peppinob-ol commited on
Commit
cb8a7e5
·
1 Parent(s): 70f99b6

Initial deployment: Attribution Graph Probing app

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .streamlit/config.toml +24 -0
  2. Dockerfile +20 -7
  3. LICENSE +674 -0
  4. README.md +140 -11
  5. app_hf.py +26 -0
  6. eda/README.md +622 -0
  7. eda/__init__.py +3 -0
  8. eda/__pycache__/__init__.cpython-313.pyc +0 -0
  9. eda/app.py +107 -0
  10. eda/components/__init__.py +2 -0
  11. eda/components/__pycache__/__init__.cpython-313.pyc +0 -0
  12. eda/components/__pycache__/feature_panel.cpython-313.pyc +0 -0
  13. eda/components/__pycache__/pipeline_progress.cpython-313.pyc +0 -0
  14. eda/components/__pycache__/supernode_panel.cpython-313.pyc +0 -0
  15. eda/config/__init__.py +2 -0
  16. eda/config/__pycache__/__init__.cpython-313.pyc +0 -0
  17. eda/config/__pycache__/defaults.cpython-313.pyc +0 -0
  18. eda/config/defaults.py +50 -0
  19. eda/exports/.gitkeep +2 -0
  20. eda/output/.pipeline_state.json +23 -0
  21. eda/output/graph_data/st1_graph_test-the-capital_20251030-180336.json +0 -0
  22. eda/output/graph_data/st1_graph_the-capital-of_20251030-113048.json +0 -0
  23. eda/output/graph_data/test-4-the-20251030-181150.json +0 -0
  24. eda/output/graph_data/test2-the-capital-20251030-180548.json +0 -0
  25. eda/output/graph_data/test3-the-capital-20251030-180625.json +0 -0
  26. eda/output/graph_data/test5-the-capital-20251030-181433.json +0 -0
  27. eda/output/graph_data/test6-the-capital-20251030-181857.json +0 -0
  28. eda/pages/00_Graph_Generation.py +801 -0
  29. eda/pages/01_Probe_Prompts.py +0 -0
  30. eda/pages/02_Node_Grouping.py +1320 -0
  31. eda/pages/README_NODE_GROUPING.md +284 -0
  32. eda/pages/__init__.py +2 -0
  33. eda/probe_prompts.log +0 -0
  34. eda/utils/__init__.py +2 -0
  35. eda/utils/__pycache__/__init__.cpython-313.pyc +0 -0
  36. eda/utils/__pycache__/compute.cpython-313.pyc +0 -0
  37. eda/utils/__pycache__/data_loader.cpython-313.pyc +0 -0
  38. eda/utils/__pycache__/file_monitor.cpython-313.pyc +0 -0
  39. eda/utils/__pycache__/graph_visualization.cpython-313.pyc +0 -0
  40. eda/utils/__pycache__/pipeline_state.cpython-313.pyc +0 -0
  41. eda/utils/__pycache__/plots.cpython-313.pyc +0 -0
  42. eda/utils/graph_visualization.py +655 -0
  43. examples_data/2025-10-21T07-40_export_ENRICHED.csv +196 -0
  44. examples_data/README.md +45 -0
  45. examples_data/activations_dump (2).json +0 -0
  46. examples_data/clt-hp-the-capital-of-201020250035-20251020-003525.json +0 -0
  47. examples_data/features without errors.json +162 -0
  48. examples_data/node_grouping_final_20251027_173744.csv +0 -0
  49. examples_data/node_grouping_step1_20251027_180825.csv +196 -0
  50. examples_data/node_grouping_step2_20251027_180821.csv +196 -0
.streamlit/config.toml ADDED
@@ -0,0 +1,24 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [theme]
2
+ primaryColor = "#8B5CF6"
3
+ backgroundColor = "#0E1117"
4
+ secondaryBackgroundColor = "#262730"
5
+ textColor = "#FAFAFA"
6
+ font = "sans serif"
7
+
8
+ [server]
9
+ headless = true
10
+ port = 7860
11
+ enableCORS = false
12
+ enableXsrfProtection = true
13
+
14
+ [browser]
15
+ gatherUsageStats = false
16
+
17
+ [runner]
18
+ magicEnabled = true
19
+ fastReruns = true
20
+
21
+ [client]
22
+ showErrorDetails = true
23
+ toolbarMode = "minimal"
24
+
Dockerfile CHANGED
@@ -1,20 +1,33 @@
1
- FROM python:3.13.5-slim
2
 
 
 
 
3
  WORKDIR /app
4
 
 
5
  RUN apt-get update && apt-get install -y \
6
  build-essential \
7
  curl \
 
8
  git \
9
  && rm -rf /var/lib/apt/lists/*
10
 
11
- COPY requirements.txt ./
12
- COPY src/ ./src/
 
 
 
 
 
 
13
 
14
- RUN pip3 install -r requirements.txt
 
15
 
16
- EXPOSE 8501
 
17
 
18
- HEALTHCHECK CMD curl --fail http://localhost:8501/_stcore/health
 
19
 
20
- ENTRYPOINT ["streamlit", "run", "src/streamlit_app.py", "--server.port=8501", "--server.address=0.0.0.0"]
 
1
+ # Dockerfile for Hugging Face Spaces - Streamlit App
2
 
3
+ FROM python:3.10-slim
4
+
5
+ # Set working directory
6
  WORKDIR /app
7
 
8
+ # Install system dependencies
9
  RUN apt-get update && apt-get install -y \
10
  build-essential \
11
  curl \
12
+ software-properties-common \
13
  git \
14
  && rm -rf /var/lib/apt/lists/*
15
 
16
+ # Copy requirements first (for better caching)
17
+ COPY requirements_hf.txt requirements.txt
18
+
19
+ # Install Python dependencies
20
+ RUN pip install --no-cache-dir -r requirements.txt
21
+
22
+ # Copy entire project
23
+ COPY . .
24
 
25
+ # Expose Streamlit port
26
+ EXPOSE 7860
27
 
28
+ # Health check
29
+ HEALTHCHECK CMD curl --fail http://localhost:7860/_stcore/health
30
 
31
+ # Run Streamlit app
32
+ ENTRYPOINT ["streamlit", "run", "app_hf.py", "--server.port=7860", "--server.address=0.0.0.0"]
33
 
 
LICENSE ADDED
@@ -0,0 +1,674 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ GNU GENERAL PUBLIC LICENSE
2
+ Version 3, 29 June 2007
3
+
4
+ Copyright (C) 2007 Free Software Foundation, Inc. <https://fsf.org/>
5
+ Everyone is permitted to copy and distribute verbatim copies
6
+ of this license document, but changing it is not allowed.
7
+
8
+ Preamble
9
+
10
+ The GNU General Public License is a free, copyleft license for
11
+ software and other kinds of works.
12
+
13
+ The licenses for most software and other practical works are designed
14
+ to take away your freedom to share and change the works. By contrast,
15
+ the GNU General Public License is intended to guarantee your freedom to
16
+ share and change all versions of a program--to make sure it remains free
17
+ software for all its users. We, the Free Software Foundation, use the
18
+ GNU General Public License for most of our software; it applies also to
19
+ any other work released this way by its authors. You can apply it to
20
+ your programs, too.
21
+
22
+ When we speak of free software, we are referring to freedom, not
23
+ price. Our General Public Licenses are designed to make sure that you
24
+ have the freedom to distribute copies of free software (and charge for
25
+ them if you wish), that you receive source code or can get it if you
26
+ want it, that you can change the software or use pieces of it in new
27
+ free programs, and that you know you can do these things.
28
+
29
+ To protect your rights, we need to prevent others from denying you
30
+ these rights or asking you to surrender the rights. Therefore, you have
31
+ certain responsibilities if you distribute copies of the software, or if
32
+ you modify it: responsibilities to respect the freedom of others.
33
+
34
+ For example, if you distribute copies of such a program, whether
35
+ gratis or for a fee, you must pass on to the recipients the same
36
+ freedoms that you received. You must make sure that they, too, receive
37
+ or can get the source code. And you must show them these terms so they
38
+ know their rights.
39
+
40
+ Developers that use the GNU GPL protect your rights with two steps:
41
+ (1) assert copyright on the software, and (2) offer you this License
42
+ giving you legal permission to copy, distribute and/or modify it.
43
+
44
+ For the developers' and authors' protection, the GPL clearly explains
45
+ that there is no warranty for this free software. For both users' and
46
+ authors' sake, the GPL requires that modified versions be marked as
47
+ changed, so that their problems will not be attributed erroneously to
48
+ authors of previous versions.
49
+
50
+ Some devices are designed to deny users access to install or run
51
+ modified versions of the software inside them, although the manufacturer
52
+ can do so. This is fundamentally incompatible with the aim of
53
+ protecting users' freedom to change the software. The systematic
54
+ pattern of such abuse occurs in the area of products for individuals to
55
+ use, which is precisely where it is most unacceptable. Therefore, we
56
+ have designed this version of the GPL to prohibit the practice for those
57
+ products. If such problems arise substantially in other domains, we
58
+ stand ready to extend this provision to those domains in future versions
59
+ of the GPL, as needed to protect the freedom of users.
60
+
61
+ Finally, every program is threatened constantly by software patents.
62
+ States should not allow patents to restrict development and use of
63
+ software on general-purpose computers, but in those that do, we wish to
64
+ avoid the special danger that patents applied to a free program could
65
+ make it effectively proprietary. To prevent this, the GPL assures that
66
+ patents cannot be used to render the program non-free.
67
+
68
+ The precise terms and conditions for copying, distribution and
69
+ modification follow.
70
+
71
+ TERMS AND CONDITIONS
72
+
73
+ 0. Definitions.
74
+
75
+ "This License" refers to version 3 of the GNU General Public License.
76
+
77
+ "Copyright" also means copyright-like laws that apply to other kinds of
78
+ works, such as semiconductor masks.
79
+
80
+ "The Program" refers to any copyrightable work licensed under this
81
+ License. Each licensee is addressed as "you". "Licensees" and
82
+ "recipients" may be individuals or organizations.
83
+
84
+ To "modify" a work means to copy from or adapt all or part of the work
85
+ in a fashion requiring copyright permission, other than the making of an
86
+ exact copy. The resulting work is called a "modified version" of the
87
+ earlier work or a work "based on" the earlier work.
88
+
89
+ A "covered work" means either the unmodified Program or a work based
90
+ on the Program.
91
+
92
+ To "propagate" a work means to do anything with it that, without
93
+ permission, would make you directly or secondarily liable for
94
+ infringement under applicable copyright law, except executing it on a
95
+ computer or modifying a private copy. Propagation includes copying,
96
+ distribution (with or without modification), making available to the
97
+ public, and in some countries other activities as well.
98
+
99
+ To "convey" a work means any kind of propagation that enables other
100
+ parties to make or receive copies. Mere interaction with a user through
101
+ a computer network, with no transfer of a copy, is not conveying.
102
+
103
+ An interactive user interface displays "Appropriate Legal Notices"
104
+ to the extent that it includes a convenient and prominently visible
105
+ feature that (1) displays an appropriate copyright notice, and (2)
106
+ tells the user that there is no warranty for the work (except to the
107
+ extent that warranties are provided), that licensees may convey the
108
+ work under this License, and how to view a copy of this License. If
109
+ the interface presents a list of user commands or options, such as a
110
+ menu, a prominent item in the list meets this criterion.
111
+
112
+ 1. Source Code.
113
+
114
+ The "source code" for a work means the preferred form of the work
115
+ for making modifications to it. "Object code" means any non-source
116
+ form of a work.
117
+
118
+ A "Standard Interface" means an interface that either is an official
119
+ standard defined by a recognized standards body, or, in the case of
120
+ interfaces specified for a particular programming language, one that
121
+ is widely used among developers working in that language.
122
+
123
+ The "System Libraries" of an executable work include anything, other
124
+ than the work as a whole, that (a) is included in the normal form of
125
+ packaging a Major Component, but which is not part of that Major
126
+ Component, and (b) serves only to enable use of the work with that
127
+ Major Component, or to implement a Standard Interface for which an
128
+ implementation is available to the public in source code form. A
129
+ "Major Component", in this context, means a major essential component
130
+ (kernel, window system, and so on) of the specific operating system
131
+ (if any) on which the executable work runs, or a compiler used to
132
+ produce the work, or an object code interpreter used to run it.
133
+
134
+ The "Corresponding Source" for a work in object code form means all
135
+ the source code needed to generate, install, and (for an executable
136
+ work) run the object code and to modify the work, including scripts to
137
+ control those activities. However, it does not include the work's
138
+ System Libraries, or general-purpose tools or generally available free
139
+ programs which are used unmodified in performing those activities but
140
+ which are not part of the work. For example, Corresponding Source
141
+ includes interface definition files associated with source files for
142
+ the work, and the source code for shared libraries and dynamically
143
+ linked subprograms that the work is specifically designed to require,
144
+ such as by intimate data communication or control flow between those
145
+ subprograms and other parts of the work.
146
+
147
+ The Corresponding Source need not include anything that users
148
+ can regenerate automatically from other parts of the Corresponding
149
+ Source.
150
+
151
+ The Corresponding Source for a work in source code form is that
152
+ same work.
153
+
154
+ 2. Basic Permissions.
155
+
156
+ All rights granted under this License are granted for the term of
157
+ copyright on the Program, and are irrevocable provided the stated
158
+ conditions are met. This License explicitly affirms your unlimited
159
+ permission to run the unmodified Program. The output from running a
160
+ covered work is covered by this License only if the output, given its
161
+ content, constitutes a covered work. This License acknowledges your
162
+ rights of fair use or other equivalent, as provided by copyright law.
163
+
164
+ You may make, run and propagate covered works that you do not
165
+ convey, without conditions so long as your license otherwise remains
166
+ in force. You may convey covered works to others for the sole purpose
167
+ of having them make modifications exclusively for you, or provide you
168
+ with facilities for running those works, provided that you comply with
169
+ the terms of this License in conveying all material for which you do
170
+ not control copyright. Those thus making or running the covered works
171
+ for you must do so exclusively on your behalf, under your direction
172
+ and control, on terms that prohibit them from making any copies of
173
+ your copyrighted material outside their relationship with you.
174
+
175
+ Conveying under any other circumstances is permitted solely under
176
+ the conditions stated below. Sublicensing is not allowed; section 10
177
+ makes it unnecessary.
178
+
179
+ 3. Protecting Users' Legal Rights From Anti-Circumvention Law.
180
+
181
+ No covered work shall be deemed part of an effective technological
182
+ measure under any applicable law fulfilling obligations under article
183
+ 11 of the WIPO copyright treaty adopted on 20 December 1996, or
184
+ similar laws prohibiting or restricting circumvention of such
185
+ measures.
186
+
187
+ When you convey a covered work, you waive any legal power to forbid
188
+ circumvention of technological measures to the extent such circumvention
189
+ is effected by exercising rights under this License with respect to
190
+ the covered work, and you disclaim any intention to limit operation or
191
+ modification of the work as a means of enforcing, against the work's
192
+ users, your or third parties' legal rights to forbid circumvention of
193
+ technological measures.
194
+
195
+ 4. Conveying Verbatim Copies.
196
+
197
+ You may convey verbatim copies of the Program's source code as you
198
+ receive it, in any medium, provided that you conspicuously and
199
+ appropriately publish on each copy an appropriate copyright notice;
200
+ keep intact all notices stating that this License and any
201
+ non-permissive terms added in accord with section 7 apply to the code;
202
+ keep intact all notices of the absence of any warranty; and give all
203
+ recipients a copy of this License along with the Program.
204
+
205
+ You may charge any price or no price for each copy that you convey,
206
+ and you may offer support or warranty protection for a fee.
207
+
208
+ 5. Conveying Modified Source Versions.
209
+
210
+ You may convey a work based on the Program, or the modifications to
211
+ produce it from the Program, in the form of source code under the
212
+ terms of section 4, provided that you also meet all of these conditions:
213
+
214
+ a) The work must carry prominent notices stating that you modified
215
+ it, and giving a relevant date.
216
+
217
+ b) The work must carry prominent notices stating that it is
218
+ released under this License and any conditions added under section
219
+ 7. This requirement modifies the requirement in section 4 to
220
+ "keep intact all notices".
221
+
222
+ c) You must license the entire work, as a whole, under this
223
+ License to anyone who comes into possession of a copy. This
224
+ License will therefore apply, along with any applicable section 7
225
+ additional terms, to the whole of the work, and all its parts,
226
+ regardless of how they are packaged. This License gives no
227
+ permission to license the work in any other way, but it does not
228
+ invalidate such permission if you have separately received it.
229
+
230
+ d) If the work has interactive user interfaces, each must display
231
+ Appropriate Legal Notices; however, if the Program has interactive
232
+ interfaces that do not display Appropriate Legal Notices, your
233
+ work need not make them do so.
234
+
235
+ A compilation of a covered work with other separate and independent
236
+ works, which are not by their nature extensions of the covered work,
237
+ and which are not combined with it such as to form a larger program,
238
+ in or on a volume of a storage or distribution medium, is called an
239
+ "aggregate" if the compilation and its resulting copyright are not
240
+ used to limit the access or legal rights of the compilation's users
241
+ beyond what the individual works permit. Inclusion of a covered work
242
+ in an aggregate does not cause this License to apply to the other
243
+ parts of the aggregate.
244
+
245
+ 6. Conveying Non-Source Forms.
246
+
247
+ You may convey a covered work in object code form under the terms
248
+ of sections 4 and 5, provided that you also convey the
249
+ machine-readable Corresponding Source under the terms of this License,
250
+ in one of these ways:
251
+
252
+ a) Convey the object code in, or embodied in, a physical product
253
+ (including a physical distribution medium), accompanied by the
254
+ Corresponding Source fixed on a durable physical medium
255
+ customarily used for software interchange.
256
+
257
+ b) Convey the object code in, or embodied in, a physical product
258
+ (including a physical distribution medium), accompanied by a
259
+ written offer, valid for at least three years and valid for as
260
+ long as you offer spare parts or customer support for that product
261
+ model, to give anyone who possesses the object code either (1) a
262
+ copy of the Corresponding Source for all the software in the
263
+ product that is covered by this License, on a durable physical
264
+ medium customarily used for software interchange, for a price no
265
+ more than your reasonable cost of physically performing this
266
+ conveying of source, or (2) access to copy the
267
+ Corresponding Source from a network server at no charge.
268
+
269
+ c) Convey individual copies of the object code with a copy of the
270
+ written offer to provide the Corresponding Source. This
271
+ alternative is allowed only occasionally and noncommercially, and
272
+ only if you received the object code with such an offer, in accord
273
+ with subsection 6b.
274
+
275
+ d) Convey the object code by offering access from a designated
276
+ place (gratis or for a charge), and offer equivalent access to the
277
+ Corresponding Source in the same way through the same place at no
278
+ further charge. You need not require recipients to copy the
279
+ Corresponding Source along with the object code. If the place to
280
+ copy the object code is a network server, the Corresponding Source
281
+ may be on a different server (operated by you or a third party)
282
+ that supports equivalent copying facilities, provided you maintain
283
+ clear directions next to the object code saying where to find the
284
+ Corresponding Source. Regardless of what server hosts the
285
+ Corresponding Source, you remain obligated to ensure that it is
286
+ available for as long as needed to satisfy these requirements.
287
+
288
+ e) Convey the object code using peer-to-peer transmission, provided
289
+ you inform other peers where the object code and Corresponding
290
+ Source of the work are being offered to the general public at no
291
+ charge under subsection 6d.
292
+
293
+ A separable portion of the object code, whose source code is excluded
294
+ from the Corresponding Source as a System Library, need not be
295
+ included in conveying the object code work.
296
+
297
+ A "User Product" is either (1) a "consumer product", which means any
298
+ tangible personal property which is normally used for personal, family,
299
+ or household purposes, or (2) anything designed or sold for incorporation
300
+ into a dwelling. In determining whether a product is a consumer product,
301
+ doubtful cases shall be resolved in favor of coverage. For a particular
302
+ product received by a particular user, "normally used" refers to a
303
+ typical or common use of that class of product, regardless of the status
304
+ of the particular user or of the way in which the particular user
305
+ actually uses, or expects or is expected to use, the product. A product
306
+ is a consumer product regardless of whether the product has substantial
307
+ commercial, industrial or non-consumer uses, unless such uses represent
308
+ the only significant mode of use of the product.
309
+
310
+ "Installation Information" for a User Product means any methods,
311
+ procedures, authorization keys, or other information required to install
312
+ and execute modified versions of a covered work in that User Product from
313
+ a modified version of its Corresponding Source. The information must
314
+ suffice to ensure that the continued functioning of the modified object
315
+ code is in no case prevented or interfered with solely because
316
+ modification has been made.
317
+
318
+ If you convey an object code work under this section in, or with, or
319
+ specifically for use in, a User Product, and the conveying occurs as
320
+ part of a transaction in which the right of possession and use of the
321
+ User Product is transferred to the recipient in perpetuity or for a
322
+ fixed term (regardless of how the transaction is characterized), the
323
+ Corresponding Source conveyed under this section must be accompanied
324
+ by the Installation Information. But this requirement does not apply
325
+ if neither you nor any third party retains the ability to install
326
+ modified object code on the User Product (for example, the work has
327
+ been installed in ROM).
328
+
329
+ The requirement to provide Installation Information does not include a
330
+ requirement to continue to provide support service, warranty, or updates
331
+ for a work that has been modified or installed by the recipient, or for
332
+ the User Product in which it has been modified or installed. Access to a
333
+ network may be denied when the modification itself materially and
334
+ adversely affects the operation of the network or violates the rules and
335
+ protocols for communication across the network.
336
+
337
+ Corresponding Source conveyed, and Installation Information provided,
338
+ in accord with this section must be in a format that is publicly
339
+ documented (and with an implementation available to the public in
340
+ source code form), and must require no special password or key for
341
+ unpacking, reading or copying.
342
+
343
+ 7. Additional Terms.
344
+
345
+ "Additional permissions" are terms that supplement the terms of this
346
+ License by making exceptions from one or more of its conditions.
347
+ Additional permissions that are applicable to the entire Program shall
348
+ be treated as though they were included in this License, to the extent
349
+ that they are valid under applicable law. If additional permissions
350
+ apply only to part of the Program, that part may be used separately
351
+ under those permissions, but the entire Program remains governed by
352
+ this License without regard to the additional permissions.
353
+
354
+ When you convey a copy of a covered work, you may at your option
355
+ remove any additional permissions from that copy, or from any part of
356
+ it. (Additional permissions may be written to require their own
357
+ removal in certain cases when you modify the work.) You may place
358
+ additional permissions on material, added by you to a covered work,
359
+ for which you have or can give appropriate copyright permission.
360
+
361
+ Notwithstanding any other provision of this License, for material you
362
+ add to a covered work, you may (if authorized by the copyright holders of
363
+ that material) supplement the terms of this License with terms:
364
+
365
+ a) Disclaiming warranty or limiting liability differently from the
366
+ terms of sections 15 and 16 of this License; or
367
+
368
+ b) Requiring preservation of specified reasonable legal notices or
369
+ author attributions in that material or in the Appropriate Legal
370
+ Notices displayed by works containing it; or
371
+
372
+ c) Prohibiting misrepresentation of the origin of that material, or
373
+ requiring that modified versions of such material be marked in
374
+ reasonable ways as different from the original version; or
375
+
376
+ d) Limiting the use for publicity purposes of names of licensors or
377
+ authors of the material; or
378
+
379
+ e) Declining to grant rights under trademark law for use of some
380
+ trade names, trademarks, or service marks; or
381
+
382
+ f) Requiring indemnification of licensors and authors of that
383
+ material by anyone who conveys the material (or modified versions of
384
+ it) with contractual assumptions of liability to the recipient, for
385
+ any liability that these contractual assumptions directly impose on
386
+ those licensors and authors.
387
+
388
+ All other non-permissive additional terms are considered "further
389
+ restrictions" within the meaning of section 10. If the Program as you
390
+ received it, or any part of it, contains a notice stating that it is
391
+ governed by this License along with a term that is a further
392
+ restriction, you may remove that term. If a license document contains
393
+ a further restriction but permits relicensing or conveying under this
394
+ License, you may add to a covered work material governed by the terms
395
+ of that license document, provided that the further restriction does
396
+ not survive such relicensing or conveying.
397
+
398
+ If you add terms to a covered work in accord with this section, you
399
+ must place, in the relevant source files, a statement of the
400
+ additional terms that apply to those files, or a notice indicating
401
+ where to find the applicable terms.
402
+
403
+ Additional terms, permissive or non-permissive, may be stated in the
404
+ form of a separately written license, or stated as exceptions;
405
+ the above requirements apply either way.
406
+
407
+ 8. Termination.
408
+
409
+ You may not propagate or modify a covered work except as expressly
410
+ provided under this License. Any attempt otherwise to propagate or
411
+ modify it is void, and will automatically terminate your rights under
412
+ this License (including any patent licenses granted under the third
413
+ paragraph of section 11).
414
+
415
+ However, if you cease all violation of this License, then your
416
+ license from a particular copyright holder is reinstated (a)
417
+ provisionally, unless and until the copyright holder explicitly and
418
+ finally terminates your license, and (b) permanently, if the copyright
419
+ holder fails to notify you of the violation by some reasonable means
420
+ prior to 60 days after the cessation.
421
+
422
+ Moreover, your license from a particular copyright holder is
423
+ reinstated permanently if the copyright holder notifies you of the
424
+ violation by some reasonable means, this is the first time you have
425
+ received notice of violation of this License (for any work) from that
426
+ copyright holder, and you cure the violation prior to 30 days after
427
+ your receipt of the notice.
428
+
429
+ Termination of your rights under this section does not terminate the
430
+ licenses of parties who have received copies or rights from you under
431
+ this License. If your rights have been terminated and not permanently
432
+ reinstated, you do not qualify to receive new licenses for the same
433
+ material under section 10.
434
+
435
+ 9. Acceptance Not Required for Having Copies.
436
+
437
+ You are not required to accept this License in order to receive or
438
+ run a copy of the Program. Ancillary propagation of a covered work
439
+ occurring solely as a consequence of using peer-to-peer transmission
440
+ to receive a copy likewise does not require acceptance. However,
441
+ nothing other than this License grants you permission to propagate or
442
+ modify any covered work. These actions infringe copyright if you do
443
+ not accept this License. Therefore, by modifying or propagating a
444
+ covered work, you indicate your acceptance of this License to do so.
445
+
446
+ 10. Automatic Licensing of Downstream Recipients.
447
+
448
+ Each time you convey a covered work, the recipient automatically
449
+ receives a license from the original licensors, to run, modify and
450
+ propagate that work, subject to this License. You are not responsible
451
+ for enforcing compliance by third parties with this License.
452
+
453
+ An "entity transaction" is a transaction transferring control of an
454
+ organization, or substantially all assets of one, or subdividing an
455
+ organization, or merging organizations. If propagation of a covered
456
+ work results from an entity transaction, each party to that
457
+ transaction who receives a copy of the work also receives whatever
458
+ licenses to the work the party's predecessor in interest had or could
459
+ give under the previous paragraph, plus a right to possession of the
460
+ Corresponding Source of the work from the predecessor in interest, if
461
+ the predecessor has it or can get it with reasonable efforts.
462
+
463
+ You may not impose any further restrictions on the exercise of the
464
+ rights granted or affirmed under this License. For example, you may
465
+ not impose a license fee, royalty, or other charge for exercise of
466
+ rights granted under this License, and you may not initiate litigation
467
+ (including a cross-claim or counterclaim in a lawsuit) alleging that
468
+ any patent claim is infringed by making, using, selling, offering for
469
+ sale, or importing the Program or any portion of it.
470
+
471
+ 11. Patents.
472
+
473
+ A "contributor" is a copyright holder who authorizes use under this
474
+ License of the Program or a work on which the Program is based. The
475
+ work thus licensed is called the contributor's "contributor version".
476
+
477
+ A contributor's "essential patent claims" are all patent claims
478
+ owned or controlled by the contributor, whether already acquired or
479
+ hereafter acquired, that would be infringed by some manner, permitted
480
+ by this License, of making, using, or selling its contributor version,
481
+ but do not include claims that would be infringed only as a
482
+ consequence of further modification of the contributor version. For
483
+ purposes of this definition, "control" includes the right to grant
484
+ patent sublicenses in a manner consistent with the requirements of
485
+ this License.
486
+
487
+ Each contributor grants you a non-exclusive, worldwide, royalty-free
488
+ patent license under the contributor's essential patent claims, to
489
+ make, use, sell, offer for sale, import and otherwise run, modify and
490
+ propagate the contents of its contributor version.
491
+
492
+ In the following three paragraphs, a "patent license" is any express
493
+ agreement or commitment, however denominated, not to enforce a patent
494
+ (such as an express permission to practice a patent or covenant not to
495
+ sue for patent infringement). To "grant" such a patent license to a
496
+ party means to make such an agreement or commitment not to enforce a
497
+ patent against the party.
498
+
499
+ If you convey a covered work, knowingly relying on a patent license,
500
+ and the Corresponding Source of the work is not available for anyone
501
+ to copy, free of charge and under the terms of this License, through a
502
+ publicly available network server or other readily accessible means,
503
+ then you must either (1) cause the Corresponding Source to be so
504
+ available, or (2) arrange to deprive yourself of the benefit of the
505
+ patent license for this particular work, or (3) arrange, in a manner
506
+ consistent with the requirements of this License, to extend the patent
507
+ license to downstream recipients. "Knowingly relying" means you have
508
+ actual knowledge that, but for the patent license, your conveying the
509
+ covered work in a country, or your recipient's use of the covered work
510
+ in a country, would infringe one or more identifiable patents in that
511
+ country that you have reason to believe are valid.
512
+
513
+ If, pursuant to or in connection with a single transaction or
514
+ arrangement, you convey, or propagate by procuring conveyance of, a
515
+ covered work, and grant a patent license to some of the parties
516
+ receiving the covered work authorizing them to use, propagate, modify
517
+ or convey a specific copy of the covered work, then the patent license
518
+ you grant is automatically extended to all recipients of the covered
519
+ work and works based on it.
520
+
521
+ A patent license is "discriminatory" if it does not include within
522
+ the scope of its coverage, prohibits the exercise of, or is
523
+ conditioned on the non-exercise of one or more of the rights that are
524
+ specifically granted under this License. You may not convey a covered
525
+ work if you are a party to an arrangement with a third party that is
526
+ in the business of distributing software, under which you make payment
527
+ to the third party based on the extent of your activity of conveying
528
+ the work, and under which the third party grants, to any of the
529
+ parties who would receive the covered work from you, a discriminatory
530
+ patent license (a) in connection with copies of the covered work
531
+ conveyed by you (or copies made from those copies), or (b) primarily
532
+ for and in connection with specific products or compilations that
533
+ contain the covered work, unless you entered into that arrangement,
534
+ or that patent license was granted, prior to 28 March 2007.
535
+
536
+ Nothing in this License shall be construed as excluding or limiting
537
+ any implied license or other defenses to infringement that may
538
+ otherwise be available to you under applicable patent law.
539
+
540
+ 12. No Surrender of Others' Freedom.
541
+
542
+ If conditions are imposed on you (whether by court order, agreement or
543
+ otherwise) that contradict the conditions of this License, they do not
544
+ excuse you from the conditions of this License. If you cannot convey a
545
+ covered work so as to satisfy simultaneously your obligations under this
546
+ License and any other pertinent obligations, then as a consequence you may
547
+ not convey it at all. For example, if you agree to terms that obligate you
548
+ to collect a royalty for further conveying from those to whom you convey
549
+ the Program, the only way you could satisfy both those terms and this
550
+ License would be to refrain entirely from conveying the Program.
551
+
552
+ 13. Use with the GNU Affero General Public License.
553
+
554
+ Notwithstanding any other provision of this License, you have
555
+ permission to link or combine any covered work with a work licensed
556
+ under version 3 of the GNU Affero General Public License into a single
557
+ combined work, and to convey the resulting work. The terms of this
558
+ License will continue to apply to the part which is the covered work,
559
+ but the special requirements of the GNU Affero General Public License,
560
+ section 13, concerning interaction through a network will apply to the
561
+ combination as such.
562
+
563
+ 14. Revised Versions of this License.
564
+
565
+ The Free Software Foundation may publish revised and/or new versions of
566
+ the GNU General Public License from time to time. Such new versions will
567
+ be similar in spirit to the present version, but may differ in detail to
568
+ address new problems or concerns.
569
+
570
+ Each version is given a distinguishing version number. If the
571
+ Program specifies that a certain numbered version of the GNU General
572
+ Public License "or any later version" applies to it, you have the
573
+ option of following the terms and conditions either of that numbered
574
+ version or of any later version published by the Free Software
575
+ Foundation. If the Program does not specify a version number of the
576
+ GNU General Public License, you may choose any version ever published
577
+ by the Free Software Foundation.
578
+
579
+ If the Program specifies that a proxy can decide which future
580
+ versions of the GNU General Public License can be used, that proxy's
581
+ public statement of acceptance of a version permanently authorizes you
582
+ to choose that version for the Program.
583
+
584
+ Later license versions may give you additional or different
585
+ permissions. However, no additional obligations are imposed on any
586
+ author or copyright holder as a result of your choosing to follow a
587
+ later version.
588
+
589
+ 15. Disclaimer of Warranty.
590
+
591
+ THERE IS NO WARRANTY FOR THE PROGRAM, TO THE EXTENT PERMITTED BY
592
+ APPLICABLE LAW. EXCEPT WHEN OTHERWISE STATED IN WRITING THE COPYRIGHT
593
+ HOLDERS AND/OR OTHER PARTIES PROVIDE THE PROGRAM "AS IS" WITHOUT WARRANTY
594
+ OF ANY KIND, EITHER EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO,
595
+ THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
596
+ PURPOSE. THE ENTIRE RISK AS TO THE QUALITY AND PERFORMANCE OF THE PROGRAM
597
+ IS WITH YOU. SHOULD THE PROGRAM PROVE DEFECTIVE, YOU ASSUME THE COST OF
598
+ ALL NECESSARY SERVICING, REPAIR OR CORRECTION.
599
+
600
+ 16. Limitation of Liability.
601
+
602
+ IN NO EVENT UNLESS REQUIRED BY APPLICABLE LAW OR AGREED TO IN WRITING
603
+ WILL ANY COPYRIGHT HOLDER, OR ANY OTHER PARTY WHO MODIFIES AND/OR CONVEYS
604
+ THE PROGRAM AS PERMITTED ABOVE, BE LIABLE TO YOU FOR DAMAGES, INCLUDING ANY
605
+ GENERAL, SPECIAL, INCIDENTAL OR CONSEQUENTIAL DAMAGES ARISING OUT OF THE
606
+ USE OR INABILITY TO USE THE PROGRAM (INCLUDING BUT NOT LIMITED TO LOSS OF
607
+ DATA OR DATA BEING RENDERED INACCURATE OR LOSSES SUSTAINED BY YOU OR THIRD
608
+ PARTIES OR A FAILURE OF THE PROGRAM TO OPERATE WITH ANY OTHER PROGRAMS),
609
+ EVEN IF SUCH HOLDER OR OTHER PARTY HAS BEEN ADVISED OF THE POSSIBILITY OF
610
+ SUCH DAMAGES.
611
+
612
+ 17. Interpretation of Sections 15 and 16.
613
+
614
+ If the disclaimer of warranty and limitation of liability provided
615
+ above cannot be given local legal effect according to their terms,
616
+ reviewing courts shall apply local law that most closely approximates
617
+ an absolute waiver of all civil liability in connection with the
618
+ Program, unless a warranty or assumption of liability accompanies a
619
+ copy of the Program in return for a fee.
620
+
621
+ END OF TERMS AND CONDITIONS
622
+
623
+ How to Apply These Terms to Your New Programs
624
+
625
+ If you develop a new program, and you want it to be of the greatest
626
+ possible use to the public, the best way to achieve this is to make it
627
+ free software which everyone can redistribute and change under these terms.
628
+
629
+ To do so, attach the following notices to the program. It is safest
630
+ to attach them to the start of each source file to most effectively
631
+ state the exclusion of warranty; and each file should have at least
632
+ the "copyright" line and a pointer to where the full notice is found.
633
+
634
+ <one line to give the program's name and a brief idea of what it does.>
635
+ Copyright (C) <year> <name of author>
636
+
637
+ This program is free software: you can redistribute it and/or modify
638
+ it under the terms of the GNU General Public License as published by
639
+ the Free Software Foundation, either version 3 of the License, or
640
+ (at your option) any later version.
641
+
642
+ This program is distributed in the hope that it will be useful,
643
+ but WITHOUT ANY WARRANTY; without even the implied warranty of
644
+ MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
645
+ GNU General Public License for more details.
646
+
647
+ You should have received a copy of the GNU General Public License
648
+ along with this program. If not, see <https://www.gnu.org/licenses/>.
649
+
650
+ Also add information on how to contact you by electronic and paper mail.
651
+
652
+ If the program does terminal interaction, make it output a short
653
+ notice like this when it starts in an interactive mode:
654
+
655
+ <program> Copyright (C) <year> <name of author>
656
+ This program comes with ABSOLUTELY NO WARRANTY; for details type `show w'.
657
+ This is free software, and you are welcome to redistribute it
658
+ under certain conditions; type `show c' for details.
659
+
660
+ The hypothetical commands `show w' and `show c' should show the appropriate
661
+ parts of the General Public License. Of course, your program's commands
662
+ might be different; for a GUI interface, you would use an "about box".
663
+
664
+ You should also get your employer (if you work as a programmer) or school,
665
+ if any, to sign a "copyright disclaimer" for the program, if necessary.
666
+ For more information on this, and how to apply and follow the GNU GPL, see
667
+ <https://www.gnu.org/licenses/>.
668
+
669
+ The GNU General Public License does not permit incorporating your program
670
+ into proprietary programs. If your program is a subroutine library, you
671
+ may consider it more useful to permit linking proprietary applications with
672
+ the library. If this is what you want to do, use the GNU Lesser General
673
+ Public License instead of this License. But first, please read
674
+ <https://www.gnu.org/licenses/why-not-lgpl.html>.
README.md CHANGED
@@ -1,20 +1,149 @@
1
  ---
2
  title: Attribution Graph Probing
3
- emoji: 🚀
4
- colorFrom: red
5
- colorTo: red
6
  sdk: docker
7
- app_port: 8501
8
- tags:
9
- - streamlit
10
  pinned: false
11
- short_description: 'Automates attribution-graph analysis via probe prompting: ci'
12
  license: gpl-3.0
13
  ---
14
 
