Spaces:
Runtime error
Runtime error
| import spaces | |
| import os | |
| import threading | |
| from collections import deque | |
| import plotly.graph_objs as go | |
| import pynvml | |
| import gradio as gr | |
| from huggingface_hub import snapshot_download | |
| from vptq.app_utils import get_chat_loop_generator | |
| models = [ | |
| { | |
| "name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-65536-woft", | |
| "bits": "4 bits" | |
| }, | |
| { | |
| "name": "VPTQ-community/Meta-Llama-3.1-8B-Instruct-v8-k65536-256-woft", | |
| "bits": "3 bits" | |
| }, | |
| ] | |
| # Queues for storing historical data (saving the last 100 GPU utilization and memory usage values) | |
| gpu_util_history = deque(maxlen=100) | |
| mem_usage_history = deque(maxlen=100) | |
| def initialize_nvml(): | |
| """ | |
| Initialize NVML (NVIDIA Management Library). | |
| """ | |
| pynvml.nvmlInit() | |
| def get_gpu_info(): | |
| """ | |
| Get GPU utilization and memory usage information. | |
| Returns: | |
| dict: A dictionary containing GPU utilization and memory usage information. | |
| """ | |
| handle = pynvml.nvmlDeviceGetHandleByIndex(0) # Assuming a single GPU setup | |
| utilization = pynvml.nvmlDeviceGetUtilizationRates(handle) | |
| memory = pynvml.nvmlDeviceGetMemoryInfo(handle) | |
| gpu_info = { | |
| 'gpu_util': utilization.gpu, | |
| 'mem_used': memory.used / 1024**2, # Convert bytes to MiB | |
| 'mem_total': memory.total / 1024**2, # Convert bytes to MiB | |
| 'mem_percent': (memory.used / memory.total) * 100 | |
| } | |
| return gpu_info | |
| def _update_charts(chart_height: int = 200) -> go.Figure: | |
| """ | |
| Update the GPU utilization and memory usage charts. | |
| Args: | |
| chart_height (int, optional): used to set the height of the chart. Defaults to 200. | |
| Returns: | |
| plotly.graph_objs.Figure: The updated figure containing the GPU and memory usage charts. | |
| """ | |
| # obtain GPU information | |
| gpu_info = get_gpu_info() | |
| # records the latest GPU utilization and memory usage values | |
| gpu_util = round(gpu_info.get('gpu_util', 0), 1) | |
| mem_used = round(gpu_info.get('mem_used', 0) / 1024, 2) # Convert MiB to GiB | |
| gpu_util_history.append(gpu_util) | |
| mem_usage_history.append(mem_used) | |
| # create GPU utilization line chart | |
| gpu_trace = go.Scatter( | |
| y=list(gpu_util_history), | |
| mode='lines+markers', | |
| text=list(gpu_util_history), | |
| line=dict(shape='spline', color='blue'), # Make the line smooth and set color | |
| yaxis='y1' # Link to y-axis 1 | |
| ) | |
| # create memory usage line chart | |
| mem_trace = go.Scatter( | |
| y=list(mem_usage_history), | |
| mode='lines+markers', | |
| text=list(mem_usage_history), | |
| line=dict(shape='spline', color='red'), # Make the line smooth and set color | |
| yaxis='y2' # Link to y-axis 2 | |
| ) | |
| # set the layout of the chart | |
| layout = go.Layout( | |
| xaxis=dict(title=None, showticklabels=False, ticks=''), | |
| yaxis=dict( | |
| title='GPU Utilization (%)', | |
| range=[-5, 110], | |
| titlefont=dict(color='blue'), | |
| tickfont=dict(color='blue'), | |
| ), | |
| yaxis2=dict(title='Memory Usage (GiB)', | |
| range=[0, max(24, | |
| max(mem_usage_history) + 1)], | |
| titlefont=dict(color='red'), | |
| tickfont=dict(color='red'), | |
| overlaying='y', | |
| side='right'), | |
| height=chart_height, # set the height of the chart | |
