Which run this is (1-4 for multiple runs)
|
| 68 |
+
"""
|
| 69 |
|
| 70 |
if not model or not provider:
|
| 71 |
print("Missing model or provider")
|
| 72 |
return -1
|
| 73 |
|
| 74 |
+
# Check if any run is already running for this model-provider
|
| 75 |
key = globals.get_model_provider_key(model, provider)
|
| 76 |
if key in globals.job_results:
|
| 77 |
current_status = globals.job_results[key].get("status")
|
| 78 |
if current_status == "RUNNING":
|
| 79 |
+
print(f"Job for {model} on {provider} is already running. Please wait for it to complete.")
|
| 80 |
return -1
|
| 81 |
|
| 82 |
+
print(f"Starting job for model={model}, provider={provider}, run {run_number}/{globals.NUM_RUNS_PER_JOB}")
|
| 83 |
|
| 84 |
job = run_job(
|
| 85 |
image="hf.co/spaces/OpenEvals/EvalsOnTheHub",
|
|
|
|
| 89 |
tasks,
|
| 90 |
"--push-to-hub", "--save-details",
|
| 91 |
"--results-org", "IPTesting",
|
|
|
|
| 92 |
],
|
| 93 |
namespace=globals.NAMESPACE,
|
| 94 |
secrets={"HF_TOKEN": os.getenv("HF_TOKEN")},
|
|
|
|
| 96 |
)
|
| 97 |
|
| 98 |
job_id = job.id
|
| 99 |
+
start_time = datetime.now()
|
| 100 |
|
| 101 |
with globals.results_lock:
|
| 102 |
+
# Initialize or update the job result
|
| 103 |
+
if key not in globals.job_results:
|
| 104 |
+
# First run - initialize the structure
|
| 105 |
+
previous_score = None
|
| 106 |
+
globals.job_results[key] = {
|
| 107 |
+
"model": model,
|
| 108 |
+
"provider": provider,
|
| 109 |
+
"last_run": start_time.strftime("%Y-%m-%d %H:%M:%S"),
|
| 110 |
+
"status": "RUNNING",
|
| 111 |
+
"current_score": None,
|
| 112 |
+
"previous_score": None,
|
| 113 |
+
"job_id": job_id,
|
| 114 |
+
"start_time": start_time.isoformat(),
|
| 115 |
+
"duration": None,
|
| 116 |
+
"completed_at": None,
|
| 117 |
+
"runs": []
|
| 118 |
+
}
|
| 119 |
+
else:
|
| 120 |
+
# Subsequent run or relaunch
|
| 121 |
+
previous_score = globals.job_results[key].get("current_score")
|
| 122 |
+
globals.job_results[key]["status"] = "RUNNING"
|
| 123 |
+
globals.job_results[key]["last_run"] = start_time.strftime("%Y-%m-%d %H:%M:%S")
|
| 124 |
+
globals.job_results[key]["start_time"] = start_time.isoformat()
|
| 125 |
+
globals.job_results[key]["previous_score"] = previous_score
|
| 126 |
+
|
| 127 |
+
# Add this run to the runs list
|
| 128 |
+
globals.job_results[key]["runs"].append({
|
| 129 |
+
"run_number": run_number,
|
| 130 |
"job_id": job_id,
|
| 131 |
+
"status": "RUNNING",
|
| 132 |
+
"score": None,
|
| 133 |
"start_time": start_time.isoformat(),
|
| 134 |
"duration": None,
|
| 135 |
"completed_at": None
|
| 136 |
+
})
|
| 137 |
|
| 138 |
# Don't save immediately - let the periodic save handle it
|
| 139 |
+
print(f"Job launched: ID={job_id}, model={model}, provider={provider}, run {run_number}")
|
| 140 |
return job_id
|
| 141 |
|
| 142 |
+
|
| 143 |
+
def run_multiple_jobs(model: str, provider: str, tasks: str = globals.TASKS, num_runs: int = globals.NUM_RUNS_PER_JOB) -> list:
|
| 144 |
+
"""Run multiple jobs for a model-provider combination to reduce variance.
|
| 145 |
+
|
| 146 |
+
Returns:
|
| 147 |
+
List of job IDs launched
|
| 148 |
+
"""
|
| 149 |
+
job_ids = []
|
| 150 |
+
for run_number in range(1, num_runs + 1):
|
| 151 |
+
job_id = run_single_job(model, provider, tasks, run_number=run_number)
|
| 152 |
+
if job_id != -1:
|
| 153 |
+
job_ids.append(job_id)
|
| 154 |
+
# Small delay between launches
|
| 155 |
+
time.sleep(2)
|
| 156 |
+
|
| 157 |
+
return job_ids
|
| 158 |
+
|
| 159 |
# Todo: factorize both following functions
|
| 160 |
def launch_jobs(tasks: str = globals.TASKS, config_file: str = globals.LOCAL_CONFIG_FILE):
|
| 161 |
+
"""Launch jobs for all models and providers with multiple runs per combination."""
|
| 162 |
models_providers = load_models_providers(config_file)
|
| 163 |
|
| 164 |
if not models_providers:
|
|
|
|
| 166 |
return "No valid model-provider combinations found"
|
| 167 |
|
| 168 |
print(f"Found {len(models_providers)} model-provider combinations")
|
| 169 |
+
print(f"Will launch {globals.NUM_RUNS_PER_JOB} runs per combination")
|
| 170 |
|
| 171 |
launched_count = 0
|
| 172 |
for model, provider in models_providers:
|
| 173 |
+
job_ids = run_multiple_jobs(model, provider, tasks)
|
| 174 |
+
if job_ids:
|
| 175 |
+
launched_count += len(job_ids)
|
| 176 |
|
| 177 |
# Save all results once after launching all jobs
|
| 178 |
save_results()
|
| 179 |
+
total_expected = len(models_providers) * globals.NUM_RUNS_PER_JOB
|
| 180 |
+
print(f"Launched {launched_count}/{total_expected} jobs successfully")
|
| 181 |
+
return f"Launched {launched_count}/{total_expected} jobs ({len(models_providers)} model-provider combinations × {globals.NUM_RUNS_PER_JOB} runs each)"
|
| 182 |
|
| 183 |
def relaunch_failed_jobs():
|
| 184 |
"""Relaunch only failed model-provider combinations from job results."""