15
- # Welcome to Streamlit!
16
 
17
- Edit `/src/streamlit_app.py` to customize this app to your heart's desire. :heart:
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
18
 
19
- If you have any questions, checkout our [documentation](https://docs.streamlit.io) and [community
20
- forums](https://discuss.streamlit.io).
 
1
  ---
2
  title: Attribution Graph Probing
3
+ emoji: 🔬
4
+ colorFrom: blue
5
+ colorTo: purple
6
  sdk: docker
7
+ app_port: 7860
 
 
8
  pinned: false
 
9
  license: gpl-3.0
10
  ---
11
 
12
+ # 🔬 Attribution Graph Probing
13
 
14
+ **Automated Attribution Graph Analysis through Probe Prompting**
15
+
16
+ Interactive research tool for automated analysis and interpretation of attribution graphs from Sparse Autoencoders (SAE) and Cross-Layer Transcoders (CLT).
17
+
18
+ ---
19
+
20
+ ## 🚀 Quick Start
21
+
22
+ This Space implements a **3-stage pipeline** for analyzing neural network features:
23
+
24
+ 1. **🌐 Graph Generation**: Generate attribution graphs on Neuronpedia
25
+ 2. **🔍 Probe Prompts**: Analyze feature activations on semantic concepts
26
+ 3. **🔗 Node Grouping**: Automatically classify and name features
27
+
28
+ ### Try the Demo
29
+
30
+ Click through the sidebar pages to explore the Dallas example dataset included in this Space.
31
+
32
+ ---
33
+
34
+ ## 🔑 API Keys Required
35
+
36
+ To use this Space with your own data, you need:
37
+
38
+ 1. **Neuronpedia API Key** - Get it from [neuronpedia.org](https://www.neuronpedia.org)
39
+ 2. **OpenAI API Key** - For concept generation (optional)
40
+
41
+ Add these as **Secrets** in Space Settings:
42
+ - `NEURONPEDIA_API_KEY=your-key-here`
43
+ - `OPENAI_API_KEY=your-key-here`
44
+
45
+ Or enter them directly in the sidebar when using the app.
46
+
47
+ ---
48
+
49
+ ## 📊 Features
50
+
51
+ ### Stage 1: Graph Generation
52
+ - Generate attribution graphs via Neuronpedia API
53
+ - Extract static metrics (node influence, cumulative influence)
54
+ - Interactive visualizations (layer × context position)
55
+ - Select relevant features for analysis
56
+
57
+ ### Stage 2: Probe Prompts
58
+ - Auto-generate semantic concepts via OpenAI
59
+ - Measure feature activations across concepts
60
+ - Automatic checkpoints for long analyses
61
+ - Resume from interruptions
62
+
63
+ ### Stage 3: Node Grouping
64
+ - Classify features into 4 categories:
65
+ - **Semantic (Dictionary)**: Specific tokens
66
+ - **Semantic (Concept)**: Related concepts
67
+ - **Say "X"**: Output predictions
68
+ - **Relationship**: Entity relationships
69
+ - Automatic naming based on activation patterns
70
+ - Upload to Neuronpedia for visualization
71
+
72
+ ---
73
+
74
+ ## 📁 Example Dataset
75
+
76
+ This Space includes the **Dallas example**:
77
+ - **Prompt**: "The capital of state containing Dallas is"
78
+ - **Target**: "Austin"
79
+ - **Features**: 55 features from Gemma-2-2B model
80
+ - **Complete pipeline outputs**: Graph, activations, classifications
81
+
82
+ Navigate to each stage page to explore the example data.
83
+
84
+ ---
85
+
86
+ ## 📖 Documentation
87
+
88
+ - **Complete Guide**: See `eda/README.md` in the Files tab
89
+ - **Quick Start**: `QUICK_START_STREAMLIT.md`
90
+ - **Main README**: `readme.md`
91
+
92
+ ---
93
+
94
+ ## 🔬 Research Context
95
+
96
+ This tool is part of research on **automated sparse feature interpretation** using probe prompting techniques.
97
+
98
+ **Related Work:**
99
+ - [Circuit Tracer](https://github.com/safety-research/circuit-tracer) by Anthropic
100
+ - [Attribution Graphs](https://transformer-circuits.pub/2025/attribution-graphs/)
101
+ - [Neuronpedia](https://www.neuronpedia.org)
102
+
103
+ ---
104
+
105
+ ## 🛠️ Technical Details
106
+
107
+ **Models Supported:**
108
+ - Gemma-2-2B, Gemma-2-9B
109
+ - GPT-2 Small
110
+ - Any model with SAE/CLT features on Neuronpedia
111
+
112
+ **Resource Usage:**
113
+ - RAM: ~2-3GB for typical analyses
114
+ - CPU: Efficient for API-based processing
115
+ - Storage: Outputs saved during session
116
+
117
+ ---
118
+
119
+ ## 📝 How to Use
120
+
121
+ ### With Example Data (No API Keys Needed)
122
+ 1. Navigate through the 3 stage pages in the sidebar
123
+ 2. Load the Dallas example files provided
124
+ 3. Explore visualizations and results
125
+
126
+ ### With Your Own Data (API Keys Required)
127
+ 1. Add your API keys in Settings → Secrets or in the sidebar
128
+ 2. **Stage 1**: Generate a new graph with your prompt
129
+ 3. **Stage 2**: Generate concepts and analyze activations
130
+ 4. **Stage 3**: Classify and name features automatically
131
+
132
+ ---
133
+
134
+ ## 🤝 Contributing
135
+
136
+ This is a research project for mechanistic interpretability. Feedback and contributions welcome!
137
+
138
+ ---
139
+
140
+ ## 📄 License
141
+
142
+ GPL-3.0 - See LICENSE file for details
143
+
144
+ ---
145
+
146
+ **Version**: 2.0.0-clean
147
+ **Last Updated**: November 2025
148
+ **Deployed on**: Hugging Face Spaces
149
 