| margin=dict(l=10, r=10, t=0, b=0), # set the margin of the chart | |
| showlegend=False # disable the legend | |
| ) | |
| fig = go.Figure(data=[gpu_trace, mem_trace], layout=layout) | |
| return fig | |
| def initialize_history(): | |
| """ | |
| Initializes the GPU utilization and memory usage history. | |
| """ | |
| for _ in range(100): | |
| gpu_info = get_gpu_info() | |
| gpu_util_history.append(round(gpu_info.get('gpu_util', 0), 1)) | |
| mem_usage_history.append(round(gpu_info.get('mem_percent', 0), 1)) | |
| def enable_gpu_info(): | |
| pynvml.nvmlInit() | |
| def disable_gpu_info(): | |
| pynvml.nvmlShutdown() | |
| model_choices = [f"{model['name']} ({model['bits']})" for model in models] | |
| display_to_model = {f"{model['name']} ({model['bits']})": model['name'] for model in models} | |
| def download_model(model): | |
| print(f"Downloading {model['name']}...") | |
| snapshot_download(repo_id=model['name']) | |
| def download_models_in_background(): | |
| print('Downloading models for the first time...') | |
| for model in models: | |
| download_model(model) | |
| download_thread = threading.Thread(target=download_models_in_background) | |
| download_thread.start() | |
| loaded_models = {} | |
| def respond( | |
| message, | |
| history: list[tuple[str, str]], | |
| system_message, | |
| max_tokens, | |
| temperature, | |
| top_p, | |
| selected_model_display_label, | |
| ): | |
| model_name = display_to_model[selected_model_display_label] | |
| # Check if the model is already loaded | |
| if model_name not in loaded_models: | |
| # Load and store the model in the cache | |
| loaded_models[model_name] = get_chat_loop_generator(model_name) | |
| chat_completion = loaded_models[model_name] | |
| messages = [{"role": "system", "content": system_message}] | |
| for val in history: | |
| if val[0]: | |
| messages.append({"role": "user", "content": val[0]}) | |
| if val[1]: | |
| messages.append({"role": "assistant", "content": val[1]}) | |
| messages.append({"role": "user", "content": message}) | |
| response = "" | |
| for message in chat_completion( | |
| messages, | |
| max_tokens=max_tokens, | |
| stream=True, | |
| temperature=temperature, | |
| top_p=top_p, | |
| ): | |
| token = message | |
| response += token | |
| yield response | |
| """ | |
| For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface | |
| """ | |
| # enable_gpu_info() | |
| with gr.Blocks(fill_height=True) as demo: | |
| # with gr.Row(): | |
| # def update_chart(): | |
| # return _update_charts(chart_height=200) | |
| # gpu_chart = gr.Plot(update_chart, every=0.1) # update every 0.1 seconds | |
| with gr.Column(): | |
| chat_interface = gr.ChatInterface( | |
| respond, | |
| additional_inputs=[ | |
| gr.Textbox(value="You are a friendly Chatbot.", label="System message"), | |
| gr.Slider(minimum=1, maximum=2048, value=512, step=1, label="Max new tokens"), | |
| gr.Slider(minimum=0.1, maximum=4.0, value=0.7, step=0.1, label="Temperature"), | |
| gr.Slider( | |
| minimum=0.1, | |
| maximum=1.0, | |
| value=0.95, | |
| step=0.05, | |
| label="Top-p (nucleus sampling)", | |
| ), | |
| gr.Dropdown( | |
| choices=model_choices, | |
| value=model_choices[0], | |
| label="Select Model", | |
| ), | |
| ], | |
| ) | |
| if __name__ == "__main__": | |
| share = os.getenv("SHARE_LINK", None) in ["1", "true", "True"] | |
| demo.launch(share=share) | |
| # disable_gpu_info() | |