|
|
|
|
| 206 |
|
| 207 |
|
| 208 |
def update_job_statuses() -> None:
|
| 209 |
+
"""Check and update the status of active jobs and aggregate scores from multiple runs."""
|
| 210 |
try:
|
| 211 |
keys = list(globals.job_results.keys())
|
| 212 |
|
| 213 |
for key in keys:
|
| 214 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 215 |
with globals.results_lock:
|
| 216 |
+
runs = globals.job_results[key].get("runs", [])
|
| 217 |
+
|
| 218 |
+
if not runs:
|
| 219 |
+
# Legacy format - no runs list
|
| 220 |
+
continue
|
| 221 |
+
|
| 222 |
+
# Check status of each run
|
| 223 |
+
all_completed = True
|
| 224 |
+
all_failed = True
|
| 225 |
+
any_running = False
|
| 226 |
+
|
| 227 |
+
for run in runs:
|
| 228 |
+
if run["status"] == "RUNNING":
|
| 229 |
+
# Check if this run's job is still running
|
| 230 |
+
try:
|
| 231 |
+
job_info = inspect_job(job_id=run["job_id"], namespace=globals.NAMESPACE)
|
| 232 |
+
new_status = job_info.status.stage
|
| 233 |
+
|
| 234 |
+
if run["status"] != new_status:
|
| 235 |
+
run["status"] = new_status
|
| 236 |
+
print(f"Run {run['run_number']} job {run['job_id']} status changed: {run['status']} -> {new_status}")
|
| 237 |
+
|
| 238 |
+
if new_status == "COMPLETED":
|
| 239 |
+
completed_time = datetime.now()
|
| 240 |
+
run["completed_at"] = completed_time.strftime("%Y-%m-%d %H:%M:%S")
|
| 241 |
+
|
| 242 |
+
# Calculate duration
|
| 243 |
+
if run.get("start_time"):
|
| 244 |
+
start_time = datetime.fromisoformat(run["start_time"])
|
| 245 |
+
run["duration"] = (completed_time - start_time).total_seconds()
|
| 246 |
+
|
| 247 |
+
# Extract score
|
| 248 |
+
score = extract_score_from_job(run["job_id"])
|
| 249 |
+
if score is not None:
|
| 250 |
+
run["score"] = score
|
| 251 |
+
print(f"Run {run['run_number']}: extracted score {score:.4f}")
|
| 252 |
+
|
| 253 |
+
except Exception as e:
|
| 254 |
+
print(f"Error checking run {run['run_number']}: {e}")
|
| 255 |
+
|
| 256 |
+
# Update aggregate status flags
|
| 257 |
+
if run["status"] == "RUNNING":
|
| 258 |
+
any_running = True
|
| 259 |
+
all_completed = False
|
| 260 |
+
all_failed = False
|
| 261 |
+
elif run["status"] == "COMPLETED":
|
| 262 |
+
all_failed = False
|
| 263 |
+
elif run["status"] in ["ERROR", "FAILED"]:
|
| 264 |
+
all_completed = False
|
| 265 |
+
|
| 266 |
+
# Update overall status
|
| 267 |
+
if any_running:
|
| 268 |
+
globals.job_results[key]["status"] = "RUNNING"
|
| 269 |
+
elif all_completed:
|
| 270 |
+
globals.job_results[key]["status"] = "COMPLETED"
|
| 271 |
+
|
| 272 |
+
# Calculate aggregate statistics from completed runs
|
| 273 |
+
completed_scores = [run["score"] for run in runs if run["status"] == "COMPLETED" and run["score"] is not None]
|
| 274 |
+
|
| 275 |
+
if completed_scores:
|
| 276 |
+
import statistics
|
| 277 |
+
mean_score = statistics.mean(completed_scores)
|
| 278 |
+
variance = statistics.variance(completed_scores) if len(completed_scores) > 1 else 0.0
|
| 279 |
+
|
| 280 |
+
globals.job_results[key]["current_score"] = mean_score
|
| 281 |
+
globals.job_results[key]["score_variance"] = variance
|
| 282 |
+
|
| 283 |
+
print(f"Aggregated {len(completed_scores)} runs: mean={mean_score:.4f}, variance={variance:.6f}")
|
| 284 |
+
|
| 285 |
+
# Update completion time to latest run
|
| 286 |
+
latest_completion = max([run["completed_at"] for run in runs if run.get("completed_at")], default=None)
|
| 287 |
+
if latest_completion:
|
| 288 |
+
globals.job_results[key]["completed_at"] = latest_completion
|
| 289 |
+
|
| 290 |
+
elif all_failed:
|
| 291 |
+
globals.job_results[key]["status"] = "ERROR"
|
| 292 |
|
| 293 |
except Exception as e:
|
| 294 |
print(f"Error checking job: {str(e)}")
|
| 295 |
+
import traceback
|
| 296 |
+
traceback.print_exc()
|
| 297 |
|
| 298 |
save_results()
|
| 299 |
|
| 300 |
except Exception as e:
|
| 301 |
print(f"Error in update_job_statuses: {str(e)}")
|
| 302 |
+
import traceback
|
| 303 |
+
traceback.print_exc()
|