 
 
app_hf.py ADDED
@@ -0,0 +1,26 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Entry point for Hugging Face Spaces deployment
3
+ Redirects to the main Streamlit app in eda/app.py
4
+ """
5
+
6
+ import sys
7
+ from pathlib import Path
8
+
9
+ # Add project root to path
10
+ project_root = Path(__file__).parent
11
+ if str(project_root) not in sys.path:
12
+ sys.path.insert(0, str(project_root))
13
+
14
+ # Import and run the main app
15
+ # This allows the app to work both locally and on HF Spaces
16
+ # without modifying the original eda/app.py structure
17
+
18
+ # Change to eda directory context
19
+ import os
20
+ os.chdir(project_root)
21
+
22
+ # Import the main app module
23
+ from eda import app
24
+
25
+ # The streamlit app will be executed automatically when this module is loaded
26
+
eda/README.md ADDED
@@ -0,0 +1,622 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Attribution Graph Probing - Applicazione Streamlit
2
+
3
+ **Versione:** 2.0.0-clean | Pipeline v2
4
+ **Data:** Ottobre 2025
5
+
6
+ ---
7
+
8
+ ## Panoramica
9
+
10
+ Applicazione Streamlit interattiva per l'analisi di attribution graphs e probe prompting su modelli linguistici con Sparse Autoencoders (SAE).
11
+
12
+ ### Funzionalita Principali
13
+
14
+ 1. **Graph Generation** - Genera attribution graphs su Neuronpedia
15
+ 2. **Probe Prompts** - Analizza attivazioni su concepts specifici
16
+ 3. **Node Grouping** - Classifica e nomina supernodi per interpretazione
17
+
18
+ ---
19
+
20
+ ## Avvio Rapido
21
+
22
+ ### Prerequisiti
23
+
24
+ ```bash
25
+ pip install streamlit plotly pandas seaborn matplotlib numpy requests openai python-dotenv
26
+ ```
27
+
28
+ Oppure:
29
+
30
+ ```bash
31
+ pip install -r requirements.txt
32
+ ```
33
+
34
+ ### Configurazione API Keys
35
+
36
+ Crea un file `.env` nella root del progetto:
37
+
38
+ ```env
39
+ NEURONPEDIA_API_KEY='your-neuronpedia-key-here'
40
+ OPENAI_API_KEY='your-openai-key-here'
41
+ ```
42
+
43
+ ### Avvio Applicazione
44
+
45
+ Dalla root del progetto:
46
+
47
+ ```bash
48
+ streamlit run eda/app.py
49
+ ```
50
+
51
+ L'app si aprira automaticamente su `http://localhost:8501`
52
+
53
+ ---
54
+
55
+ ## Pagine dell'Applicazione
56
+
57
+ ### Pagina Principale
58
+
59
+ Dashboard con:
60
+ - Link rapidi alle pagine
61
+ - Info sulla struttura output folder
62
+ - Statistiche file disponibili (grafi, JSON, CSV)
63
+
64
+ ### 00 - Graph Generation
65
+
66
+ **Genera attribution graphs su Neuronpedia**
67
+
68
+ #### Funzionalita
69
+
70
+ - **Generazione Graph**: Crea nuovi attribution graphs tramite API Neuronpedia
71
+ - **Estrazione Metriche**: Genera CSV con node_influence, cumulative_influence, frac_external_raw
72
+ - **Visualizzazione Interattiva**: Scatter plot Layer vs Context Position con filtri
73
+ - **Export Features**: Seleziona e scarica features per analisi successive
74
+ - **Grafici Riassuntivi**: Coverage e Strength analysis
75
+
76
+ #### Parametri Configurabili
77
+
78
+ **Model & Source Set:**
79
+ - Model ID (gemma-2-2b, gpt2-small, gemma-2-9b)
80
+ - Source Set Name (gemmascope-transcoder-16k, etc.)
81
+ - Max Feature Nodes (100-10000)
82
+
83
+ **Thresholds:**
84
+ - Node Threshold (0.0-1.0, default 0.8)
85
+ - Edge Threshold (0.0-1.0, default 0.85)
86
+ - Max N Logits (1-50, default 10)
87
+ - Desired Logit Probability (0.5-0.99, default 0.95)
88
+
89
+ #### Output
90
+
91
+ - Graph JSON salvato in `output/graph_data/`
92
+ - CSV metriche statiche in `output/graph_feature_static_metrics.csv`
93
+ - Features selezionate JSON per Node Grouping
94
+
95
+ #### Workflow
96
+
97
+ 1. Configura parametri (model, thresholds)
98
+ 2. Inserisci prompt da analizzare
99
+ 3. Genera graph (salvato automaticamente)
100
+ 4. Genera CSV metriche statiche
101
+ 5. Visualizza scatter plot e filtra features per cumulative influence
102
+ 6. Esporta features selezionate (formato completo: features + node_ids)
103
+ 7. Scarica JSON/CSV per step successivi
104
+
105
+ ---
106
+
107
+ ### 01 - Probe Prompts
108
+
109
+ **Analizza attivazioni su concepts specifici tramite API**
110
+
111
+ #### Funzionalita
112
+
113
+ - **Caricamento Graph**: Da file locale o API Neuronpedia
114
+ - **Feature Subset**: Carica un subset di features o usa tutte
115
+ - **Generazione Concepts**: Automatica via OpenAI o inserimento manuale
116
+ - **Analisi Attivazioni**: Via API Neuronpedia o caricamento JSON pre-calcolato
117
+ - **Checkpoint & Recovery**: Salvataggio automatico progressi, ripresa da interruzioni
118
+ - **Visualizzazioni**: Main chart (Importance vs Activation), grafici colorati per peak token
119
+ - **Coverage Analysis**: Percentuale features attive e coverage dell'importanza causale
120
+
121
+ #### Parametri Configurabili
122
+
123
+ **API Keys:**
124
+ - Neuronpedia API Key (richiesta)
125
+ - OpenAI API Key (per generazione concepts)
126
+ - Model OpenAI (gpt-4o-mini, gpt-4o, gpt-3.5-turbo)
127
+
128
+ **Analisi:**
129
+ - Activation Threshold Quantile (0.5-0.99, default 0.9)
130
+ - Use Baseline (calcola metriche vs prompt originale)
131
+ - Checkpoint Every N Features (5-100, default 10)
132
+
133
+ #### Output
134
+
135
+ - CSV con attivazioni: `output/acts_compared.csv`
136
+ - Checkpoint JSON (salvati automaticamente in `output/checkpoints/`)
137
+ - Grafici interattivi con filtri
138
+
139
+ #### Workflow
140
+
141
+ 1. Carica Graph JSON (file o API)
142
+ 2. Carica feature subset (o usa tutte le features del grafo)
143
+ 3. Genera/carica concepts (OpenAI, manuale o da file)
144
+ 4. Modifica concepts nella tabella editabile
145
+ 5. Salva concepts come prompts JSON
146
+ 6. **Analisi via API**:
147
+ - Configura parametri (threshold, baseline, checkpoint)
148
+ - Esegui analisi (con progress tracking)
149
+ - Visualizza risultati (tabella + grafici)
150
+ - Scarica CSV filtrati
151
+ 7. **Analisi da JSON** (alternativa):
152
+ - Carica JSON pre-calcolato da Colab
153
+ - Visualizza Main Chart (Importance vs Activation)
154
+ - Analizza grafico colorato per peak token
155
+ - Scarica tabella di verifica dati
156
+
157
+ #### Main Chart: Importance vs Activation
158
+
159
+ Grafico a barre stacked che mostra:
160
+ - **X-axis**: Features ordinate per node_influence (decrescente)
161
+ - **Y-axis (left)**: Activation (max_value, escludendo BOS)
162
+ - **Y-axis (right)**: node_influence (linea rossa)
163
+ - **Barre colorate**: Per prompt o per peak token
164
+
165
+ **Filtri:**
166
+ - Top N features (10-100)
167
+ - Escludi features con peak su BOS
168
+
169
+ **Tabella di Verifica**:
170
+ Dati grezzi usati per il grafico con metriche dettagliate:
171
+ - `activation_max`: Picco massimo di attivazione (esclude BOS)
172
+ - `activation_sum`: Somma totale attivazioni (esclude BOS)
173
+ - `activation_mean`: Media attivazioni normalizzata
174
+ - `sparsity_ratio`: Concentrazione attivazione (0=uniforme, 1=molto sparsa)
175
+ - `peak_token_idx`: Posizione del picco (>=1, esclude BOS)
176
+ - `node_influence`: Valore massimo dal CSV
177
+ - `csv_ctx_idx`: Contesto token dove node_influence e massima
178
+
179
+ **Coverage Analysis**:
180
+ - Features Coverage: % features (nel JSON) che si attivano (>0) su almeno un probe prompt
181
+ - Importance Coverage: % importanza causale coperta dalle features attive
182
+
183
+ ---
184
+
185
+ ### 02 - Node Grouping
186
+
187
+ **Classifica e nomina supernodi per interpretazione del grafo**
188
+
189
+ #### Funzionalita
190
+
191
+ - **Step 1 - Preparazione**: Classifica token (functional vs semantic), trova target tokens
192
+ - **Step 2 - Classificazione**: Assegna classi ai nodi (Semantic, Say X, Relationship)
193
+ - **Step 3 - Naming**: Genera nomi descrittivi per ogni supernodo
194
+ - **Parametri Configurabili**: Modifica soglie in tempo reale
195
+ - **Gestione Soglie**: Salva/carica preset di soglie
196
+ - **Spiegazione Classificazione**: Tool interattivo per capire perche una feature e stata classificata
197
+ - **Upload Neuronpedia**: Carica subgraph con supernodes per visualizzazione interattiva
198
+
199
+ #### Input Richiesti
200
+
201
+ **Obbligatori:**
202
+ - CSV Export da Probe Prompts (es. `*_export_ENRICHED.csv`)
203
+
204
+ **Opzionali:**
205
+ - JSON Attivazioni (migliora naming per Relationship)
206
+ - Graph JSON (per csv_ctx_idx fallback in Semantic naming)
207
+ - Selected Nodes JSON (per upload subgraph accurato)
208
+
209
+ #### Parametri Configurabili
210
+
211
+ **Pipeline:**
212
+ - Finestra ricerca target (3-15, default 7)
213
+
214
+ **Dictionary Semantic:**
215
+ - Peak Consistency min (0.5-1.0, default 0.8)
216
+ - N Distinct Peaks max (1-5, default 1)
217
+
218
+ **Say X:**
219
+ - Func vs Sem % min (0-100%, default 50%)
220
+ - Confidence F min (0.5-1.0, default 0.9)
221
+ - Layer min (0-30, default 7)
222
+
223
+ **Relationship:**
224
+ - Sparsity max (0.0-1.0, default 0.45)
225
+
226
+ **Semantic (Concept):**
227
+ - Layer max (0-10, default 3)
228
+ - Confidence S min (0.0-1.0, default 0.5)
229
+ - Func vs Sem % max (0-100%, default 50%)
230
+
231
+ #### Output
232
+
233
+ - CSV completo con classificazione e naming
234
+ - Summary JSON con statistiche e parametri usati
235
+ - Upload su Neuronpedia (opzionale)
236
+
237
+ #### Workflow
238
+
239
+ **Step 1: Preparazione**
240
+ 1. Carica CSV Export (automatico o upload)
241
+ 2. (Opzionale) Carica JSON Attivazioni
242
+ 3. Esegui Step 1
243
+ 4. Verifica statistiche (token funzionali vs semantici)
244
+ 5. Esamina campione risultati
245
+
246
+ **Step 2: Classificazione**
247
+ 1. (Opzionale) Modifica soglie nella sidebar
248
+ 2. Esegui Step 2
249
+ 3. Verifica distribuzione classi
250
+ 4. Filtra per classe e esamina risultati
251
+ 5. Usa "Spiega Classificazione Feature" per capire le decisioni
252
+ 6. (Opzionale) Itera modificando soglie
253
+
254
+ **Step 3: Naming**
255
+ 1. Esegui Step 3
256
+ 2. Verifica esempi naming per classe
257
+ 3. Analizza raggruppamento per supernode_name
258
+ 4. Download CSV completo e Summary JSON
259
+
260
+ **Upload Neuronpedia:**
261
+ 1. Inserisci API Key
262
+ 2. Configura Display Name
263
+ 3. (Opzionale) Overwrite ID per aggiornare subgraph esistente
264
+ 4. Upload e visualizza su Neuronpedia
265
+
266
+ #### Classi di Supernodi
267
+
268
+ **Semantic (Dictionary):**
269
+ - Si attiva sempre sullo stesso token specifico
270
+ - Metriche: peak_consistency alta (>=0.8), n_distinct_peaks = 1
271
+ - Naming: Nome del token (es. "Texas")
272
+
273
+ **Semantic (Concept):**
274
+ - Si attiva su token semanticamente simili
275
+ - Metriche: conf_S alta (>=0.5), layer medio-basso
276
+ - Naming: Token con max activation (es. "city")
277
+
278
+ **Say "X":**
279
+ - Si attiva su token funzionali per predire il prossimo token
280
+ - Metriche: func_vs_sem alta (>=50%), conf_F alta (>=0.9), layer alto (>=7)
281
+ - Naming: "Say (X)" dove X e il target_token (es. "Say (Austin)")
282
+
283
+ **Relationship:**
284
+ - Collega concetti semantici multipli con attivazione diffusa
285
+ - Metriche: sparsity bassa (<0.45), K_sem_distinct alto
286
+ - Naming: "(X) related" dove X e il primo token semantico con max attivazione
287
+
288
+ #### Metriche Chiave
289
+
290
+ - `peak_consistency_main`: Quanto spesso il token principale e peak quando appare
291
+ - `n_distinct_peaks`: Numero di token distinti come peak
292
+ - `func_vs_sem_pct`: Differenza % tra max activation su functional vs semantic
293
+ - `conf_F / conf_S`: Frazione di peak su token funzionali/semantici
294
+ - `sparsity_median`: Mediana sparsity (0=diffusa, 1=concentrata)
295
+ - `K_sem_distinct`: Numero di token semantici distinti
296
+
297
+ ---
298
+
299
+ ## Struttura Dati
300
+
301
+ ### File Input
302
+
303
+ **Graph JSON** (da Graph Generation):
304
+ ```json
305
+ {
306
+ "metadata": {
307
+ "scan": "gemma-2-2b",
308
+ "prompt": "The capital of state containing Dallas is",
309
+ "prompt_tokens": [...]
310
+ },
311
+ "nodes": [
312
+ {
313
+ "node_id": "24_79427_7",
314
+ "feature_type": "cross layer transcoder",
315
+ "layer": 24,
316
+ "activation": 0.123,
317
+ "influence": 0.0042,
318
+ "ctx_idx": 7
319
+ }
320
+ ],
321
+ "links": [...]
322
+ }
323
+ ```
324
+
325
+ **CSV Export ENRICHED** (da Probe Prompts):
326
+ ```csv
327
+ feature_key,layer,prompt,peak_token,peak_token_idx,activation_max,sparsity_ratio,node_influence,...
328
+ 24_79427,24,"entity: The capital city of Texas is Austin",Austin,7,12.34,0.85,0.0042,...
329
+ ```
330
+
331
+ **JSON Attivazioni** (da batch_get_activations.py):
332
+ ```json
333
+ {
334
+ "model": "gemma-2-2b",
335
+ "source_set": "clt-hp",
336
+ "results": [
337
+ {
338
+ "probe_id": "p1",
339
+ "prompt": "...",
340
+ "tokens": ["<BOS>", "The", "capital", ...],
341
+ "activations": [
342
+ {
343
+ "source": "24-clt-hp",
344
+ "index": 79427,
345
+ "values": [0.0, 0.5, 12.34, ...],
346
+ "max_value": 12.34,
347
+ "max_value_index": 7
348
+ }
349
+ ]
350
+ }
351
+ ]
352
+ }
353
+ ```
354
+
355
+ ### File Output
356
+
357
+ **CSV Metriche Statiche** (Graph Generation):
358
+ ```csv
359
+ layer,id,ctx_idx,activation,node_influence,cumulative_influence,frac_external_raw
360
+ 24,79427,7,12.34,0.0042,0.0056,0.23
361
+ ```
362
+
363
+ **Selected Features JSON** (Graph Generation, formato completo):
364
+ ```json
365
+ {
366
+ "features": [
367
+ {"layer": 24, "index": 79427},
368
+ {"layer": 12, "index": 5432}
369
+ ],
370
+ "node_ids": [
371
+ "24_79427_7",
372
+ "12_5432_3"
373
+ ],
374
+ "metadata": {
375
+ "n_features": 2,
376
+ "n_nodes": 2,
377
+ "cumulative_threshold": 0.95,
378
+ "exported_at": "2025-10-25T12:00:00"
379
+ }
380
+ }
381
+ ```
382
+
383
+ **Acts Compared CSV** (Probe Prompts):
384
+ ```csv
385
+ feature_key,label,category,layer,activation_max,z_score,picco_su_label,cosine_similarity,...
386
+ 24_79427,Austin,entity,24,12.34,2.5,True,0.85,...
387
+ ```
388
+
389
+ **Node Grouping CSV** (Node Grouping):
390
+ ```csv
391
+ feature_key,layer,prompt,pred_label,subtype,supernode_name,peak_token,activation_max,...
392
+ 24_79427,24,"...",Semantic,Dictionary,Austin,Austin,12.34,...
393
+ ```
394
+
395
+ **Node Grouping Summary JSON**:
396
+ ```json
397
+ {
398
+ "timestamp": "2025-10-25T12:00:00",
399
+ "n_features": 150,
400
+ "n_unique_names": 45,
401
+ "class_distribution": {
402
+ "Semantic": 120,
403
+ "Relationship": 20,
404
+ "Say \"X\"": 10
405
+ },
406
+ "thresholds_used": {...},
407
+ "top_supernodes": [...]
408
+ }
409
+ ```
410
+
411
+ ---
412
+
413
+ ## Workflow Completo
414
+
415
+ ### Pipeline Standard
416
+
417
+ ```
418
+ 1. Graph Generation
419
+
420
+ - Graph JSON
421
+ - CSV metriche statiche
422
+ - Selected Features JSON
423
+
424
+ 2. Probe Prompts
425
+
426
+ - Genera/carica concepts
427
+ - Analizza attivazioni (API o JSON)
428
+ - Acts Compared CSV
429
+
430
+ 3. Node Grouping
431
+
432
+ - Classifica nodi
433
+ - Nomina supernodi
434
+ - Upload su Neuronpedia (opzionale)
435
+ ```
436
+
437
+ ### Esempio Pratico
438
+
439
+ **Obiettivo**: Analizzare come il modello predice "Austin" nel prompt "The capital of state containing Dallas is"
440
+
441
+ 1. **Graph Generation**:
442
+ - Prompt: "The capital of state containing Dallas is"
443
+ - Genera graph su Neuronpedia
444
+ - Estrai CSV metriche con node_influence
445
+ - Filtra features per cumulative_influence <= 0.95
446
+ - Esporta Selected Features JSON (50 features)
447
+
448
+ 2. **Probe Prompts**:
449
+ - Carica Graph JSON + Selected Features JSON
450
+ - Genera concepts con OpenAI (Dallas, Austin, Texas, capital, state)
451
+ - Esegui analisi API (checkpoint ogni 10 features)
452
+ - Visualizza Main Chart: feature ordinate per node_influence
453
+ - Scarica Acts Compared CSV
454
+
455
+ 3. **Node Grouping**:
456
+ - Carica Acts Compared CSV + JSON Attivazioni
457
+ - Step 1: Classifica token (functional: "is", "the" / semantic: "Dallas", "Austin")
458
+ - Step 2: Classifica features (90% Semantic, 10% Relationship)
459
+ - Step 3: Nomina supernodi ("Austin", "Dallas", "Texas", "(state) related", etc.)
460
+ - Upload su Neuronpedia per visualizzazione
461
+
462
+ ---
463
+
464
+ ## Troubleshooting
465
+
466
+ ### Problemi Comuni
467
+
468
+ **"API Key non trovata"**
469
+ - Soluzione: Crea file `.env` con le chiavi API
470
+
471
+ **"Dati essenziali mancanti"**
472
+ - Soluzione: Esegui la pipeline completa in ordine (Graph Generation → Probe Prompts → Node Grouping)
473
+
474
+ **"Grafo causale non disponibile"**
475
+ - Soluzione: Genera Graph JSON in Step 00, poi genera CSV metriche statiche
476
+
477
+ **"ModuleNotFoundError: eda"**
478
+ - Soluzione: Avvia da root del progetto: `streamlit run eda/app.py`
479
+
480
+ **"Checkpoint corrotto"**
481
+ - Soluzione: Elimina checkpoint in `output/checkpoints/` e riavvia analisi
482
+
483
+ **"Naming Relationship non accurato"**
484
+ - Soluzione: Fornisci JSON attivazioni completo in Node Grouping
485
+
486
+ **"Classificazione non soddisfacente"**
487
+ - Soluzione: Modifica soglie in Node Grouping sidebar e riesegui Step 2
488
+
489
+ ### Cache Streamlit
490
+
491
+ Se i dati sembrano obsoleti:
492
+ - Menu hamburger (top-right) > Clear cache
493
+ - Oppure Settings > Clear cache
494
+ - Riavvia l'app
495
+
496
+ ---
497
+
498
+ ## Best Practices
499
+
500
+ ### Graph Generation
501
+ 1. Inizia con thresholds di default, poi affina
502
+ 2. Usa filtro cumulative_influence per selezionare features rilevanti
503
+ 3. Esporta sempre Selected Features JSON (formato completo con node_ids) per Node Grouping
504
+
505
+ ### Probe Prompts
506
+ 1. Usa checkpoint per analisi lunghe (>100 features)
507
+ 2. Abilita baseline per confronti robusti
508
+ 3. Carica JSON pre-calcolato da Colab per analisi veloci
509
+ 4. Filtra features con peak su BOS per grafici piu puliti
510
+ 5. Usa tabella di verifica per debug e quality check
511
+
512
+ ### Node Grouping
513
+ 1. Fornisci sempre JSON attivazioni per naming Relationship accurato
514
+ 2. Inizia con soglie di default, poi itera su Step 2-3
515
+ 3. Usa "Spiega Classificazione Feature" per capire decisioni
516
+ 4. Scarica Summary JSON per documentare parametri usati
517
+ 5. Carica Selected Nodes JSON per upload Neuronpedia accurato
518
+
519
+ ---
520
+
521
+ ## Performance
522
+
523
+ **Caricamento:**
524
+ - Prima apertura app: < 10 secondi
525
+ - Cambio pagina: < 2 secondi
526
+
527
+ **Cache:**
528
+ - Dati caricati con `@st.cache_data`
529
+ - Grafici renderizzati on-demand
530
+
531
+ **Limiti:**
532
+ - Graph Generation: max 10000 feature nodes
533
+ - Probe Prompts: rate limit API 5 req/sec
534
+ - Node Grouping: gestisce dataset fino a 1000 features
535
+
536
+ ---
537
+
538
+ ## Dipendenze
539
+
540
+ **Core:**
541
+ - streamlit >= 1.28
542
+ - plotly >= 5.18
543
+ - pandas >= 2.0
544
+ - numpy >= 1.24
545
+
546
+ **API:**
547
+ - requests >= 2.31
548
+ - openai >= 1.0
549
+ - python-dotenv >= 1.0
550
+
551
+ **Visualization:**
552
+ - seaborn >= 0.12
553
+ - matplotlib >= 3.7
554
+
555
+ **Optional:**
556
+ - scipy (per test statistici in Causal Validation)
557
+ - scikit-learn (per ROC curves)
558
+
559
+ ---
560
+
561
+ ## Riferimenti
562
+
563
+ ### Documentazione Tecnica
564
+ - Graph Generation: `scripts/00_neuronpedia_graph_generation.py`
565
+ - Probe Prompts: `scripts/01_probe_prompts.py`
566
+ - Node Grouping: `scripts/02_node_grouping.py`
567
+ - Causal Utils: `scripts/causal_utils.py`
568
+
569
+ ### Guide
570
+ - Quick Start: `QUICK_START_STREAMLIT.md`
571
+ - Neuronpedia Export: `docs/NEURONPEDIA_EXPORT_GUIDE.md`
572
+ - Probe Prompts: `docs/PROBE_PROMPTS_QUICKSTART.md`
573
+ - Node Grouping: `eda/pages/README_NODE_GROUPING.md`
574
+
575
+ ### Utilities
576
+ - Graph Visualization: `eda/utils/graph_visualization.py`
577
+ - Data Loader: `eda/utils/data_loader.py`
578
+ - Plots: `eda/utils/plots.py`
579
+
580
+ ---
581
+
582
+ ## Sviluppo
583
+
584
+ ### Struttura Codice
585
+
586
+ ```
587
+ eda/
588
+ ├── app.py # Entry point
589
+ ├── pages/ # Pagine Streamlit
590
+ │ ├── 00_Graph_Generation.py
591
+ │ ├── 01_Probe_Prompts.py
592
+ │ ├── 02_Node_Grouping.py
593
+ │ └── README_NODE_GROUPING.md
594
+ ├── utils/ # Utilities
595
+ │ └── graph_visualization.py
596
+ └── README.md # Questa guida
597
+ ```
598
+
599
+ ### Modifiche
600
+
601
+ Per modificare l'app:
602
+ 1. Modifica file in `eda/`
603
+ 2. Streamlit rileva automaticamente cambiamenti
604
+ 3. Testa con dati reali da `output/`
605
+
606
+ ---
607
+
608
+ ## Supporto
609
+
610
+ Per domande o problemi:
611
+ 1. Consulta questa guida
612
+ 2. Leggi la documentazione tecnica in `docs/`
613
+ 3. Esamina gli script di backend in `scripts/`
614
+ 4. Controlla i test in `tests/`
615
+
616
+ ---
617
+
618
+ **Autore**: Sistema automatizzato
619
+ **Licenza**: Vedi LICENSE
620
+ **Repository**: attribution-graph-probing
621
+
622
+ **Buon lavoro con Attribution Graph Probing!** 🔬🌐🔍
eda/__init__.py ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ """EDA app for supernode labelling pipeline"""
2
+ __version__ = "1.0.0"
3
+
eda/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (234 Bytes). View file
 
eda/app.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """
2
+ Main Streamlit App for Circuit Tracer + Probe Rover
3
+ Research Project: Automating attribution graph analysis through probe prompting
4
+ """
5
+ import sys
6
+ from pathlib import Path
7
+
8
+ # Add parent directory to path for imports
9
+ parent_dir = Path(__file__).parent.parent
10
+ if str(parent_dir) not in sys.path:
11
+ sys.path.insert(0, str(parent_dir))
12
+
13
+ import streamlit as st
14
+
15
+ # Main page configuration
16
+ st.set_page_config(
17
+ page_title="Automating Attribution Graph Analysis",
18
+ page_icon="🔬",
19
+ layout="wide",
20
+ initial_sidebar_state="expanded"
21
+ )
22
+
23
+ # Header
24
+ st.title("🔬 Automating Attribution Graph Analysis")
25
+ st.write("**Research Project: Automated interpretation of sparse features through probe prompting**")
26
+
27
+ st.info("""
28
+ 🚀 **Demo Mode**: Complete the entire pipeline (Step 1 → 2 → 3) in one session.
29
+ Files are automatically passed between steps. **Don't reload the page** or you'll lose progress!
30
+ """)
31
+
32
+ st.markdown("""
33
+ This application implements a **three-stage pipeline** for automatically analyzing and interpreting
34
+ attribution graphs from sparse feature models (SAE and/or CLT cross-layer transcoders):
35
+
36
+ ### 🌐 Stage 1: Graph Generation
37
+ Generate attribution graphs on Neuronpedia to understand how sparse features contribute to model predictions.
38
+ Extract static metrics and select relevant features for downstream analysis.
39
+
40
+ ### 🔍 Stage 2: Probe Prompting
41
+ Analyze feature activations on semantically related concepts using automated probe prompts.
42
+ Generate concepts via LLM and measure how features respond across different contexts.
43
+
44
+ ### 🔗 Stage 3: Node Grouping
45
+ Automatically classify and name features into interpretable supernodes based on their activation patterns.
46
+ Group features by semantic similarity and functional role (Dictionary, Concept, Say "X", Relationship).
47
+
48
+ ---
49
+
50
+ Use the **sidebar** to navigate between pipeline stages.
51
+ """)
52
+
53
+ # Output folder status
54
+ st.header("📁 Output Folder Status")
55
+
56
+ output_dir = parent_dir / "output"
57
+ if output_dir.exists():
58
+ # Count files by type
59
+ json_files = list(output_dir.glob("*.json"))
60
+ pt_files = list(output_dir.glob("*.pt"))
61
+ csv_files = list(output_dir.glob("*.csv"))
62
+
63
+ col1, col2, col3 = st.columns(3)
64
+
65
+ with col1:
66
+ st.metric("Graphs (.pt)", len(pt_files))
67
+
68
+ with col2:
69
+ st.metric("JSON Files", len(json_files))
70
+
71
+ with col3:
72
+ st.metric("CSV Exports", len(csv_files))
73
+
74
+ st.success(f"✅ Output folder found: `{output_dir.relative_to(parent_dir)}`")
75
+ else:
76
+ st.warning("⚠️ Output folder not found. It will be created on first export.")
77
+
78
+ # Quick access to pipeline stages
79
+ st.header("🚀 Pipeline Stages")
80
+
81
+ col1, col2, col3 = st.columns(3)
82
+
83
+ with col1:
84
+ st.page_link("pages/00_Graph_Generation.py", label="Stage 1: Graph Generation", icon="🌐")
85
+ st.caption("Generate attribution graphs and extract features from Neuronpedia")
86
+
87
+ with col2:
88
+ st.page_link("pages/01_Probe_Prompts.py", label="Stage 2: Probe Prompts", icon="🔍")
89
+ st.caption("Analyze feature activations on semantic concepts via API")
90
+
91
+ with col3:
92
+ st.page_link("pages/02_Node_Grouping.py", label="Stage 3: Node Grouping", icon="🔗")
93
+ st.caption("Classify and name supernodes for interpretability")
94
+
95
+ # Project info
96
+ st.sidebar.header("ℹ️ About")
97
+ st.sidebar.write("""
98
+
99
+ **Documentation:**
100
+ - Full guide: `eda/README.md`
101
+
102
+ """)
103
+
104
+ st.sidebar.write("---")
105
+ st.sidebar.caption("Version: 2.0.0-clean | Pipeline v2")
106
+ st.sidebar.caption("🔬 Automated SAE Feature Interpretation")
107
+
eda/components/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ """Reusable components"""
2
+
eda/components/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (195 Bytes). View file
 
eda/components/__pycache__/feature_panel.cpython-313.pyc ADDED
Binary file (8.96 kB). View file
 
eda/components/__pycache__/pipeline_progress.cpython-313.pyc ADDED
Binary file (10.1 kB). View file
 
eda/components/__pycache__/supernode_panel.cpython-313.pyc ADDED
Binary file (10.8 kB). View file
 
eda/config/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ """Configuration modules"""
2
+
eda/config/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (193 Bytes). View file
 
eda/config/__pycache__/defaults.cpython-313.pyc ADDED
Binary file (1.46 kB). View file
 
eda/config/defaults.py ADDED
@@ -0,0 +1,50 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Configurazione default per parametri slider e range"""
2
+
3
+ # Range parametri Fase 2 (crescita supernodi)
4
+ PHASE2_DEFAULTS = {
5
+ 'causal_weight': 0.60, # Peso compatibilità causale (0.4-0.8)
6
+ 'tau_edge_strong': 0.05, # Soglia edge forti (0.02-0.10)
7
+ 'tau_edge_bootstrap': 0.03, # Soglia bootstrap (0.01-0.05)
8
+ 'bootstrap_iterations': 3, # Iterazioni bootstrap (0-5)
9
+ 'threshold_bootstrap': 0.30, # Soglia accettazione bootstrap (0.1-0.5)
10
+ 'threshold_normal': 0.45, # Soglia accettazione normale (0.3-0.7)
11
+ 'min_coherence': 0.50, # Coerenza minima (0.3-0.8)
12
+ 'max_iterations': 20, # Iterazioni max (5-30)
13
+ 'max_seeds': 50, # Numero max seed (5-50)
14
+ 'diversify': True, # Diversificazione layer/position
15
+ }
16
+
17
+ # Range parametri Fase 3 (clustering residui)
18
+ PHASE3_DEFAULTS = {
19
+ 'min_cluster_size': 3, # Minimo membri cluster (2-10)
20
+ 'jaccard_merge_threshold': 0.70, # Soglia merge Jaccard (0.5-0.9)
21
+ 'min_frequency_ratio': 0.02, # Ratio token semantici (0.01-0.05)
22
+ 'min_frequency_absolute': 3, # Minimo assoluto token
23
+ 'layer_group_span': 3, # Span gruppi layer (2-5)
24
+ 'node_inf_high': 0.10, # Soglia node_influence HIGH (0.05-0.2)
25
+ 'node_inf_med': 0.01, # Soglia node_influence MED (0.005-0.05)
26
+ }
27
+
28
+ # Parametri generali
29
+ GENERAL_DEFAULTS = {
30
+ 'use_causal_graph': True, # Usa grafo causale se disponibile
31
+ 'archetype_percentile': 75, # Percentile archetipi (75-90)
32
+ }
33
+
34
+ # Paths output
35
+ OUTPUT_PATHS = {
36
+ 'personalities': 'output/feature_personalities_corrected.json',
37
+ 'archetypes': 'output/narrative_archetypes.json',
38
+ 'cicciotti': 'output/cicciotti_supernodes.json',
39
+ 'validation': 'output/cicciotti_validation.json',
40
+ 'final': 'output/final_anthropological_optimized.json',
41
+ 'thresholds': 'output/robust_thresholds.json',
42
+ 'static_metrics': 'output/graph_feature_static_metrics (1).csv',
43
+ 'acts': 'output/acts_compared.csv',
44
+ 'graph': 'output/example_graph.pt',
45
+ 'labels': 'output/comprehensive_supernode_labels.json',
46
+ }
47
+
48
+ # Export paths
49
+ EXPORT_DIR = 'eda/exports'
50
+
eda/exports/.gitkeep ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ # Export directory for user-generated files
2
+
eda/output/.pipeline_state.json ADDED
@@ -0,0 +1,23 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ {
2
+ "current_run_id": "run_20251030_113048",
3
+ "last_updated": "2025-10-30T18:03:36.377401",
4
+ "steps": {
5
+ "step1_graph": {
6
+ "completed": true,
7
+ "timestamp": "2025-10-30T18:03:36.376920",
8
+ "files": {
9
+ "graph": "st1_graph_test-the-capital_20251030-180336.json"
10
+ }
11
+ },
12
+ "step2_probe": {
13
+ "completed": false,
14
+ "timestamp": null,
15
+ "files": {}
16
+ },
17
+ "step3_grouping": {
18
+ "completed": false,
19
+ "timestamp": null,
20
+ "files": {}
21
+ }
22
+ }
23
+ }
eda/output/graph_data/st1_graph_test-the-capital_20251030-180336.json ADDED
The diff for this file is too large to render. See raw diff
 
eda/output/graph_data/st1_graph_the-capital-of_20251030-113048.json ADDED
The diff for this file is too large to render. See raw diff
 
eda/output/graph_data/test-4-the-20251030-181150.json ADDED
The diff for this file is too large to render. See raw diff
 
eda/output/graph_data/test2-the-capital-20251030-180548.json ADDED
The diff for this file is too large to render. See raw diff
 
eda/output/graph_data/test3-the-capital-20251030-180625.json ADDED
The diff for this file is too large to render. See raw diff
 
eda/output/graph_data/test5-the-capital-20251030-181433.json ADDED
The diff for this file is too large to render. See raw diff
 
eda/output/graph_data/test6-the-capital-20251030-181857.json ADDED
The diff for this file is too large to render. See raw diff
 
eda/pages/00_Graph_Generation.py ADDED
@@ -0,0 +1,801 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Page 0 - Graph Generation: Generate Attribution Graphs on Neuronpedia"""
2
+ import sys
3
+ from pathlib import Path
4
+
5
+ # Add parent directory to path
6
+ parent_dir = Path(__file__).parent.parent.parent
7
+ if str(parent_dir) not in sys.path:
8
+ sys.path.insert(0, str(parent_dir))
9
+
10
+ import streamlit as st
11
+ import json
12
+ import os
13
+ from datetime import datetime
14
+
15
+ # Try to import PipelineState (optional - won't break if missing)
16
+ try:
17
+ from eda.utils.pipeline_state import PipelineState
18
+ PIPELINE_STATE_AVAILABLE = True
19
+ except ImportError:
20
+ PIPELINE_STATE_AVAILABLE = False
21
+
22
+ # Import graph generation functions
23
+ try:
24
+ from scripts.neuronpedia_graph_generation import (
25
+ generate_attribution_graph,
26
+ get_graph_stats,
27
+ load_api_key,
28
+ extract_static_metrics_from_json
29
+ )
30
+ except ImportError:
31
+ # Fallback if module is not directly importable
32
+ import importlib.util
33
+ script_path = parent_dir / "scripts" / "00_neuronpedia_graph_generation.py"
34
+ spec = importlib.util.spec_from_file_location("neuronpedia_graph_generation", script_path)
35
+ graph_gen = importlib.util.module_from_spec(spec)
36
+ spec.loader.exec_module(graph_gen)
37
+ generate_attribution_graph = graph_gen.generate_attribution_graph
38
+ get_graph_stats = graph_gen.get_graph_stats
39
+ load_api_key = graph_gen.load_api_key
40
+ extract_static_metrics_from_json = graph_gen.extract_static_metrics_from_json
41
+
42
+ st.set_page_config(page_title="Graph Generation", page_icon="🌐", layout="wide")
43
+
44
+ st.title("🌐 Attribution Graph Generation")
45
+
46
+ st.info("""
47
+ 1. **Generate a new attribution graph on Neuronpedia** to analyze how the model predicts the next token. \n
48
+ 2. **Analyze the graph** to understand the contribution of each feature.\n
49
+ 3. **Filter Features by Cumulative Influence Coverage** for downstream analysis.
50
+ """)
51
+
52
+ # ===== SIDEBAR: CONFIGURATION =====
53
+
54
+ st.sidebar.header("Configuration")
55
+
56
+ # Load API key
57
+ api_key = load_api_key()
58
+
59
+ if not api_key:
60
+ st.sidebar.error("API Key not found!")
61
+ st.error("""
62
+ **Neuronpedia API Key Required!**
63
+
64
+ 1. Obtain an API key from [Neuronpedia](https://www.neuronpedia.org/)
65
+ 2. Add to `.env` file in project root:
66
+ ```
67
+ NEURONPEDIA_API_KEY='your-key-here'
68
+ ```
69
+ 3. Or set the environment variable:
70
+ ```
71
+ export NEURONPEDIA_API_KEY='your-key-here'
72
+ ```
73
+ """)
74
+ st.stop()
75
+
76
+ st.sidebar.success(f"API Key loaded ({len(api_key)} characters)")
77
+
78
+ # ===== SECTION: GENERATE NEW GRAPH =====
79
+
80
+ st.header("🌐 Generate New Attribution Graph")
81
+
82
+ # INPUT PROMPT
83
+ st.subheader("1️⃣ Prompt Configuration")
84
+
85
+ prompt = st.text_area(
86
+ "Prompt to analyze",
87
+ value="The capital of state containing Dallas is",
88
+ height=100,
89
+ help="Enter the prompt to analyze. The model will try to predict the next token."
90
+ )
91
+
92
+ # GRAPH PARAMETERS
93
+ st.subheader("Graph Parameters")
94
+
95
+ with st.expander("Advanced configuration", expanded=False):
96
+ col1, col2 = st.columns(2)
97
+
98
+ with col1:
99
+ st.write("**Model & Source Set**")
100
+
101
+ model_id = st.selectbox(
102
+ "Model ID",
103
+ ["gemma-2-2b", "gpt2-small", "gemma-2-9b"],
104
+ help="Model to analyze"
105
+ )
106
+
107
+ source_set_name = st.text_input(
108
+ "Source Set Name",
109
+ value="clt-hp", #"gemmascope-transcoder-16k",
110
+ help="Name of the SAE source set to use"
111
+ )
112
+
113
+ max_feature_nodes = st.number_input(
114
+ "Max Feature Nodes",
115
+ min_value=100,
116
+ max_value=10000,
117
+ value=5000,
118
+ step=100,
119
+ help="Maximum number of feature nodes to include"
120
+ )
121
+
122
+ with col2:
123
+ st.write("**Thresholds**")
124
+
125
+ node_threshold = st.slider(
126
+ "Node Threshold",
127
+ min_value=0.0,
128
+ max_value=1.0,
129
+ value=0.8,
130
+ step=0.05,
131
+ help="Minimum importance threshold to include a node"
132
+ )
133
+
134
+ edge_threshold = st.slider(
135
+ "Edge Threshold",
136
+ min_value=0.0,
137
+ max_value=1.0,
138
+ value=0.85,
139
+ step=0.05,
140
+ help="Minimum importance threshold to include an edge"
141
+ )
142
+
143
+ max_n_logits = st.number_input(
144
+ "Max N Logits",
145
+ min_value=1,
146
+ max_value=50,
147
+ value=10,
148
+ step=1,
149
+ help="Maximum number of logits to consider"
150
+ )
151
+
152
+ desired_logit_prob = st.slider(
153
+ "Desired Logit Probability",
154
+ min_value=0.5,
155
+ max_value=0.99,
156
+ value=0.95,
157
+ step=0.01,
158
+ help="Desired cumulative probability for logits"
159
+ )
160
+
161
+ slug = st.text_input(
162
+ "Custom slug (optional)",
163
+ value="",
164
+ help="If empty, will be generated automatically"
165
+ )
166
+
167
+ # GENERATION
168
+ st.subheader("Generation")
169
+
170
+ col1, col2 = st.columns([1, 2])
171
+
172
+ with col1:
173
+ generate_button = st.button("🌐 Generate Graph", type="primary", use_container_width=True)
174
+ with col2:
175
+ save_locally = st.checkbox("Save locally", value=True)
176
+
177
+ # State
178
+ if 'generation_result' not in st.session_state:
179
+ st.session_state.generation_result = None
180
+ if 'static_metrics_df' not in st.session_state:
181
+ st.session_state.static_metrics_df = None
182
+ if 'extracted_graph_data' not in st.session_state:
183
+ st.session_state.extracted_graph_data = None
184
+ if 'extracted_csv_df' not in st.session_state:
185
+ st.session_state.extracted_csv_df = None
186
+
187
+ if generate_button:
188
+ if not prompt.strip():
189
+ st.error("Enter a valid prompt!")
190
+ st.stop()
191
+
192
+ progress_bar = st.progress(0)
193
+ status_text = st.empty()
194
+
195
+ try:
196
+ status_text.text("Preparing...")
197
+ progress_bar.progress(10)
198
+
199
+ status_text.text("Sending request to Neuronpedia...")
200
+ progress_bar.progress(30)
201
+
202
+ result = generate_attribution_graph(
203
+ prompt=prompt,
204
+ api_key=api_key,
205
+ model_id=model_id,
206
+ source_set_name=source_set_name,
207
+ slug=slug if slug.strip() else None,
208
+ max_n_logits=max_n_logits,
209
+ desired_logit_prob=desired_logit_prob,
210
+ node_threshold=node_threshold,
211
+ edge_threshold=edge_threshold,
212
+ max_feature_nodes=max_feature_nodes,
213
+ save_locally=save_locally,
214
+ verbose=False
215
+ )
216
+
217
+ progress_bar.progress(100)
218
+ status_text.empty()
219
+ progress_bar.empty()
220
+
221
+ # Add generation parameters to result for later use
222
+ if result['success']:
223
+ result['source_set_name'] = source_set_name
224
+ result['node_threshold'] = node_threshold
225
+ result['desired_logit_prob'] = desired_logit_prob
226
+
227
+ # Rename file to new format if saved locally (BEFORE saving to session_state)
228
+ if result['success'] and result.get('local_path') and save_locally and PIPELINE_STATE_AVAILABLE:
229
+ old_path = Path(result['local_path'])
230
+ if old_path.exists():
231
+ # Generate new filename with st1_ prefix
232
+ new_filename = PipelineState.generate_filename(
233
+ step=1,
234
+ file_type='graph',
235
+ prompt=prompt
236
+ )
237
+ new_path = old_path.parent / new_filename
238
+
239
+ # Rename file
240
+ old_path.rename(new_path)
241
+
242
+ # Update result with absolute path (AFTER rename)
243
+ result['local_path'] = str(new_path.resolve())
244
+ result['renamed_to_new_format'] = True
245
+
246
+ # Save result to session_state (with updated path)
247
+ st.session_state.generation_result = result
248
+
249
+ # Save Graph JSON to pipeline session_state for auto-loading in next steps
250
+ if result['success'] and result.get('local_path'):
251
+ try:
252
+ with open(result['local_path'], 'r', encoding='utf-8') as f:
253
+ graph_data = json.load(f)
254
+
255
+ st.session_state['pipeline_graph_json'] = {
256
+ 'data': graph_data,
257
+ 'filename': Path(result['local_path']).name,
258
+ 'timestamp': datetime.now().isoformat()
259
+ }
260
+ except Exception as e:
261
+ # Don't break the flow if saving to pipeline state fails
262
+ pass
263
+
264
+ # Build Neuronpedia URL
265
+ if result['success']:
266
+ neuronpedia_url = (
267
+ f"https://www.neuronpedia.org/{result.get('model_id', 'gemma-2-2b')}/graph"
268
+ f"?sourceSet={result.get('source_set_name', 'clt-hp')}"
269
+ f"&slug={result.get('slug', '')}"
270
+ f"&pruningThreshold={result.get('node_threshold', 0.8)}"
271
+ f"&densityThreshold={result.get('desired_logit_prob', 0.95)}"
272
+ )
273
+
274
+ # Get the filename for display
275
+ if result.get('local_path'):
276
+ filename = Path(result['local_path']).name
277
+ st.success(f"✅ Graph generated successfully: `{filename}`\n\n" f"[**Open Graph on Neuronpedia**]({neuronpedia_url})")
278
+
279
+ # Auto-download the generated graph JSON
280
+ try:
281
+ import streamlit.components.v1 as components
282
+ import base64
283
+
284
+ with open(result['local_path'], 'r', encoding='utf-8') as f:
285
+ graph_json_content = f.read()
286
+
287
+ # Encode to base64 for JavaScript
288
+ b64 = base64.b64encode(graph_json_content.encode()).decode()
289
+
290
+ # Auto-download with JavaScript
291
+ html = f"""
292
+ <script>
293
+ function downloadFile() {{
294
+ const link = document.createElement('a');
295
+ link.href = 'data:application/json;base64,{b64}';
296
+ link.download = '{filename}';
297
+ document.body.appendChild(link);
298
+ link.click();
299
+ document.body.removeChild(link);
300
+ }}
301
+ // Trigger download after a short delay
302
+ setTimeout(downloadFile, 100);
303
+ </script>
304
+ """
305
+ components.html(html, height=50)
306
+
307
+ except Exception as e:
308
+ st.warning(f"⚠️ Could not prepare auto-download: {e}")
309
+
310
+
311
+ except Exception as e:
312
+ progress_bar.empty()
313
+ status_text.empty()
314
+ st.error(f"Unexpected error: {str(e)}")
315
+ with st.expander("Details"):
316
+ import traceback
317
+ st.code(traceback.format_exc())
318
+
319
+ st.markdown("---")
320
+
321
+ # ===== SECTION: ANALYZE GRAPH =====
322
+
323
+ st.subheader("2️⃣ Analyze Graph")
324
+
325
+ # Check if we just generated a graph
326
+ just_generated = st.session_state.get('generation_result') and st.session_state.generation_result.get('success')
327
+ generated_path = st.session_state.generation_result.get('local_path') if just_generated else None
328
+
329
+ if just_generated and generated_path:
330
+ # Auto-select the just-generated graph
331
+ from pathlib import Path as PathLib
332
+
333
+ # Convert to Path and handle both absolute and relative paths
334
+ gen_path = PathLib(generated_path)
335
+ if gen_path.is_absolute():
336
+ # Absolute path - make it relative to parent_dir
337
+ selected_json = str(gen_path.relative_to(parent_dir))
338
+ else:
339
+ # Already relative - use as is
340
+ selected_json = str(gen_path).replace('\\', '/')
341
+
342
+ st.info(f"📊 **Ready to analyze**: `{gen_path.name}` (just generated)")
343
+
344
+ # Option to select a different file
345
+ with st.expander("📁 Select a different graph file", expanded=False):
346
+ json_dir = parent_dir / "output" / "graph_data"
347
+ if json_dir.exists():
348
+ json_files = sorted(json_dir.glob("*.json"), key=lambda x: x.stat().st_mtime, reverse=True)
349
+ if json_files:
350
+ json_options = [str(f.relative_to(parent_dir)) for f in json_files]
351
+ # Find index of generated file
352
+ default_idx = 0
353
+ try:
354
+ default_idx = json_options.index(selected_json)
355
+ except ValueError:
356
+ pass
357
+
358
+ selected_json_alt = st.selectbox(
359
+ "Select JSON file",
360
+ options=json_options,
361
+ index=default_idx,
362
+ key="alt_json_select",
363
+ help="JSON files sorted by date (most recent first)"
364
+ )
365
+ if st.button("Use this file instead"):
366
+ selected_json = selected_json_alt
367
+ st.rerun()
368
+ else:
369
+ # Normal file selection (no graph just generated)
370
+ st.write("""
371
+ Extract static metrics (`node_influence`, `cumulative_influence`, `frac_external_raw`) from an existing graph.
372
+ """)
373
+
374
+ json_dir = parent_dir / "output" / "graph_data"
375
+ if json_dir.exists():
376
+ json_files = sorted(json_dir.glob("*.json"), key=lambda x: x.stat().st_mtime, reverse=True)
377
+
378
+ if json_files:
379
+ # Use relative paths for display
380
+ json_options = [str(f.relative_to(parent_dir)) for f in json_files]
381
+ selected_json = st.selectbox(
382
+ "Select JSON file",
383
+ options=json_options,
384
+ help="JSON files sorted by date (most recent first)"
385
+ )
386
+ else:
387
+ st.warning("No JSON files found in `output/graph_data/`")
388
+ selected_json = None
389
+ else:
390
+ st.warning("Directory `output/graph_data/` not found")
391
+ selected_json = None
392
+
393
+ # Show file info and analysis button if we have a selected file
394
+ if selected_json:
395
+ file_path = parent_dir / selected_json
396
+
397
+ # Check if file exists before accessing stats
398
+ if not file_path.exists():
399
+ st.error(f"❌ File not found: `{file_path.name}`")
400
+ st.warning("The file may have been moved or renamed. Please refresh the page or select another file.")
401
+ st.stop()
402
+
403
+ file_size = file_path.stat().st_size / 1024 / 1024
404
+ file_time = datetime.fromtimestamp(file_path.stat().st_mtime)
405
+
406
+ col1, col2, col3 = st.columns(3)
407
+ with col1:
408
+ st.metric("Size", f"{file_size:.2f} MB")
409
+ with col2:
410
+ st.metric("Date", file_time.strftime("%Y-%m-%d %H:%M"))
411
+ with col3:
412
+ st.metric("Name", file_path.name[:20] + "...")
413
+
414
+ # Extract button
415
+ button_label = "📊 Analyze This Graph" if just_generated else "📊 Analyze Graph"
416
+ if st.button(button_label, key="extract_existing", type="primary"):
417
+ try:
418
+ with st.spinner("Extracting metrics..."):
419
+ json_full_path = str(parent_dir / selected_json)
420
+ with open(json_full_path, 'r', encoding='utf-8') as f:
421
+ graph_data = json.load(f)
422
+
423
+ csv_output_path = str(parent_dir / "output" / "graph_feature_static_metrics.csv")
424
+ df = extract_static_metrics_from_json(
425
+ graph_data,
426
+ output_path=csv_output_path,
427
+ verbose=False
428
+ )
429
+
430
+ # Save in session_state to persist across reruns
431
+ st.session_state.extracted_graph_data = graph_data
432
+ st.session_state.extracted_csv_df = df
433
+ st.session_state.analysis_performed = True
434
+
435
+ st.success(f"✅ CSV generated: `{csv_output_path}`")
436
+ st.info("📊 Scroll down to see interactive visualizations")
437
+
438
+ except Exception as e:
439
+ st.error(f"❌ Error: {str(e)}")
440
+
441
+ st.markdown("---")
442
+
443
+ # ===== EXTRACTED DATA VISUALIZATION (persists across reruns) =====
444
+
445
+ if st.session_state.extracted_graph_data is not None and st.session_state.extracted_csv_df is not None:
446
+ graph_data = st.session_state.extracted_graph_data
447
+ df = st.session_state.extracted_csv_df
448
+
449
+ # Only show if analysis was performed
450
+ if st.session_state.get('analysis_performed', False):
451
+ st.header("Extracted Data Analysis")
452
+
453
+ # CSV Metrics
454
+ col1, col2, col3, col4, col5 = st.columns(5)
455
+ with col1:
456
+ st.metric("Features", len(df))
457
+ with col2:
458
+ st.metric("Unique Tokens", df['ctx_idx'].nunique())
459
+ with col3:
460
+ st.metric("Mean Activation", f"{df['activation'].mean():.3f}")
461
+ with col4:
462
+ # Use node_influence (marginal influence) for total sum
463
+ st.metric("Sum Node Infl", f"{df['node_influence'].sum():.2f}")
464
+ with col5:
465
+ st.metric("Mean Frac Ext", f"{df['frac_external_raw'].mean():.3f}")
466
+
467
+ with st.expander("View Complete Dataframe", expanded=False):
468
+ st.dataframe(df, use_container_width=True, height=600)
469
+
470
+ # Scatter plot: Layer vs Context Position with Influence
471
+
472
+ # Prepare data from JSON for scatter plot
473
+ if 'nodes' in graph_data:
474
+ import pandas as pd
475
+ import plotly.express as px
476
+
477
+ # Extract prompt_tokens from metadata to map ctx_idx -> token
478
+ prompt_tokens = graph_data.get('metadata', {}).get('prompt_tokens', [])
479
+
480
+ # Scatter plot visualization with filter
481
+ from eda.utils.graph_visualization import create_scatter_plot_with_filter
482
+ filtered_features = create_scatter_plot_with_filter(graph_data)
483
+
484
+ # Save filtered_features for export section
485
+ if filtered_features is not None and len(filtered_features) > 0:
486
+ st.session_state.filtered_features_export = filtered_features
487
+
488
+ # ===== RESULTS VISUALIZATION =====
489
+
490
+ if st.session_state.generation_result is not None:
491
+ result = st.session_state.generation_result
492
+
493
+ if result['success']:
494
+ st.header("Results")
495
+
496
+ # Metrics
497
+ col1, col2, col3, col4 = st.columns(4)
498
+ with col1:
499
+ st.metric("Nodes", result['num_nodes'])
500
+ with col2:
501
+ st.metric("Links", result['num_links'])
502
+ with col3:
503
+ st.metric("Model", result['model_id'])
504
+ with col4:
505
+ slug_short = result['slug'][:15] + "..." if len(result['slug']) > 15 else result['slug']
506
+ st.metric("Slug", slug_short)
507
+
508
+ # Show CSV if available
509
+ if st.session_state.static_metrics_df is not None:
510
+ df = st.session_state.static_metrics_df
511
+
512
+ col1, col2, col3, col4 = st.columns(4)
513
+ with col1:
514
+ st.metric("Features", len(df))
515
+ with col2:
516
+ st.metric("Sum Node Infl", f"{df['node_influence'].sum():.2f}")
517
+ with col3:
518
+ st.metric("Max Cumul", f"{df['cumulative_influence'].max():.4f}")
519
+ with col4:
520
+ st.metric("Mean Frac Ext", f"{df['frac_external_raw'].mean():.3f}")
521
+
522
+ with st.expander("Preview CSV"):
523
+ st.dataframe(df.head(20), use_container_width=True)
524
+
525
+ with st.expander("Distribution"):
526
+ try:
527
+ import plotly.express as px
528
+
529
+ col1, col2 = st.columns(2)
530
+ with col1:
531
+ fig = px.histogram(df, x='node_influence', nbins=50,
532
+ title='node_influence (marginal)')
533
+ st.plotly_chart(fig, use_container_width=True)
534
+ with col2:
535
+ fig = px.histogram(df, x='cumulative_influence', nbins=50,
536
+ title='cumulative_influence')
537
+ st.plotly_chart(fig, use_container_width=True)
538
+ except:
539
+ pass
540
+
541
+ csv_str = df.to_csv(index=False)
542
+ st.download_button(
543
+ "Download CSV",
544
+ csv_str,
545
+ "graph_feature_static_metrics.csv",
546
+ "text/csv"
547
+ )
548
+
549
+
550
+
551
+ # ===== SUMMARY CHARTS: COVERAGE AND STRENGTH =====
552
+ # Only show if analysis was performed
553
+ if st.session_state.get('analysis_performed', False):
554
+ # Data source: prefer extracted data, otherwise last generated graph
555
+ graph_data_for_plots = None
556
+ if st.session_state.get('extracted_graph_data') is not None:
557
+ graph_data_for_plots = st.session_state.extracted_graph_data
558
+ elif st.session_state.get('generation_result') is not None and st.session_state.generation_result.get('success'):
559
+ graph_data_for_plots = st.session_state.generation_result.get('graph_data')
560
+
561
+ if graph_data_for_plots is not None and 'nodes' in graph_data_for_plots:
562
+ with st.expander("Summary Charts: Coverage and Strength", expanded=False):
563
+ import pandas as pd
564
+ import plotly.express as px
565
+ import numpy as np
566
+
567
+ nodes_df = pd.DataFrame(graph_data_for_plots['nodes'])
568
+ is_feature = nodes_df['node_id'].astype(str).str[0].str.isdigit() & nodes_df['node_id'].astype(str).str.contains('_')
569
+ feat_nodes = nodes_df.loc[is_feature].copy()
570
+
571
+ if len(feat_nodes) == 0:
572
+ st.warning("No features found in current data.")
573
+ else:
574
+ # Add slider to filter (reuse same logic as create_scatter_plot_with_filter)
575
+ max_influence = feat_nodes['influence'].max()
576
+
577
+ st.markdown("### Filter Features by Cumulative Influence")
578
+ st.info(f"""
579
+ **Use the slider to filter the charts below** based on cumulative influence coverage (0-{max_influence:.2f}).
580
+ Summary charts will show only features with `influence <= threshold`.
581
+ """)
582
+
583
+ # Check if main slider already exists (from create_scatter_plot_with_filter)
584
+ # If it exists, use it, otherwise create a new one
585
+ slider_key = "cumulative_slider_summary"
586
+ if "cumulative_slider_main" in st.session_state:
587
+ # Reuse main slider value
588
+ cumulative_threshold_summary = st.session_state.cumulative_slider_main
589
+ st.info(f"Synchronized with main slider: threshold = {cumulative_threshold_summary:.4f}")
590
+ else:
591
+ # Create separate slider
592
+ cumulative_threshold_summary = st.slider(
593
+ "Cumulative Influence Threshold (summary charts)",
594
+ min_value=0.0,
595
+ max_value=float(max_influence),
596
+ value=float(max_influence),
597
+ step=0.01,
598
+ key=slider_key,
599
+ help=f"Keep only features with influence <= threshold. Range: 0.0 - {max_influence:.2f}"
600
+ )
601
+
602
+ # Apply filter
603
+ feat_nodes_filtered = feat_nodes[feat_nodes['influence'] <= cumulative_threshold_summary].copy()
604
+
605
+ if len(feat_nodes_filtered) == 0:
606
+ st.warning("No features match the current filter. Increase the threshold.")
607
+ else:
608
+ # Show filter statistics
609
+ col1, col2, col3 = st.columns(3)
610
+ with col1:
611
+ st.metric("Total Features", len(feat_nodes))
612
+ with col2:
613
+ st.metric("Filtered Features", len(feat_nodes_filtered))
614
+ with col3:
615
+ pct = (len(feat_nodes_filtered) / len(feat_nodes) * 100) if len(feat_nodes) > 0 else 0
616
+ st.metric("% Kept", f"{pct:.1f}%")
617
+
618
+ st.markdown("---")
619
+
620
+ # Calculate n_ctx and statistics per feature
621
+ feat_nodes_filtered['feature_key'] = feat_nodes_filtered['node_id'].str.rsplit('_', n=1).str[0]
622
+ cov = (
623
+ feat_nodes_filtered.groupby('feature_key')['ctx_idx'].nunique()
624
+ .rename('n_ctx').reset_index()
625
+ )
626
+ per_feat = (
627
+ feat_nodes_filtered.groupby('feature_key')
628
+ .agg(mean_influence=('influence','mean'),
629
+ mean_activation=('activation','mean'))
630
+ .reset_index()
631
+ )
632
+ per_feat_cov = per_feat.merge(cov, on='feature_key', how='left')
633
+ nodes_with_cov = feat_nodes_filtered.merge(cov, on='feature_key', how='left')
634
+
635
+ # Chart 1: Coverage (Histogram + ECDF)
636
+ st.subheader("Feature Coverage (n_ctx)")
637
+ c1, c2 = st.columns(2)
638
+ with c1:
639
+ fig_hist = px.histogram(cov, x='n_ctx', color_discrete_sequence=['#4C78A8'])
640
+ fig_hist.update_layout(title='n_ctx distribution per feature',
641
+ xaxis_title='Number of unique ctx_idx',
642
+ yaxis_title='Number of features')
643
+ st.plotly_chart(fig_hist, use_container_width=True)
644
+ with c2:
645
+ fig_ecdf = px.ecdf(cov, x='n_ctx', color_discrete_sequence=['#F58518'])
646
+ fig_ecdf.update_layout(title='n_ctx ECDF',
647
+ xaxis_title='Number of unique ctx_idx',
648
+ yaxis_title='Cumulative fraction')
649
+ st.plotly_chart(fig_ecdf, use_container_width=True)
650
+
651
+ # Chart 2: Strength vs Coverage (Activation vs n_ctx and Scatter mean)
652
+ st.subheader("Strength vs Coverage")
653
+ c3, c4 = st.columns(2)
654
+ with c3:
655
+ fig_violin = px.violin(nodes_with_cov, x='n_ctx', y='activation', box=True, points=False)
656
+ fig_violin.update_layout(title='Activation per n_ctx',
657
+ xaxis_title='n_ctx (feature)',
658
+ yaxis_title='Activation (node)')
659
+ st.plotly_chart(fig_violin, use_container_width=True)
660
+ with c4:
661
+ fig_scatter = px.scatter(per_feat_cov, x='mean_activation', y='mean_influence',
662
+ color='n_ctx', size='n_ctx', hover_data=['feature_key'],
663
+ color_continuous_scale='Viridis')
664
+ # Correlations for subtitle
665
+ if len(per_feat_cov) >= 2:
666
+ pearson = float(per_feat_cov['mean_activation'].corr(per_feat_cov['mean_influence'], method='pearson'))
667
+ spearman = float(per_feat_cov['mean_activation'].corr(per_feat_cov['mean_influence'], method='spearman'))
668
+ fig_scatter.update_layout(title=f'Mean activation vs mean influence<br>(r={pearson:.2f}, rho={spearman:.2f})')
669
+ else:
670
+ fig_scatter.update_layout(title='Mean activation vs mean influence')
671
+ fig_scatter.update_layout(xaxis_title='Mean activation (per feature)',
672
+ yaxis_title='Mean influence (per feature)')
673
+ st.plotly_chart(fig_scatter, use_container_width=True)
674
+
675
+ # Quick insights
676
+ with st.expander("Insights from charts", expanded=False):
677
+ # Calculate key statistics
678
+ top_n_ctx = cov['n_ctx'].max()
679
+ n_top = len(cov[cov['n_ctx'] == top_n_ctx])
680
+ top_features = cov[cov['n_ctx'] == top_n_ctx]['feature_key'].tolist()
681
+
682
+ st.markdown(f"""
683
+ **Coverage (n_ctx)**:
684
+ - {len(cov)} unique features in filtered dataset
685
+ - {n_top} features present in all {top_n_ctx} contexts
686
+ - Multi-context features ({top_n_ctx}): {', '.join([f'`{f}`' for f in top_features[:5]])}
687
+
688
+ **Strength vs Coverage**:
689
+ - Activation-influence correlation: **r={pearson:.2f}** (Pearson), **rho={spearman:.2f}** (Spearman)
690
+ - {"Negative correlation: features with high activation tend to have low influence" if pearson < -0.2 else "Weak or positive correlation between activation and influence"}
691
+ """)
692
+
693
+ # Group statistics
694
+ if len(nodes_with_cov) > 0:
695
+ g1 = nodes_with_cov[nodes_with_cov['n_ctx'] == 1]
696
+ g_multi = nodes_with_cov[nodes_with_cov['n_ctx'] >= 5]
697
+
698
+ if len(g1) > 0 and len(g_multi) > 0:
699
+ st.markdown(f"""
700
+ **Group comparison**:
701
+ - n_ctx=1: {len(g1)} nodes, mean_activation={g1['activation'].mean():.2f}, mean_influence={g1['influence'].mean():.3f}
702
+ - n_ctx>=5: {len(g_multi)} nodes, mean_activation={g_multi['activation'].mean():.2f}, mean_influence={g_multi['influence'].mean():.3f}
703
+ """)
704
+
705
+ # ===== EXPORT SELECTED FEATURES =====
706
+
707
+ if st.session_state.get('analysis_performed', False) and st.session_state.get('filtered_features_export') is not None:
708
+ filtered_features = st.session_state.filtered_features_export
709
+
710
+ if len(filtered_features) > 0:
711
+ st.markdown("---")
712
+ st.subheader("Export Selected Features")
713
+
714
+ # Convert dataframe to format [{"layer": X, "index": Y}, ...]
715
+ # Remove duplicates using set of tuples (layer, feature)
716
+ unique_features = {
717
+ (int(row['layer']), int(row['feature']))
718
+ for _, row in filtered_features.iterrows()
719
+ }
720
+
721
+ # Convert to sorted list of dicts
722
+ features_export = [
723
+ {"layer": layer, "index": feature}
724
+ for layer, feature in sorted(unique_features)
725
+ ]
726
+
727
+ # Also extract selected node_ids (for subgraph upload)
728
+ node_ids_export = sorted(filtered_features['id'].unique().tolist())
729
+
730
+ # Create complete export with features AND node_ids
731
+ export_data = {
732
+ "features": features_export,
733
+ "node_ids": node_ids_export,
734
+ "metadata": {
735
+ "n_features": len(features_export),
736
+ "n_nodes": len(node_ids_export),
737
+ "cumulative_threshold": st.session_state.get('cumulative_slider_main', None),
738
+ "exported_at": datetime.now().isoformat()
739
+ }
740
+ }
741
+
742
+ # Statistics
743
+ col1, col2, col3 = st.columns(3)
744
+ with col1:
745
+ st.metric("Unique Features", len(features_export))
746
+ with col2:
747
+ st.metric("Selected Nodes", len(node_ids_export))
748
+ with col3:
749
+ st.metric("Unique Layers", len({f['layer'] for f in features_export}))
750
+
751
+ # Save to pipeline session_state for auto-loading in next steps
752
+ st.session_state['pipeline_selected_nodes'] = {
753
+ 'data': export_data,
754
+ 'filename': f"st1_feat_node_subset_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
755
+ 'timestamp': datetime.now().isoformat()
756
+ }
757
+
758
+ # Download JSON (complete format)
759
+ st.download_button(
760
+ label="📥 Download Features+Nodes Subset",
761
+ data=json.dumps(export_data, indent=2, ensure_ascii=False),
762
+ file_name="selected_features_with_nodes.json",
763
+ mime="application/json",
764
+ help="Complete format with features and node_ids (for Node Grouping + Probe Prompts + batch_get_activations.py)",
765
+ use_container_width=True,
766
+ type="primary"
767
+ )
768
+
769
+ # LEGACY BUTTON (hidden - all tools now support complete format)
770
+ # with col_legacy:
771
+ # st.download_button(
772
+ # label="Download Features JSON (legacy)",
773
+ # data=json.dumps(features_export, indent=2, ensure_ascii=False),
774
+ # file_name="selected_features.json",
775
+ # mime="application/json",
776
+ # help="Legacy format (features only, compatible with batch_get_activations.py)"
777
+ # )
778
+
779
+ # Preview
780
+ with st.expander("Preview Complete Export", expanded=False):
781
+ st.json({
782
+ "features": features_export[:5],
783
+ "node_ids": node_ids_export[:10],
784
+ "metadata": export_data["metadata"]
785
+ })
786
+
787
+ # ===== FOOTER =====
788
+
789
+ st.sidebar.markdown("---")
790
+ st.sidebar.subheader("Info")
791
+ st.sidebar.markdown("""
792
+ **Attribution Graph**: visualizes how SAE features contribute to predictions.
793
+
794
+ **Elements**:
795
+ - Embedding nodes: input tokens
796
+ - Feature nodes: SAE latents
797
+ - Logit nodes: predicted tokens
798
+ """)
799
+
800
+ st.sidebar.caption("Powered by Neuronpedia API")
801
+
eda/pages/01_Probe_Prompts.py ADDED
The diff for this file is too large to render. See raw diff
 
eda/pages/02_Node_Grouping.py ADDED
@@ -0,0 +1,1320 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Page 2 - Node Grouping: Classify and name supernodes for interpretation"""
2
+ import sys
3
+ from pathlib import Path
4
+
5
+ # Add parent directory to path
6
+ parent_dir = Path(__file__).parent.parent.parent
7
+ if str(parent_dir) not in sys.path:
8
+ sys.path.insert(0, str(parent_dir))
9
+
10
+ import streamlit as st
11
+ import pandas as pd
12
+ import json
13
+ import io
14
+ import os
15
+ from datetime import datetime
16
+ from dotenv import load_dotenv
17
+
18
+ # Load environment variables
19
+ load_dotenv()
20
+
21
+ # Import node grouping functions
22
+ import importlib.util
23
+ script_path = parent_dir / "scripts" / "02_node_grouping.py"
24
+ spec = importlib.util.spec_from_file_location("node_grouping", script_path)
25
+ node_grouping = importlib.util.module_from_spec(spec)
26
+ spec.loader.exec_module(node_grouping)
27
+ prepare_dataset = node_grouping.prepare_dataset
28
+ classify_nodes = node_grouping.classify_nodes
29
+ name_nodes = node_grouping.name_nodes
30
+ DEFAULT_THRESHOLDS = node_grouping.DEFAULT_THRESHOLDS
31
+
32
+ st.set_page_config(page_title="Node Grouping", page_icon="🔗", layout="wide")
33
+
34
+ st.title("🔗 Node Grouping & Classification")
35
+
36
+ st.info("""
37
+ **Automatically classify and name supernodes** to facilitate attribution graph interpretation.
38
+
39
+ This pipeline transforms SAE features into interpretable supernodes through 3 steps:
40
+ 1. **Preparation**: Identify functional vs semantic tokens and find target tokens
41
+ 2. **Classification**: Assign each feature to a class (Semantic, Say X, Relationship)
42
+ 3. **Naming**: Generate descriptive names for each supernode
43
+ """)
44
+
45
+ # ===== SIDEBAR: CONFIGURATION =====
46
+
47
+ st.sidebar.header("⚙️ Configuration")
48
+
49
+ # File upload
50
+ st.sidebar.subheader("📁 Input Files")
51
+
52
+ uploaded_graph = st.sidebar.file_uploader(
53
+ "Graph JSON (required)",
54
+ type=["json"],
55
+ help="Generated in Step 1 (Graph Generation). The main graph JSON file (e.g., st1_graph_*.json)"
56
+ )
57
+
58
+ # Auto-load from pipeline if not manually uploaded
59
+ if uploaded_graph is None and 'pipeline_graph_json' in st.session_state:
60
+ st.sidebar.success(f"✅ Auto-loaded from Step 1: `{st.session_state['pipeline_graph_json']['filename']}`")
61
+
62
+ uploaded_nodes_json = st.sidebar.file_uploader(
63
+ "Selected Nodes JSON (required)",
64
+ type=["json"],
65
+ help="Generated in Step 1 (Graph Generation). Contains selected node_ids for subgraph upload (e.g., st1_feat_node_subset_*.json)"
66
+ )
67
+
68
+ # Auto-load from pipeline if not manually uploaded
69
+ if uploaded_nodes_json is None and 'pipeline_selected_nodes' in st.session_state:
70
+ st.sidebar.success(f"✅ Auto-loaded from Step 1: `{st.session_state['pipeline_selected_nodes']['filename']}`")
71
+
72
+ uploaded_json = st.sidebar.file_uploader(
73
+ "Activations JSON (required)",
74
+ type=["json"],
75
+ help="Generated in Step 2 (Probe Prompts). Token-by-token activation data (e.g., st2_activations_*.json or activations_dump*.json)"
76
+ )
77
+
78
+ # Auto-load from pipeline if not manually uploaded
79
+ if uploaded_json is None and 'pipeline_activations_json' in st.session_state:
80
+ st.sidebar.success(f"✅ Auto-loaded from Step 2: `{st.session_state['pipeline_activations_json']['filename']}`")
81
+
82
+ uploaded_csv = st.sidebar.file_uploader(
83
+ "Activation Analysis CSV (required)",
84
+ type=["csv"],
85
+ help="Generated in Step 2 (Probe Prompts). Enriched CSV with probe analysis results (e.g., st2_probe_metrics_*.csv or *_export_ENRICHED.csv)"
86
+ )
87
+
88
+ # Auto-load from pipeline if not manually uploaded
89
+ if uploaded_csv is None and 'pipeline_analysis_csv' in st.session_state:
90
+ st.sidebar.success(f"✅ Auto-loaded from Step 2: `{st.session_state['pipeline_analysis_csv']['filename']}`")
91
+
92
+ # Pipeline parameters
93
+ st.sidebar.subheader("🎛️ Pipeline Parameters")
94
+
95
+ window_size = st.sidebar.slider(
96
+ "Target search window",
97
+ min_value=3,
98
+ max_value=15,
99
+ value=7,
100
+ help="Maximum number of tokens to explore to find semantic targets"
101
+ )
102
+
103
+ # Token blacklist
104
+ st.sidebar.markdown("**🚫 Token Blacklist**")
105
+ blacklist_input = st.sidebar.text_area(
106
+ "Tokens to exclude (one per line)",
107
+ value=st.session_state.get('blacklist_input', ''),
108
+ height=100,
109
+ help="Tokens that should not be used as labels. If the first token with max activation is in blacklist, the system falls back to the next one. Enter one token per line (case-insensitive).",
110
+ key='blacklist_input'
111
+ )
112
+
113
+ # Parse blacklist (split by newline, strip, lowercase)
114
+ blacklist_tokens = set()
115
+ if blacklist_input.strip():
116
+ for line in blacklist_input.strip().split('\n'):
117
+ token = line.strip().lower()
118
+ if token:
119
+ blacklist_tokens.add(token)
120
+
121
+ if blacklist_tokens:
122
+ st.sidebar.info(f"🚫 {len(blacklist_tokens)} tokens in blacklist")
123
+ else:
124
+ st.sidebar.caption("No tokens in blacklist")
125
+
126
+ # Classification thresholds
127
+ st.sidebar.subheader("📊 Classification Thresholds")
128
+
129
+ # Threshold management (save/load)
130
+ st.sidebar.markdown("**💾 Threshold Management**")
131
+
132
+ col_save, col_load = st.sidebar.columns(2)
133
+
134
+ with col_save:
135
+ # Prepare current thresholds for export
136
+ current_thresholds = {
137
+ 'dict_peak_consistency_min': st.session_state.get('dict_consistency', DEFAULT_THRESHOLDS['dict_peak_consistency_min']),
138
+ 'dict_n_distinct_peaks_max': st.session_state.get('dict_n_peaks', DEFAULT_THRESHOLDS['dict_n_distinct_peaks_max']),
139
+ 'sayx_func_vs_sem_min': st.session_state.get('sayx_func_min', DEFAULT_THRESHOLDS['sayx_func_vs_sem_min']),
140
+ 'sayx_conf_f_min': st.session_state.get('sayx_conf_f', DEFAULT_THRESHOLDS['sayx_conf_f_min']),
141
+ 'sayx_layer_min': st.session_state.get('sayx_layer', DEFAULT_THRESHOLDS['sayx_layer_min']),
142
+ 'rel_sparsity_max': st.session_state.get('rel_sparsity', DEFAULT_THRESHOLDS['rel_sparsity_max']),
143
+ 'sem_layer_max': st.session_state.get('sem_layer', DEFAULT_THRESHOLDS['sem_layer_max']),
144
+ 'sem_conf_s_min': st.session_state.get('sem_conf_s', DEFAULT_THRESHOLDS['sem_conf_s_min']),
145
+ 'sem_func_vs_sem_max': st.session_state.get('sem_func_vs_sem', DEFAULT_THRESHOLDS['sem_func_vs_sem_max']),
146
+ }
147
+
148
+ thresholds_json = json.dumps(current_thresholds, indent=2)
149
+ st.download_button(
150
+ label="💾 Save",
151
+ data=thresholds_json,
152
+ file_name=f"thresholds_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
153
+ mime="application/json",
154
+ help="Download current thresholds as JSON",
155
+ use_container_width=True
156
+ )
157
+
158
+ with col_load:
159
+ uploaded_thresholds = st.file_uploader(
160
+ "Load Thresholds",
161
+ type=['json'],
162
+ help="Load thresholds from JSON file",
163
+ label_visibility="collapsed",
164
+ key="upload_thresholds"
165
+ )
166
+
167
+ # Load thresholds from file if provided
168
+ if uploaded_thresholds is not None:
169
+ try:
170
+ uploaded_thresholds.seek(0) # Reset file pointer to beginning
171
+ loaded_thresholds = json.load(uploaded_thresholds)
172
+
173
+ # Validate that it contains all required keys
174
+ required_keys = set(DEFAULT_THRESHOLDS.keys())
175
+ loaded_keys = set(loaded_thresholds.keys())
176
+
177
+ if required_keys == loaded_keys:
178
+ # Update session state
179
+ st.session_state['dict_consistency'] = loaded_thresholds['dict_peak_consistency_min']
180
+ st.session_state['dict_n_peaks'] = loaded_thresholds['dict_n_distinct_peaks_max']
181
+ st.session_state['sayx_func_min'] = loaded_thresholds['sayx_func_vs_sem_min']
182
+ st.session_state['sayx_conf_f'] = loaded_thresholds['sayx_conf_f_min']
183
+ st.session_state['sayx_layer'] = loaded_thresholds['sayx_layer_min']
184
+ st.session_state['rel_sparsity'] = loaded_thresholds['rel_sparsity_max']
185
+ st.session_state['sem_layer'] = loaded_thresholds['sem_layer_max']
186
+ st.session_state['sem_conf_s'] = loaded_thresholds['sem_conf_s_min']
187
+ st.session_state['sem_func_vs_sem'] = loaded_thresholds['sem_func_vs_sem_max']
188
+
189
+ st.sidebar.success("✅ Thresholds loaded!")
190
+ # Remove file uploader to avoid continuous reloads
191
+ st.session_state['upload_thresholds'] = None
192
+ st.rerun()
193
+ else:
194
+ missing = required_keys - loaded_keys
195
+ extra = loaded_keys - required_keys
196
+ error_msg = []
197
+ if missing:
198
+ error_msg.append(f"Missing keys: {', '.join(missing)}")
199
+ if extra:
200
+ error_msg.append(f"Extra keys: {', '.join(extra)}")
201
+ st.sidebar.error(f"❌ Invalid JSON file:\n" + "\n".join(error_msg))
202
+ except json.JSONDecodeError as e:
203
+ st.sidebar.error(f"❌ JSON parsing error: {e}")
204
+ except Exception as e:
205
+ st.sidebar.error(f"❌ Error loading thresholds: {e}")
206
+
207
+ # Reset thresholds
208
+ if st.sidebar.button("🔄 Reset Default", help="Restore default thresholds", use_container_width=True):
209
+ for key in ['dict_consistency', 'dict_n_peaks', 'sayx_func_min', 'sayx_conf_f',
210
+ 'sayx_layer', 'rel_sparsity', 'sem_layer', 'sem_conf_s', 'sem_func_vs_sem']:
211
+ if key in st.session_state:
212
+ del st.session_state[key]
213
+ st.sidebar.success("✅ Thresholds restored!")
214
+ st.rerun()
215
+
216
+ st.sidebar.markdown("---")
217
+
218
+ with st.sidebar.expander("Dictionary Semantic", expanded=False):
219
+ dict_consistency = st.slider(
220
+ "Peak Consistency (min)",
221
+ min_value=0.5,
222
+ max_value=1.0,
223
+ value=st.session_state.get('dict_consistency', DEFAULT_THRESHOLDS['dict_peak_consistency_min']),
224
+ step=0.05,
225
+ help="How often the token should be peak when it appears in the prompt",
226
+ key='dict_consistency'
227
+ )
228
+ dict_n_peaks = st.number_input(
229
+ "N Distinct Peaks (max)",
230
+ min_value=1,
231
+ max_value=5,
232
+ value=st.session_state.get('dict_n_peaks', DEFAULT_THRESHOLDS['dict_n_distinct_peaks_max']),
233
+ help="Maximum number of distinct tokens as peak",
234
+ key='dict_n_peaks'
235
+ )
236
+
237
+ with st.sidebar.expander("Say X", expanded=False):
238
+ sayx_func_min = st.slider(
239
+ "Func vs Sem % (min)",
240
+ min_value=0.0,
241
+ max_value=100.0,
242
+ value=st.session_state.get('sayx_func_min', DEFAULT_THRESHOLDS['sayx_func_vs_sem_min']),
243
+ step=5.0,
244
+ help="% difference between max activation on functional vs semantic",
245
+ key='sayx_func_min'
246
+ )
247
+ sayx_conf_f = st.slider(
248
+ "Confidence F (min)",
249
+ min_value=0.5,
250
+ max_value=1.0,
251
+ value=st.session_state.get('sayx_conf_f', DEFAULT_THRESHOLDS['sayx_conf_f_min']),
252
+ step=0.05,
253
+ help="Fraction of peaks on functional tokens",
254
+ key='sayx_conf_f'
255
+ )
256
+ sayx_layer = st.number_input(
257
+ "Layer (min)",
258
+ min_value=0,
259
+ max_value=30,
260
+ value=st.session_state.get('sayx_layer', DEFAULT_THRESHOLDS['sayx_layer_min']),
261
+ help="Minimum layer for Say X (typically high layers)",
262
+ key='sayx_layer'
263
+ )
264
+
265
+ with st.sidebar.expander("Relationship", expanded=False):
266
+ rel_sparsity = st.slider(
267
+ "Sparsity (max)",
268
+ min_value=0.0,
269
+ max_value=1.0,
270
+ value=st.session_state.get('rel_sparsity', DEFAULT_THRESHOLDS['rel_sparsity_max']),
271
+ step=0.05,
272
+ help="Maximum sparsity (low = diffuse activation)",
273
+ key='rel_sparsity'
274
+ )
275
+
276
+ with st.sidebar.expander("Semantic (Concept)", expanded=False):
277
+ sem_layer = st.number_input(
278
+ "Layer (max)",
279
+ min_value=0,
280
+ max_value=10,
281
+ value=st.session_state.get('sem_layer', DEFAULT_THRESHOLDS['sem_layer_max']),
282
+ help="Maximum layer for Dictionary fallback",
283
+ key='sem_layer'
284
+ )
285
+ sem_conf_s = st.slider(
286
+ "Confidence S (min)",
287
+ min_value=0.0,
288
+ max_value=1.0,
289
+ value=st.session_state.get('sem_conf_s', DEFAULT_THRESHOLDS['sem_conf_s_min']),
290
+ step=0.05,
291
+ help="Fraction of peaks on semantic tokens",
292
+ key='sem_conf_s'
293
+ )
294
+ sem_func_vs_sem = st.slider(
295
+ "Func vs Sem % (max)",
296
+ min_value=0.0,
297
+ max_value=100.0,
298
+ value=st.session_state.get('sem_func_vs_sem', DEFAULT_THRESHOLDS['sem_func_vs_sem_max']),
299
+ step=5.0,
300
+ help="Maximum % difference to consider Semantic",
301
+ key='sem_func_vs_sem'
302
+ )
303
+
304
+ # ===== MAIN: PIPELINE EXECUTION =====
305
+
306
+ # Use uploaded files with fallback to pipeline session_state
307
+ # Priority: Manual upload > Auto-load from session_state > None
308
+
309
+ # CSV
310
+ if uploaded_csv is not None:
311
+ csv_to_use = uploaded_csv
312
+ elif 'pipeline_analysis_csv' in st.session_state:
313
+ # Create a file-like object from DataFrame
314
+ csv_data = st.session_state['pipeline_analysis_csv']['data']
315
+ csv_to_use = io.BytesIO(csv_data.to_csv(index=False).encode('utf-8'))
316
+ csv_to_use.name = st.session_state['pipeline_analysis_csv']['filename']
317
+ else:
318
+ csv_to_use = None
319
+
320
+ # Activations JSON
321
+ if uploaded_json is not None:
322
+ json_to_use = uploaded_json
323
+ elif 'pipeline_activations_json' in st.session_state:
324
+ # Create a file-like object from dict
325
+ json_str = json.dumps(st.session_state['pipeline_activations_json']['data'])
326
+ json_to_use = io.BytesIO(json_str.encode('utf-8'))
327
+ json_to_use.name = st.session_state['pipeline_activations_json']['filename']
328
+ else:
329
+ json_to_use = None
330
+
331
+ # Graph JSON
332
+ if uploaded_graph is not None:
333
+ graph_to_use = uploaded_graph
334
+ elif 'pipeline_graph_json' in st.session_state:
335
+ # Create a file-like object from dict
336
+ graph_str = json.dumps(st.session_state['pipeline_graph_json']['data'])
337
+ graph_to_use = io.BytesIO(graph_str.encode('utf-8'))
338
+ graph_to_use.name = st.session_state['pipeline_graph_json']['filename']
339
+ else:
340
+ graph_to_use = None
341
+
342
+ # Selected Nodes JSON
343
+ if uploaded_nodes_json is not None:
344
+ nodes_json_to_use = uploaded_nodes_json
345
+ elif 'pipeline_selected_nodes' in st.session_state:
346
+ # Create a file-like object from dict
347
+ nodes_str = json.dumps(st.session_state['pipeline_selected_nodes']['data'])
348
+ nodes_json_to_use = io.BytesIO(nodes_str.encode('utf-8'))
349
+ nodes_json_to_use.name = st.session_state['pipeline_selected_nodes']['filename']
350
+ else:
351
+ nodes_json_to_use = None
352
+
353
+ if csv_to_use is None:
354
+ st.warning("⬆️ Load a CSV file to begin")
355
+ st.markdown("""
356
+ ### 📖 How It Works
357
+
358
+ #### Step 1: Dataset Preparation
359
+ - **Classify tokens**: Identify functional tokens (e.g. "is", "the", ",") vs semantic tokens (e.g. "Texas", "capital")
360
+ - **Target tokens**: For functional tokens, find the first semantic token in the specified direction
361
+ - **Source**: Use tokens from JSON if available, otherwise fallback tokenization
362
+
363
+ #### Step 2: Node Classification
364
+
365
+ Each feature is classified based on aggregate metrics:
366
+
367
+ - **Semantic (Dictionary)**: Always activates on the same specific token
368
+ - E.g.: Feature that only activates on "Texas"
369
+ - Characteristics: high peak_consistency, n_distinct_peaks = 1
370
+
371
+ - **Semantic (Concept)**: Activates on semantically similar tokens
372
+ - E.g.: Feature that activates on "city", "capital", "state"
373
+ - Characteristics: high conf_S, medium-low layer
374
+
375
+ - **Say X**: Activates on functional tokens to predict the next token
376
+ - E.g.: Feature that activates on "is" before "Austin"
377
+ - Characteristics: high func_vs_sem, high conf_F, high layer
378
+
379
+ - **Relationship**: Connects multiple semantic concepts
380
+ - E.g.: Feature that activates on "city", "capital", "state" together
381
+ - Characteristics: low sparsity (diffuse activation), high K
382
+
383
+ #### Step 3: Supernode Naming
384
+
385
+ Generate descriptive names for each supernode:
386
+
387
+ - **Relationship**: `"(X) related"` where X is the first semantic token with max activation
388
+ - **Semantic**: Name of token with max activation (e.g. "Texas", "city")
389
+ - **Say X**: `"Say (X)"` where X is the target_token (e.g. "Say (Austin)")
390
+
391
+ ### 🎯 Key Parameters
392
+
393
+ - **Peak Consistency**: How often a token is peak when it appears in the prompt
394
+ - **Func vs Sem %**: % difference between max activation on functional vs semantic
395
+ - **Confidence F/S**: Fraction of peaks on functional/semantic tokens
396
+ - **Sparsity**: How concentrated (high) vs diffuse (low) the activation is
397
+ - **Layer**: Model layer where the feature resides
398
+ """)
399
+ st.stop()
400
+
401
+ # Load CSV
402
+ try:
403
+ if isinstance(csv_to_use, Path):
404
+ # Default file (path)
405
+ df = pd.read_csv(csv_to_use)
406
+ csv_name = csv_to_use.name
407
+ else:
408
+ # Uploaded file
409
+ df = pd.read_csv(csv_to_use)
410
+ csv_name = csv_to_use.name if hasattr(csv_to_use, 'name') else 'uploaded file'
411
+ except Exception as e:
412
+ st.error(f"❌ CSV loading error: {e}")
413
+ st.stop()
414
+
415
+ # Load Graph JSON (for graph_name)
416
+ graph_name = None
417
+ if graph_to_use:
418
+ if isinstance(graph_to_use, Path):
419
+ graph_name = graph_to_use.name
420
+ else:
421
+ graph_name = graph_to_use.name if hasattr(graph_to_use, 'name') else 'uploaded file'
422
+
423
+ # Load JSON (optional)
424
+ tokens_json = None
425
+ json_name = None
426
+ n_prompts = 0
427
+ if json_to_use:
428
+ try:
429
+ if isinstance(json_to_use, Path):
430
+ # Default file (path)
431
+ with open(json_to_use, 'r', encoding='utf-8') as f:
432
+ tokens_json = json.load(f)
433
+ json_name = json_to_use.name
434
+ else:
435
+ # Uploaded file
436
+ json_to_use.seek(0) # Reset file pointer to beginning
437
+ tokens_json = json.load(json_to_use)
438
+ json_name = json_to_use.name if hasattr(json_to_use, 'name') else 'uploaded file'
439
+
440
+ n_prompts = len(tokens_json.get('results', []))
441
+ except Exception as e:
442
+ st.warning(f"⚠️ JSON loading error: {e}")
443
+
444
+ # Load Selected Nodes JSON (optional, for subgraph upload)
445
+ selected_nodes_data = None
446
+ nodes_name = None
447
+ n_nodes = 0
448
+ n_features = 0
449
+ if nodes_json_to_use:
450
+ try:
451
+ nodes_json_to_use.seek(0) # Reset file pointer to beginning
452
+ selected_nodes_data = json.load(nodes_json_to_use)
453
+ # Save in session state for upload
454
+ st.session_state['selected_nodes_data'] = selected_nodes_data
455
+
456
+ # Get filename
457
+ if isinstance(nodes_json_to_use, Path):
458
+ nodes_name = nodes_json_to_use.name
459
+ else:
460
+ nodes_name = nodes_json_to_use.name if hasattr(nodes_json_to_use, 'name') else 'uploaded file'
461
+
462
+ # Show info
463
+ metadata = selected_nodes_data.get('metadata', {})
464
+ n_nodes = metadata.get('n_nodes', len(selected_nodes_data.get('node_ids', [])))
465
+ n_features = metadata.get('n_features', len(selected_nodes_data.get('features', [])))
466
+ except Exception as e:
467
+ st.warning(f"⚠️ Selected Nodes JSON loading error: {e}")
468
+
469
+ # ===== UNIFIED STATUS MESSAGE =====
470
+ st.success(f"✅ **Pipeline ready**: {len(df)} records, {df['feature_key'].nunique()} unique features, {n_prompts} prompts")
471
+
472
+ with st.expander("📋 Loaded files details", expanded=False):
473
+ if graph_name:
474
+ st.write(f"- **Graph JSON**: `{graph_name}`")
475
+ if nodes_name:
476
+ st.write(f"- **Selected Nodes**: `{nodes_name}` ({n_features} features, {n_nodes} nodes)")
477
+ if json_name:
478
+ st.write(f"- **Activations JSON**: `{json_name}` ({n_prompts} prompts)")
479
+ st.write(f"- **Analysis CSV**: `{csv_name}` ({len(df)} rows, {df['feature_key'].nunique()} features)")
480
+
481
+ # ===== STEP 1: PREPARATION =====
482
+
483
+ st.header("📋 Step 1: Dataset Preparation")
484
+
485
+ with st.expander("ℹ️ What does this step do?", expanded=False):
486
+ st.markdown("""
487
+ **Classify each token** as:
488
+ - **Functional**: Token with low semantic specificity (e.g. "is", "the", ",")
489
+ - **Semantic**: Token with specific meaning (e.g. "Texas", "capital")
490
+
491
+ **Find target tokens** for functional tokens:
492
+ - Functional tokens "point" to nearby semantic tokens
493
+ - E.g.: "is" → "Austin" (forward), "," → "Texas" (backward) + "USA" (forward)
494
+
495
+ **Token source**:
496
+ - Prefers tokens from JSON activations (more accurate)
497
+ - Falls back to tokenization of prompt text
498
+ """)
499
+
500
+ if st.button("▶️ Run Step 1", key="run_step1"):
501
+ with st.spinner("Preparing dataset..."):
502
+ try:
503
+ df_prepared = prepare_dataset(
504
+ df,
505
+ tokens_json=tokens_json,
506
+ window=window_size,
507
+ verbose=False
508
+ )
509
+
510
+ # Save in session state
511
+ st.session_state['df_prepared'] = df_prepared
512
+
513
+ # Statistics
514
+ n_functional = (df_prepared['peak_token_type'] == 'functional').sum()
515
+ n_semantic = (df_prepared['peak_token_type'] == 'semantic').sum()
516
+ n_json = (df_prepared['tokens_source'] == 'json').sum()
517
+ n_fallback = (df_prepared['tokens_source'] == 'fallback').sum()
518
+
519
+ col1, col2, col3 = st.columns(3)
520
+ with col1:
521
+ st.metric("Functional Tokens", f"{n_functional} ({n_functional/len(df_prepared)*100:.1f}%)")
522
+ with col2:
523
+ st.metric("Semantic Tokens", f"{n_semantic} ({n_semantic/len(df_prepared)*100:.1f}%)")
524
+ with col3:
525
+ st.metric("Tokens from JSON", f"{n_json}/{len(df_prepared)}")
526
+
527
+ st.success("✅ Step 1 completed!")
528
+
529
+ except Exception as e:
530
+ st.error(f"❌ Step 1 error: {e}")
531
+ import traceback
532
+ st.code(traceback.format_exc())
533
+
534
+ # Show Step 1 results
535
+ if 'df_prepared' in st.session_state:
536
+ df_prepared = st.session_state['df_prepared']
537
+
538
+ st.subheader("📊 Step 1 Results")
539
+
540
+ # Complete table
541
+ st.write(f"**Complete results** ({len(df_prepared)} rows):")
542
+ display_cols = ['feature_key', 'prompt', 'peak_token', 'peak_token_type', 'target_tokens', 'tokens_source']
543
+ st.dataframe(df_prepared[display_cols], use_container_width=True, height=400)
544
+
545
+ # Download
546
+ csv_step1 = df_prepared.to_csv(index=False).encode('utf-8')
547
+ st.download_button(
548
+ label="💾 Download CSV Step 1",
549
+ data=csv_step1,
550
+ file_name=f"node_grouping_step1_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
551
+ mime="text/csv"
552
+ )
553
+
554
+ # ===== STEP 2: CLASSIFICATION =====
555
+
556
+ st.header("🏷️ Step 2: Node Classification")
557
+
558
+ with st.expander("ℹ️ What does this step do?", expanded=False):
559
+ st.markdown("""
560
+ **Classify each feature** based on aggregate metrics:
561
+
562
+ **Decision Tree**:
563
+ 1. **Dictionary Semantic**: peak_consistency ≥ 0.8 AND n_distinct_peaks ≤ 1
564
+ 2. **Say X**: func_vs_sem ≥ 50% AND conf_F ≥ 0.90 AND layer ≥ 7
565
+ 3. **Relationship**: sparsity < 0.45
566
+ 4. **Semantic (Concept)**: layer ≤ 3 OR conf_S ≥ 0.50 OR func_vs_sem < 50%
567
+ 5. **Review**: Ambiguous cases requiring manual review
568
+
569
+ **Computed Metrics**:
570
+ - `peak_consistency_main`: How often the main token is peak when it appears
571
+ - `n_distinct_peaks`: Number of distinct tokens as peak
572
+ - `func_vs_sem_pct`: % difference between max activation on functional vs semantic
573
+ - `conf_F / conf_S`: Fraction of peaks on functional/semantic tokens
574
+ - `sparsity_median`: Median sparsity (active prompts only)
575
+ - `K_sem_distinct`: Number of distinct semantic tokens
576
+ """)
577
+
578
+ if 'df_prepared' not in st.session_state:
579
+ st.warning("⚠️ Run Step 1 first")
580
+ else:
581
+ # Prepare custom thresholds
582
+ custom_thresholds = {
583
+ 'dict_peak_consistency_min': dict_consistency,
584
+ 'dict_n_distinct_peaks_max': dict_n_peaks,
585
+ 'sayx_func_vs_sem_min': sayx_func_min,
586
+ 'sayx_conf_f_min': sayx_conf_f,
587
+ 'sayx_layer_min': sayx_layer,
588
+ 'rel_sparsity_max': rel_sparsity,
589
+ 'sem_layer_max': sem_layer,
590
+ 'sem_conf_s_min': sem_conf_s,
591
+ 'sem_func_vs_sem_max': sem_func_vs_sem,
592
+ }
593
+
594
+ if st.button("▶️ Run Step 2", key="run_step2"):
595
+ with st.spinner("Classifying nodes..."):
596
+ try:
597
+ df_classified = classify_nodes(
598
+ st.session_state['df_prepared'],
599
+ thresholds=custom_thresholds,
600
+ verbose=False
601
+ )
602
+
603
+ # Save in session state
604
+ st.session_state['df_classified'] = df_classified
605
+
606
+ # Statistics
607
+ classifications = df_classified.groupby('feature_key')['pred_label'].first()
608
+ label_counts = classifications.value_counts()
609
+
610
+ st.success("✅ Step 2 completed!")
611
+
612
+ # Display distribution
613
+ st.subheader("📊 Class Distribution")
614
+
615
+ cols = st.columns(len(label_counts))
616
+ for i, (label, count) in enumerate(label_counts.items()):
617
+ with cols[i]:
618
+ pct = 100 * count / len(classifications)
619
+ st.metric(label, f"{count} ({pct:.1f}%)")
620
+
621
+ # Review warnings
622
+ n_review = df_classified['review'].sum()
623
+ if n_review > 0:
624
+ st.warning(f"⚠️ {n_review} rows require manual review")
625
+ review_features = df_classified[df_classified['review']]['feature_key'].unique()
626
+ st.write(f"Feature keys: {', '.join(review_features[:5])}")
627
+
628
+ except Exception as e:
629
+ st.error(f"❌ Step 2 error: {e}")
630
+ import traceback
631
+ st.code(traceback.format_exc())
632
+
633
+ # Show Step 2 results
634
+ if 'df_classified' in st.session_state:
635
+ df_classified = st.session_state['df_classified']
636
+
637
+ st.subheader("📊 Step 2 Results")
638
+
639
+ # Filter by class
640
+ selected_classes = st.multiselect(
641
+ "Filter by class",
642
+ options=df_classified['pred_label'].unique(),
643
+ default=df_classified['pred_label'].unique()
644
+ )
645
+
646
+ df_filtered = df_classified[df_classified['pred_label'].isin(selected_classes)]
647
+
648
+ # Reorder columns
649
+ priority_cols = [
650
+ 'feature_key', 'layer', 'prompt', 'supernode_class', 'pred_label',
651
+ 'subtype', 'confidence', 'review', 'why_review', 'peak_token'
652
+ ]
653
+
654
+ # Remaining columns (exclude those already in priority)
655
+ other_cols = [col for col in df_filtered.columns if col not in priority_cols]
656
+
657
+ # Final order: priority + others
658
+ ordered_cols = [col for col in priority_cols if col in df_filtered.columns] + other_cols
659
+ df_display = df_filtered[ordered_cols]
660
+
661
+ # Complete table with all columns
662
+ st.write(f"**Complete results** ({len(df_filtered)} rows, {len(df_filtered.columns)} columns):")
663
+ st.dataframe(
664
+ df_display,
665
+ use_container_width=True,
666
+ height=400,
667
+ column_config={
668
+ "prompt": st.column_config.TextColumn(
669
+ "prompt",
670
+ width="medium",
671
+ help="Prompt text"
672
+ )
673
+ }
674
+ )
675
+
676
+ # Feature search and explanation
677
+ st.subheader("🔍 Explain Feature Classification")
678
+
679
+ col_search, col_filter = st.columns([3, 1])
680
+
681
+ with col_search:
682
+ feature_to_explain = st.text_input(
683
+ "Search feature_key",
684
+ placeholder="e.g. 22_11998",
685
+ help="Enter the feature_key to see the classification explanation"
686
+ )
687
+
688
+ with col_filter:
689
+ st.write("") # Spacer for alignment
690
+ filter_table = st.checkbox(
691
+ "Filter table",
692
+ value=True,
693
+ help="Show only rows for the searched feature in the table above"
694
+ )
695
+
696
+ # Update table if feature searched and filter active
697
+ if feature_to_explain and filter_table:
698
+ df_filtered_search = df_display[df_display['feature_key'] == feature_to_explain]
699
+
700
+ if len(df_filtered_search) > 0:
701
+ st.info(f"📌 Table filtered for feature: **{feature_to_explain}** ({len(df_filtered_search)} rows)")
702
+ st.dataframe(
703
+ df_filtered_search,
704
+ use_container_width=True,
705
+ height=min(200, len(df_filtered_search) * 35 + 38), # Dynamic height
706
+ column_config={
707
+ "prompt": st.column_config.TextColumn(
708
+ "prompt",
709
+ width="medium",
710
+ help="Prompt text"
711
+ )
712
+ }
713
+ )
714
+ else:
715
+ st.warning(f"⚠️ No rows found for feature '{feature_to_explain}' in filtered results")
716
+
717
+ if feature_to_explain:
718
+ # Find the feature
719
+ feature_data = df_classified[df_classified['feature_key'] == feature_to_explain]
720
+
721
+ if len(feature_data) == 0:
722
+ st.warning(f"⚠️ Feature '{feature_to_explain}' not found in dataset")
723
+ else:
724
+ # Take the first record (all have same classification for feature_key)
725
+ record = feature_data.iloc[0]
726
+
727
+ # Extract aggregate metrics (recalculate if necessary)
728
+ feature_group = df_classified[df_classified['feature_key'] == feature_to_explain]
729
+ feature_metrics_df = node_grouping.aggregate_feature_metrics(feature_group)
730
+
731
+ if len(feature_metrics_df) > 0:
732
+ metrics = feature_metrics_df.iloc[0]
733
+
734
+ # Box with general info
735
+ st.info(f"""
736
+ **Feature**: `{feature_to_explain}`
737
+ **Classification**: **{record['pred_label']}**
738
+ **Subtype**: {record['subtype'] if pd.notna(record['subtype']) else 'N/A'}
739
+ **Confidence**: {record['confidence']:.2f}
740
+ **Review**: {'⚠️ Yes' if record['review'] else '✅ No'}
741
+ """)
742
+
743
+ # Key metrics
744
+ st.write("**📊 Aggregate Metrics**:")
745
+ col1, col2, col3, col4 = st.columns(4)
746
+ with col1:
747
+ st.metric("Layer", int(metrics['layer']))
748
+ with col2:
749
+ st.metric("Peak Consistency", f"{metrics['peak_consistency_main']:.2f}")
750
+ with col3:
751
+ st.metric("N Distinct Peaks", int(metrics['n_distinct_peaks']))
752
+ with col4:
753
+ st.metric("Func vs Sem %", f"{metrics['func_vs_sem_pct']:.1f}%")
754
+
755
+ col5, col6, col7, col8 = st.columns(4)
756
+ with col5:
757
+ st.metric("Conf F", f"{metrics['conf_F']:.2f}")
758
+ with col6:
759
+ st.metric("Conf S", f"{metrics['conf_S']:.2f}")
760
+ with col7:
761
+ st.metric("Sparsity", f"{metrics['sparsity_median']:.2f}")
762
+ with col8:
763
+ st.metric("K Semantic", int(metrics['K_sem_distinct']))
764
+
765
+ # Generate explanation
766
+ st.write("**💡 Classification Explanation**:")
767
+
768
+ pred_label = record['pred_label']
769
+ layer = int(metrics['layer'])
770
+ peak_cons = metrics['peak_consistency_main']
771
+ n_peaks = int(metrics['n_distinct_peaks'])
772
+ func_vs_sem = metrics['func_vs_sem_pct']
773
+ conf_F = metrics['conf_F']
774
+ conf_S = metrics['conf_S']
775
+ sparsity = metrics['sparsity_median']
776
+
777
+ # Generate explanation based on class
778
+ if pred_label == "Semantic":
779
+ # Determine which rule was triggered
780
+ if peak_cons >= custom_thresholds['dict_peak_consistency_min'] and n_peaks <= custom_thresholds['dict_n_distinct_peaks_max']:
781
+ explanation = f"""
782
+ The feature **{feature_to_explain}** was classified as **Semantic (Dictionary)** because:
783
+
784
+ 1. **Peak Consistency** = {peak_cons:.2f} (≥ {custom_thresholds['dict_peak_consistency_min']:.2f} ✅)
785
+ - The main token is peak in **{peak_cons*100:.0f}%** of cases when it appears in the prompt
786
+ - Indicates a highly selective feature on a specific token
787
+
788
+ 2. **N Distinct Peaks** = {n_peaks} (≤ {custom_thresholds['dict_n_distinct_peaks_max']} ✅)
789
+ - The feature always activates on the same token
790
+ - Typical behavior of "dictionary" features (e.g. always on "Texas")
791
+
792
+ **Rule applied**: Dictionary Semantic (highest priority)
793
+ """
794
+ elif layer <= custom_thresholds['sem_layer_max']:
795
+ explanation = f"""
796
+ The feature **{feature_to_explain}** was classified as **Semantic (Dictionary fallback)** because:
797
+
798
+ 1. **Layer** = {layer} (≤ {custom_thresholds['sem_layer_max']} ✅)
799
+ - Low layer typical of basic semantic features
800
+ - Conservative fallback for low layers
801
+
802
+ 2. **Confidence S** = {conf_S:.2f}
803
+ - Fraction of peaks on semantic tokens: {conf_S*100:.0f}%
804
+
805
+ **Rule applied**: Semantic Concept (low layer fallback)
806
+ """
807
+ elif func_vs_sem < custom_thresholds['sem_func_vs_sem_max']:
808
+ explanation = f"""
809
+ The feature **{feature_to_explain}** was classified as **Semantic (Concept)** because:
810
+
811
+ 1. **Func vs Sem %** = {func_vs_sem:.1f}% (< {custom_thresholds['sem_func_vs_sem_max']:.1f}% ✅)
812
+ - The difference between max activation on functional vs semantic is small
813
+ - Indicates the feature activates mainly on semantic tokens
814
+
815
+ 2. **Confidence S** = {conf_S:.2f}
816
+ - Fraction of peaks on semantic tokens: {conf_S*100:.0f}%
817
+
818
+ 3. **Layer** = {layer}
819
+ - Medium layer, typical of conceptual features
820
+
821
+ **Rule applied**: Semantic Concept
822
+ """
823
+ else:
824
+ explanation = f"""
825
+ The feature **{feature_to_explain}** was classified as **Semantic (Concept)** because:
826
+
827
+ 1. **Confidence S** = {conf_S:.2f} (≥ {custom_thresholds['sem_conf_s_min']:.2f} ✅)
828
+ - Fraction of peaks on semantic tokens: {conf_S*100:.0f}%
829
+ - Dominance of semantic tokens
830
+
831
+ 2. **Layer** = {layer}
832
+
833
+ **Rule applied**: Semantic Concept
834
+ """
835
+
836
+ elif pred_label == 'Say "X"':
837
+ explanation = f"""
838
+ The feature **{feature_to_explain}** was classified as **Say "X"** because:
839
+
840
+ 1. **Func vs Sem %** = {func_vs_sem:.1f}% (≥ {custom_thresholds['sayx_func_vs_sem_min']:.1f}% ✅)
841
+ - Max activation on functional tokens is **{func_vs_sem:.1f}%** higher than on semantic
842
+ - Indicates strong preference for functional tokens (e.g. "is", ",")
843
+
844
+ 2. **Confidence F** = {conf_F:.2f} (≥ {custom_thresholds['sayx_conf_f_min']:.2f} ✅)
845
+ - Fraction of peaks on functional tokens: {conf_F*100:.0f}%
846
+ - Almost all peaks are on functional tokens
847
+
848
+ 3. **Layer** = {layer} (≥ {custom_thresholds['sayx_layer_min']} ✅)
849
+ - High layer typical of predictive features
850
+ - Say X features are typically in final layers
851
+
852
+ **Rule applied**: Say "X" (predicts next token)
853
+ """
854
+
855
+ elif pred_label == "Relationship":
856
+ explanation = f"""
857
+ The feature **{feature_to_explain}** was classified as **Relationship** because:
858
+
859
+ 1. **Sparsity** = {sparsity:.2f} (< {custom_thresholds['rel_sparsity_max']:.2f} ✅)
860
+ - Low sparsity indicates **diffuse** activation in the prompt
861
+ - The feature activates on multiple tokens, not concentrated on one
862
+
863
+ 2. **K Semantic** = {int(metrics['K_sem_distinct'])}
864
+ - Number of distinct semantic tokens it activates on
865
+ - Indicates connection between multiple concepts
866
+
867
+ 3. **Layer** = {layer}
868
+ - Medium-low layer typical of relational features
869
+
870
+ **Rule applied**: Relationship (connects multiple concepts)
871
+ """
872
+
873
+ else:
874
+ explanation = f"""
875
+ The feature **{feature_to_explain}** requires **manual review**.
876
+
877
+ **Reason**: {record['why_review']}
878
+
879
+ **Metrics**:
880
+ - Layer: {layer}
881
+ - Peak Consistency: {peak_cons:.2f}
882
+ - Func vs Sem %: {func_vs_sem:.1f}%
883
+ - Confidence F/S: {conf_F:.2f} / {conf_S:.2f}
884
+ - Sparsity: {sparsity:.2f}
885
+ """
886
+
887
+ st.markdown(explanation)
888
+
889
+ # Show applied decision tree
890
+ with st.expander("🌳 Complete Decision Tree", expanded=False):
891
+ st.markdown(f"""
892
+ **Evaluation order**:
893
+
894
+ 1. ✅ **Dictionary Semantic**: peak_consistency ≥ {custom_thresholds['dict_peak_consistency_min']:.2f} AND n_distinct_peaks ≤ {custom_thresholds['dict_n_distinct_peaks_max']}
895
+ - Result: {'✅ MATCH' if pred_label == 'Semantic' and peak_cons >= custom_thresholds['dict_peak_consistency_min'] and n_peaks <= custom_thresholds['dict_n_distinct_peaks_max'] else '❌ No match'}
896
+
897
+ 2. ✅ **Say "X"**: func_vs_sem ≥ {custom_thresholds['sayx_func_vs_sem_min']:.1f}% AND conf_F ≥ {custom_thresholds['sayx_conf_f_min']:.2f} AND layer ≥ {custom_thresholds['sayx_layer_min']}
898
+ - Result: {'✅ MATCH' if pred_label == 'Say "X"' else '❌ No match'}
899
+
900
+ 3. ✅ **Relationship**: sparsity < {custom_thresholds['rel_sparsity_max']:.2f}
901
+ - Result: {'✅ MATCH' if pred_label == 'Relationship' else '❌ No match'}
902
+
903
+ 4. ✅ **Semantic (Concept)**: layer ≤ {custom_thresholds['sem_layer_max']} OR conf_S ≥ {custom_thresholds['sem_conf_s_min']:.2f} OR func_vs_sem < {custom_thresholds['sem_func_vs_sem_max']:.1f}%
904
+ - Result: {'✅ MATCH' if pred_label == 'Semantic' else '❌ No match'}
905
+
906
+ 5. ⚠️ **Review**: Ambiguous cases
907
+
908
+ **Final classification**: **{pred_label}**
909
+ """)
910
+ else:
911
+ st.error("❌ Unable to calculate aggregate metrics for this feature")
912
+
913
+ # Download
914
+ csv_step2 = df_classified.to_csv(index=False).encode('utf-8')
915
+ st.download_button(
916
+ label="💾 Download CSV Step 2",
917
+ data=csv_step2,
918
+ file_name=f"node_grouping_step2_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
919
+ mime="text/csv"
920
+ )
921
+
922
+ # ===== STEP 3: NAMING =====
923
+
924
+ st.header("🏷️ Step 3: Supernode Naming")
925
+
926
+ with st.expander("ℹ️ What does this step do?", expanded=False):
927
+ st.markdown("""
928
+ **Generate descriptive names** for each supernode:
929
+
930
+ **Naming Rules**:
931
+ - **Relationship**: `"(X) related"` where X is the first semantic token with max activation from the original prompt
932
+ - Requires JSON activations for accuracy
933
+ - Fallback: uses peak_token from record with max activation
934
+
935
+ - **Semantic**: Name of the token with max activation
936
+ - E.g.: "Texas", "city", "capital"
937
+ - Preserves capitalization if present in at least one occurrence
938
+ - Edge cases: "punctuation", "Semantic (unknown)"
939
+
940
+ - **Say X**: `"Say (X)"` where X is the target_token from record with max activation
941
+ - E.g.: "Say (Austin)", "Say (capital)"
942
+ - Tie-break: shorter distance, then backward > forward
943
+ - Fallback: "Say (?)" if no target found
944
+
945
+ **Token Blacklist** (NEW):
946
+ - If a token is in the blacklist, it is automatically skipped
947
+ - The system falls back to the token with the second (or next) highest activation
948
+ - Useful for excluding generic or uninformative tokens (e.g. "the", "a", "is")
949
+ - Configurable in the "Token Blacklist" sidebar
950
+
951
+ **Normalization**:
952
+ - Strip whitespace
953
+ - Remove trailing punctuation (e.g. "entity:" → "entity")
954
+ - Preserve capitalization if present (e.g. "Texas" not "texas")
955
+ """)
956
+
957
+ if 'df_classified' not in st.session_state:
958
+ st.warning("⚠️ Run Step 2 first")
959
+ else:
960
+ if st.button("▶️ Run Step 3", key="run_step3"):
961
+ with st.spinner("Naming supernodes..."):
962
+ try:
963
+ # Save temporary JSON if available
964
+ json_path = None
965
+ if tokens_json:
966
+ json_path = Path("temp_activations.json")
967
+ with open(json_path, 'w', encoding='utf-8') as f:
968
+ json.dump(tokens_json, f)
969
+
970
+ # Determine path to Graph JSON
971
+ graph_path = None
972
+ if graph_to_use:
973
+ if isinstance(graph_to_use, Path):
974
+ graph_path = str(graph_to_use)
975
+ else:
976
+ # If uploaded file, save temporarily
977
+ graph_path = Path("temp_graph.json")
978
+ graph_to_use.seek(0) # Reset file pointer to beginning
979
+ graph_json_content = json.loads(graph_to_use.read().decode('utf-8'))
980
+ with open(graph_path, 'w', encoding='utf-8') as f:
981
+ json.dump(graph_json_content, f)
982
+
983
+ # Save graph_to_use in session state for Neuronpedia upload
984
+ st.session_state['graph_json_uploaded'] = graph_to_use
985
+
986
+ df_named = name_nodes(
987
+ st.session_state['df_classified'],
988
+ activations_json_path=str(json_path) if json_path else None,
989
+ graph_json_path=graph_path,
990
+ blacklist_tokens=blacklist_tokens if blacklist_tokens else None,
991
+ verbose=False
992
+ )
993
+
994
+ # Remove temporary files
995
+ if json_path and json_path.exists():
996
+ json_path.unlink()
997
+ if graph_path and Path(graph_path).name == "temp_graph.json" and Path(graph_path).exists():
998
+ Path(graph_path).unlink()
999
+
1000
+ # Save in session state
1001
+ st.session_state['df_named'] = df_named
1002
+
1003
+ # Statistics
1004
+ n_features = df_named['feature_key'].nunique()
1005
+ n_unique_names = df_named.groupby('feature_key')['supernode_name'].first().nunique()
1006
+
1007
+ st.success("✅ Step 3 completed!")
1008
+
1009
+ col1, col2 = st.columns(2)
1010
+ with col1:
1011
+ st.metric("Total Features", n_features)
1012
+ with col2:
1013
+ st.metric("Unique Names", n_unique_names)
1014
+
1015
+ # Examples per class (compact, no duplicates)
1016
+ st.subheader("📝 Naming Examples by Class")
1017
+
1018
+ for label in ['Relationship', 'Semantic', 'Say "X"']:
1019
+ # Get unique names (no duplicates)
1020
+ examples = df_named[df_named['pred_label'] == label].groupby('feature_key')['supernode_name'].first().unique()
1021
+ if len(examples) > 0:
1022
+ # Limit to max 5 examples
1023
+ examples_str = ', '.join([f'"{ex}"' for ex in examples[:5]])
1024
+ st.write(f"**{label}**: {examples_str}")
1025
+
1026
+ except Exception as e:
1027
+ st.error(f"❌ Step 3 error: {e}")
1028
+ import traceback
1029
+ st.code(traceback.format_exc())
1030
+
1031
+ # Show Step 3 results
1032
+ if 'df_named' in st.session_state:
1033
+ df_named = st.session_state['df_named']
1034
+
1035
+ st.subheader("📊 Step 3 Results (Final)")
1036
+
1037
+ # Filter by class
1038
+ selected_classes_final = st.multiselect(
1039
+ "Filter by class (final)",
1040
+ options=df_named['pred_label'].unique(),
1041
+ default=df_named['pred_label'].unique(),
1042
+ key="filter_final"
1043
+ )
1044
+
1045
+ df_filtered_final = df_named[df_named['pred_label'].isin(selected_classes_final)]
1046
+
1047
+ # Reorder columns
1048
+ priority_cols = [
1049
+ 'feature_key', 'layer', 'prompt', 'supernode_label', 'supernode_name', 'pred_label',
1050
+ 'subtype', 'peak_token','activation_max', 'target_tokens'
1051
+ ]
1052
+
1053
+ # Remaining columns (exclude those already in priority)
1054
+ other_cols = [col for col in df_filtered_final.columns if col not in priority_cols]
1055
+
1056
+ # Final order: priority + others
1057
+ ordered_cols = [col for col in priority_cols if col in df_filtered_final.columns] + other_cols
1058
+ df_display_final = df_filtered_final[ordered_cols]
1059
+
1060
+ # Complete table with all columns
1061
+ st.write(f"**Complete results** ({len(df_filtered_final)} rows, {len(df_filtered_final.columns)} columns):")
1062
+ st.dataframe(
1063
+ df_display_final,
1064
+ use_container_width=True,
1065
+ height=400,
1066
+ column_config={
1067
+ "prompt": st.column_config.TextColumn(
1068
+ "prompt",
1069
+ width="medium",
1070
+ help="Prompt text"
1071
+ )
1072
+ }
1073
+ )
1074
+
1075
+ # Group by supernode_name
1076
+ st.subheader("🔍 Analysis by Supernode Name")
1077
+
1078
+ # Calculate node_influence per feature (take 1 value per feature, not all rows)
1079
+ if 'node_influence' in df_named.columns:
1080
+ # Take node_influence for each feature_key (use first value, all equal for same feature)
1081
+ feature_influence = df_named.groupby('feature_key')['node_influence'].first().reset_index()
1082
+
1083
+ # Add supernode_name for each feature
1084
+ feature_to_name = df_named.groupby('feature_key')['supernode_name'].first().reset_index()
1085
+ feature_influence = feature_influence.merge(feature_to_name, on='feature_key')
1086
+
1087
+ # Sum node_influence per supernode_name
1088
+ name_influence = feature_influence.groupby('supernode_name')['node_influence'].sum().reset_index()
1089
+ name_influence.columns = ['supernode_name', 'total_influence']
1090
+ else:
1091
+ name_influence = None
1092
+
1093
+ # Base aggregations
1094
+ name_groups = df_named.groupby('supernode_name').agg({
1095
+ 'feature_key': 'nunique',
1096
+ 'pred_label': lambda x: x.mode()[0] if len(x) > 0 else '',
1097
+ 'layer': lambda x: f"{x.min()}-{x.max()}" if x.min() != x.max() else str(x.min())
1098
+ }).reset_index()
1099
+ name_groups.columns = ['Supernode Name', 'N Features', 'Class', 'Layer Range']
1100
+
1101
+ # Add total_influence if available
1102
+ if name_influence is not None:
1103
+ name_groups = name_groups.merge(
1104
+ name_influence.rename(columns={'supernode_name': 'Supernode Name', 'total_influence': 'Total Influence'}),
1105
+ on='Supernode Name',
1106
+ how='left'
1107
+ )
1108
+ # Sort by Total Influence (descending)
1109
+ name_groups = name_groups.sort_values('Total Influence', ascending=False)
1110
+ else:
1111
+ name_groups = name_groups.sort_values('N Features', ascending=False)
1112
+
1113
+ st.dataframe(name_groups, use_container_width=True)
1114
+
1115
+ # Final download
1116
+ st.subheader("💾 Download Results")
1117
+
1118
+ col1, col2 = st.columns(2)
1119
+
1120
+ with col1:
1121
+ csv_final = df_named.to_csv(index=False).encode('utf-8')
1122
+ st.download_button(
1123
+ label="📥 Download Complete CSV",
1124
+ data=csv_final,
1125
+ file_name=f"node_grouping_final_{datetime.now().strftime('%Y%m%d_%H%M%S')}.csv",
1126
+ mime="text/csv"
1127
+ )
1128
+
1129
+ with col2:
1130
+ # Export summary JSON
1131
+ summary = {
1132
+ 'timestamp': datetime.now().isoformat(),
1133
+ 'n_features': int(df_named['feature_key'].nunique()),
1134
+ 'n_unique_names': int(df_named.groupby('feature_key')['supernode_name'].first().nunique()),
1135
+ 'class_distribution': df_named.groupby('feature_key')['pred_label'].first().value_counts().to_dict(),
1136
+ 'thresholds_used': custom_thresholds,
1137
+ 'top_supernodes': name_groups.head(10).to_dict('records')
1138
+ }
1139
+
1140
+ json_summary = json.dumps(summary, indent=2).encode('utf-8')
1141
+ st.download_button(
1142
+ label="📥 Download Summary JSON",
1143
+ data=json_summary,
1144
+ file_name=f"node_grouping_summary_{datetime.now().strftime('%Y%m%d_%H%M%S')}.json",
1145
+ mime="application/json"
1146
+ )
1147
+
1148
+ # Upload to Neuronpedia
1149
+ st.divider()
1150
+ st.subheader("🌐 Upload to Neuronpedia")
1151
+
1152
+ st.info("Upload the subgraph with supernodes to Neuronpedia for interactive visualization.")
1153
+
1154
+ # API Key input (load from .env if available)
1155
+ default_api_key = os.getenv("NEURONPEDIA_API_KEY", "")
1156
+ api_key = st.text_input(
1157
+ "Neuronpedia API Key",
1158
+ value=default_api_key,
1159
+ type="password",
1160
+ help="Enter your Neuronpedia API key (required for upload). Can be auto-loaded from .env"
1161
+ )
1162
+
1163
+ # Display name
1164
+ display_name = st.text_input(
1165
+ "Display Name",
1166
+ value=f"Node Grouping - {datetime.now().strftime('%Y-%m-%d %H:%M')}",
1167
+ help="Display name for the subgraph on Neuronpedia"
1168
+ )
1169
+
1170
+ # Overwrite ID (optional)
1171
+ overwrite_id = st.text_input(
1172
+ "Overwrite ID (optional)",
1173
+ value="",
1174
+ help="If provided, overwrites an existing subgraph instead of creating a new one"
1175
+ )
1176
+
1177
+ # Verify we have Graph JSON
1178
+ graph_json_available = st.session_state.get('graph_json_uploaded') is not None
1179
+
1180
+ if not graph_json_available:
1181
+ st.warning("⚠️ Graph JSON not loaded. Load the Graph JSON in Step 3 to enable upload.")
1182
+
1183
+ # Custom CSS for red button
1184
+ st.markdown("""
1185
+ <style>
1186
+ div.stButton > button[kind="secondary"] {
1187
+ background-color: #dc3545;
1188
+ color: white;
1189
+ border: none;
1190
+ }
1191
+ div.stButton > button[kind="secondary"]:hover {
1192
+ background-color: #c82333;
1193
+ color: white;
1194
+ }
1195
+ div.stButton > button[kind="secondary"]:disabled {
1196
+ background-color: #6c757d;
1197
+ color: #adb5bd;
1198
+ }
1199
+ </style>
1200
+ """, unsafe_allow_html=True)
1201
+
1202
+ # Upload button
1203
+ if st.button("🚀 Upload to Neuronpedia", disabled=not (api_key and graph_json_available), key="upload_neuronpedia_red"):
1204
+ if not api_key:
1205
+ st.error("❌ Enter your API Key!")
1206
+ elif not graph_json_available:
1207
+ st.error("❌ Load the Graph JSON before proceeding!")
1208
+ else:
1209
+ try:
1210
+ # Save Graph JSON temporarily
1211
+ graph_to_use = st.session_state.get('graph_json_uploaded')
1212
+
1213
+ if isinstance(graph_to_use, Path):
1214
+ graph_path = str(graph_to_use)
1215
+ else:
1216
+ # If uploaded file, save temporarily
1217
+ graph_path = "temp_graph_upload.json"
1218
+ graph_to_use.seek(0) # Reset file pointer to beginning
1219
+ graph_json_content = json.loads(graph_to_use.read().decode('utf-8'))
1220
+ with open(graph_path, 'w', encoding='utf-8') as f:
1221
+ json.dump(graph_json_content, f)
1222
+
1223
+ # Import upload function
1224
+ import sys
1225
+ import importlib.util
1226
+ spec = importlib.util.spec_from_file_location("node_grouping", "scripts/02_node_grouping.py")
1227
+ node_grouping = importlib.util.module_from_spec(spec)
1228
+ sys.modules["node_grouping"] = node_grouping
1229
+ spec.loader.exec_module(node_grouping)
1230
+ upload_subgraph_to_neuronpedia = node_grouping.upload_subgraph_to_neuronpedia
1231
+
1232
+ # Load graph_json to extract metadata for URL
1233
+ with open(graph_path, 'r', encoding='utf-8') as f:
1234
+ graph_json_content = json.load(f)
1235
+
1236
+ # Upload
1237
+ with st.spinner("Uploading to Neuronpedia..."):
1238
+ # Retrieve selected_nodes_data from session state if available
1239
+ selected_nodes_data = st.session_state.get('selected_nodes_data')
1240
+
1241
+ result = upload_subgraph_to_neuronpedia(
1242
+ df_grouped=df_named,
1243
+ graph_json_path=graph_path,
1244
+ api_key=api_key,
1245
+ display_name=display_name if display_name else None,
1246
+ overwrite_id=overwrite_id if overwrite_id else None,
1247
+ selected_nodes_data=selected_nodes_data,
1248
+ verbose=False
1249
+ )
1250
+
1251
+ # Remove temporary file
1252
+ if Path(graph_path).name == "temp_graph_upload.json" and Path(graph_path).exists():
1253
+ Path(graph_path).unlink()
1254
+
1255
+ st.success("✅ Subgraph uploaded successfully!")
1256
+
1257
+ # Extract metadata for URL construction
1258
+ metadata = graph_json_content.get('metadata', {})
1259
+ model_id = metadata.get('model_id', 'gemma-2-2b')
1260
+ source_set_name = metadata.get('source_set_name', 'clt-hp')
1261
+ slug = metadata.get('slug', '')
1262
+ node_threshold = metadata.get('node_threshold', 0.8)
1263
+ desired_logit_prob = metadata.get('desired_logit_prob', 0.95)
1264
+
1265
+ # Build Neuronpedia URL
1266
+ neuronpedia_url = (
1267
+ f"https://www.neuronpedia.org/{model_id}/graph"
1268
+ f"?sourceSet={source_set_name}"
1269
+ f"&slug={slug}"
1270
+ f"&pruningThreshold={node_threshold}"
1271
+ f"&densityThreshold={desired_logit_prob}"
1272
+ )
1273
+
1274
+ # Display URL with instructions
1275
+ st.markdown(f"[**Open Graph on Neuronpedia**]({neuronpedia_url})")
1276
+ st.info("""
1277
+ **To view the subgraph:**
1278
+ 1. Click on the link above to open the graph on Neuronpedia
1279
+ 2. Use the **"Load Subgraph"** button in the bottom-left subgraph pane
1280
+ 3. Select your uploaded subgraph from the list
1281
+ """)
1282
+
1283
+ # Show result details
1284
+ with st.expander("Upload details", expanded=False):
1285
+ st.json(result)
1286
+
1287
+ except Exception as e:
1288
+ st.error(f"❌ Upload error: {e}")
1289
+ import traceback
1290
+ st.code(traceback.format_exc())
1291
+
1292
+ # Display debug payload if it exists
1293
+ debug_payload_path = Path("output") / "debug_neuronpedia_payload.json"
1294
+ if debug_payload_path.exists():
1295
+ st.info("Debug: payload saved to output/debug_neuronpedia_payload.json")
1296
+ with open(debug_payload_path, 'r', encoding='utf-8') as f:
1297
+ payload_data = json.load(f)
1298
+
1299
+ with st.expander("View sent payload"):
1300
+ st.json(payload_data)
1301
+
1302
+ # ===== FOOTER =====
1303
+
1304
+ st.divider()
1305
+
1306
+ st.markdown("""
1307
+ ### 📚 References
1308
+
1309
+ - **Script**: `scripts/02_node_grouping.py`
1310
+ - **Documentation**: `output/STEP3_READY_FOR_REVIEW.md`
1311
+ - **Tests**: `tests/test_node_naming.py`
1312
+
1313
+ ### 💡 Tips
1314
+
1315
+ - **Relationship**: Always provide the JSON activations for accurate naming
1316
+ - **Thresholds**: Start with default values, then refine based on results
1317
+ - **Review**: Manually check features with `review=True`
1318
+ - **Iteration**: You can re-run Steps 2 and 3 with different thresholds without redoing Step 1
1319
+ """)
1320
+
eda/pages/README_NODE_GROUPING.md ADDED
@@ -0,0 +1,284 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Pagina Node Grouping - Guida Utente
2
+
3
+ **File**: `eda/pages/02_Node_Grouping.py`
4
+ **Data**: 2025-10-25
5
+
6
+ ---
7
+
8
+ ## Panoramica
9
+
10
+ La pagina **Node Grouping** è un'interfaccia Streamlit interattiva per classificare e nominare automaticamente i supernodi nel grafo di attribuzione.
11
+
12
+ ### Funzionalità Principali
13
+
14
+ 1. **Upload Files**: Carica CSV export e JSON attivazioni
15
+ 2. **Step 1 - Preparazione**: Classifica token e trova target tokens
16
+ 3. **Step 2 - Classificazione**: Assegna classi ai nodi (Semantic, Say X, Relationship)
17
+ 4. **Step 3 - Naming**: Genera nomi descrittivi per ogni supernodo
18
+ 5. **Parametri Configurabili**: Modifica soglie e parametri in tempo reale
19
+ 6. **Download Risultati**: Esporta CSV e JSON summary
20
+
21
+ ---
22
+
23
+ ## Come Usare
24
+
25
+ ### 1. Avvio Applicazione
26
+
27
+ ```bash
28
+ cd eda
29
+ streamlit run app.py
30
+ ```
31
+
32
+ Oppure direttamente:
33
+
34
+ ```bash
35
+ streamlit run eda/pages/02_Node_Grouping.py
36
+ ```
37
+
38
+ ### 2. Upload Files
39
+
40
+ **Sidebar → Input Files**
41
+
42
+ - **CSV Export (richiesto)**: File generato da Probe Prompts
43
+ - Es: `output/2025-10-21T07-40_export_ENRICHED.csv`
44
+ - Deve contenere colonne: `feature_key`, `layer`, `prompt`, `peak_token`, `peak_token_idx`, `activation_max`, `sparsity_ratio`
45
+
46
+ - **JSON Attivazioni (opzionale)**: File con attivazioni token-by-token
47
+ - Es: `output/activations_dump (2).json`
48
+ - Migliora l'accuratezza del naming per Relationship
49
+ - Struttura: `{"results": [{"prompt": "...", "tokens": [...], "counts": [...]}]}`
50
+
51
+ ### 3. Configurazione Parametri
52
+
53
+ **Sidebar → Parametri Pipeline**
54
+
55
+ - **Finestra ricerca target** (default: 7): Numero massimo di token da esplorare per trovare target semantici
56
+
57
+ **Sidebar → Soglie Classificazione**
58
+
59
+ Espandi le sezioni per modificare le soglie:
60
+
61
+ #### Dictionary Semantic
62
+ - **Peak Consistency (min)**: 0.8 (default)
63
+ - Quanto spesso il token deve essere peak quando appare nel prompt
64
+ - **N Distinct Peaks (max)**: 1 (default)
65
+ - Numero massimo di token distinti come peak
66
+
67
+ #### Say X
68
+ - **Func vs Sem % (min)**: 50.0 (default)
69
+ - Differenza % tra max activation su functional vs semantic
70
+ - **Confidence F (min)**: 0.90 (default)
71
+ - Frazione di peak su token funzionali
72
+ - **Layer (min)**: 7 (default)
73
+ - Layer minimo per Say X (tipicamente layer alti)
74
+
75
+ #### Relationship
76
+ - **Sparsity (max)**: 0.45 (default)
77
+ - Sparsity massima (bassa = attivazione diffusa)
78
+
79
+ #### Semantic (Concept)
80
+ - **Layer (max)**: 3 (default)
81
+ - Layer massimo per fallback Dictionary
82
+ - **Confidence S (min)**: 0.50 (default)
83
+ - Frazione di peak su token semantici
84
+ - **Func vs Sem % (max)**: 50.0 (default)
85
+ - Differenza % massima per considerare Semantic
86
+
87
+ ### 4. Esecuzione Pipeline
88
+
89
+ #### Step 1: Preparazione Dataset
90
+
91
+ 1. Clicca **"▶️ Esegui Step 1"**
92
+ 2. Attendi elaborazione
93
+ 3. Verifica statistiche:
94
+ - Token Funzionali vs Semantici
95
+ - Tokens da JSON vs Fallback
96
+ 4. Esamina campione risultati
97
+ 5. (Opzionale) Download CSV Step 1
98
+
99
+ **Cosa fa**:
100
+ - Classifica ogni `peak_token` come functional o semantic
101
+ - Per token funzionali, trova il primo token semantico nella direzione specificata
102
+ - Aggiunge colonne: `peak_token_type`, `target_tokens`, `tokens_source`
103
+
104
+ #### Step 2: Classificazione Nodi
105
+
106
+ 1. (Opzionale) Modifica soglie nella sidebar
107
+ 2. Clicca **"▶️ Esegui Step 2"**
108
+ 3. Attendi elaborazione
109
+ 4. Verifica distribuzione classi:
110
+ - Semantic: ~90%
111
+ - Relationship: ~10%
112
+ - Say X: variabile
113
+ 5. Controlla warning per feature in review
114
+ 6. Filtra per classe e esamina risultati
115
+ 7. (Opzionale) Download CSV Step 2
116
+
117
+ **Cosa fa**:
118
+ - Aggrega metriche per ogni `feature_key`
119
+ - Applica albero decisionale per classificare
120
+ - Aggiunge colonne: `pred_label`, `subtype`, `confidence`, `review`, `why_review`
121
+
122
+ **Iterazione**:
123
+ - Puoi modificare le soglie e rieseguire Step 2 senza rifare Step 1
124
+ - Utile per affinare la classificazione
125
+
126
+ #### Step 3: Naming Supernodi
127
+
128
+ 1. Clicca **"▶️ Esegui Step 3"**
129
+ 2. Attendi elaborazione
130
+ 3. Verifica:
131
+ - Feature Totali vs Nomi Unici
132
+ - Esempi naming per classe
133
+ 4. Esamina risultati finali
134
+ 5. Analizza raggruppamento per `supernode_name`
135
+ 6. Download CSV Completo e Summary JSON
136
+
137
+ **Cosa fa**:
138
+ - Per Relationship: `"(X) related"` (X = primo token semantico con max attivazione)
139
+ - Per Semantic: Nome del token con max activation (es. "Texas", "city")
140
+ - Per Say X: `"Say (X)"` (X = target_token, es. "Say (Austin)")
141
+ - Aggiunge colonna: `supernode_name`
142
+
143
+ ### 5. Download Risultati
144
+
145
+ **Dopo Step 3**:
146
+
147
+ - **📥 Download CSV Completo**: File con tutte le colonne aggiunte
148
+ - Formato: `node_grouping_final_YYYYMMDD_HHMMSS.csv`
149
+ - Contiene: tutte le colonne originali + `peak_token_type`, `target_tokens`, `pred_label`, `subtype`, `supernode_name`, etc.
150
+
151
+ - **📥 Download Summary JSON**: Riepilogo statistiche
152
+ - Formato: `node_grouping_summary_YYYYMMDD_HHMMSS.json`
153
+ - Contiene: timestamp, n_features, distribuzione classi, soglie usate, top supernodes
154
+
155
+ ---
156
+
157
+ ## Interpretazione Risultati
158
+
159
+ ### Classi di Supernodi
160
+
161
+ #### Semantic (Dictionary)
162
+ - **Caratteristiche**: Si attiva sempre sullo stesso token specifico
163
+ - **Esempio**: Feature che si attiva solo su "Texas"
164
+ - **Metriche**: `peak_consistency` alta (≥0.8), `n_distinct_peaks` = 1
165
+ - **Naming**: Nome del token (es. "Texas")
166
+
167
+ #### Semantic (Concept)
168
+ - **Caratteristiche**: Si attiva su token semanticamente simili
169
+ - **Esempio**: Feature che si attiva su "city", "capital", "state"
170
+ - **Metriche**: `conf_S` alta (≥0.50), layer medio-basso
171
+ - **Naming**: Token con max activation (es. "city")
172
+
173
+ #### Say X
174
+ - **Caratteristiche**: Si attiva su token funzionali per predire il prossimo token
175
+ - **Esempio**: Feature che si attiva su "is" prima di "Austin"
176
+ - **Metriche**: `func_vs_sem` alta (≥50%), `conf_F` alta (≥0.90), layer alto (≥7)
177
+ - **Naming**: `"Say (X)"` dove X è il target_token (es. "Say (Austin)")
178
+
179
+ #### Relationship
180
+ - **Caratteristiche**: Collega concetti semantici multipli con attivazione diffusa
181
+ - **Esempio**: Feature che si attiva su "city", "capital", "state" insieme
182
+ - **Metriche**: `sparsity` bassa (<0.45), `K_sem_distinct` alto
183
+ - **Naming**: `"(X) related"` dove X è il primo token semantico con max attivazione
184
+
185
+ ### Metriche Chiave
186
+
187
+ - **peak_consistency_main**: Quanto spesso il token principale è peak quando appare nel prompt
188
+ - Range: 0.0 - 1.0
189
+ - Interpretazione: 1.0 = sempre peak, 0.5 = 50% delle volte
190
+
191
+ - **n_distinct_peaks**: Numero di token distinti come peak
192
+ - Range: 1 - N
193
+ - Interpretazione: 1 = sempre lo stesso token, >1 = vari token
194
+
195
+ - **func_vs_sem_pct**: Differenza % tra max activation su functional vs semantic
196
+ - Range: -100% a +100%
197
+ - Interpretazione: +100% = solo functional, -100% = solo semantic, 0% = uguale
198
+
199
+ - **conf_F / conf_S**: Frazione di peak su token funzionali/semantici
200
+ - Range: 0.0 - 1.0
201
+ - Interpretazione: `conf_F` + `conf_S` = 1.0
202
+
203
+ - **sparsity_median**: Mediana sparsity (solo prompt attivi)
204
+ - Range: 0.0 - 1.0
205
+ - Interpretazione: 0.0 = attivazione diffusa, 1.0 = attivazione concentrata
206
+
207
+ - **K_sem_distinct**: Numero di token semantici distinti
208
+ - Range: 0 - N
209
+ - Interpretazione: Alto = molti token diversi (Relationship/Concept)
210
+
211
+ ---
212
+
213
+ ## Troubleshooting
214
+
215
+ ### Errore: "API Key non trovata"
216
+ - **Soluzione**: Non applicabile per Node Grouping (non richiede API key)
217
+
218
+ ### Errore: "Impossibile caricare CSV"
219
+ - **Causa**: File CSV corrotto o formato errato
220
+ - **Soluzione**: Verifica che il CSV contenga le colonne richieste
221
+
222
+ ### Errore: "Impossibile caricare JSON"
223
+ - **Causa**: File JSON corrotto o formato errato
224
+ - **Soluzione**: Verifica che il JSON abbia la struttura corretta (`results` array)
225
+
226
+ ### Warning: "N feature richiedono review"
227
+ - **Causa**: Casi ambigui che non rientrano chiaramente in una classe
228
+ - **Soluzione**: Esamina manualmente le feature con `review=True` e considera di modificare le soglie
229
+
230
+ ### Naming Relationship non accurato
231
+ - **Causa**: JSON attivazioni non fornito o non completo
232
+ - **Soluzione**: Carica il JSON attivazioni completo con tutti i prompt del CSV
233
+
234
+ ### Classificazione non soddisfacente
235
+ - **Causa**: Soglie di default non adatte al dataset
236
+ - **Soluzione**: Modifica le soglie nella sidebar e riesegui Step 2
237
+
238
+ ---
239
+
240
+ ## Best Practices
241
+
242
+ 1. **Fornisci sempre il JSON attivazioni** per Relationship naming accurato
243
+ 2. **Inizia con soglie di default**, poi affina in base ai risultati
244
+ 3. **Controlla le feature in review** per identificare casi edge
245
+ 4. **Itera su Step 2 e 3** con soglie diverse senza rifare Step 1
246
+ 5. **Esamina la distribuzione classi** per verificare che sia ragionevole
247
+ 6. **Analizza i nomi generati** per verificare che siano interpretabili
248
+ 7. **Scarica il Summary JSON** per documentare le soglie usate
249
+
250
+ ---
251
+
252
+ ## Integrazione con Altri Step
253
+
254
+ ### Input
255
+ - **Da Step 01 (Probe Prompts)**: CSV export con attivazioni
256
+ - **Da Step 00 (Graph Generation)**: JSON attivazioni (opzionale)
257
+
258
+ ### Output
259
+ - **Per Visualizzazione**: CSV con `supernode_name` per etichette grafo
260
+ - **Per Analisi**: CSV completo con tutte le metriche e classificazioni
261
+ - **Per Documentazione**: Summary JSON con statistiche e parametri
262
+
263
+ ---
264
+
265
+ ## Riferimenti
266
+
267
+ - **Script Backend**: `scripts/02_node_grouping.py`
268
+ - **Documentazione Tecnica**: `output/STEP3_IMPLEMENTATION_SUMMARY.md`
269
+ - **Guida Rapida**: `output/STEP3_READY_FOR_REVIEW.md`
270
+ - **Test**: `tests/test_node_naming.py`
271
+ - **Piano Originale**: `node.plan.md`
272
+
273
+ ---
274
+
275
+ ## Supporto
276
+
277
+ Per domande o problemi:
278
+ 1. Consulta questa guida
279
+ 2. Leggi la documentazione tecnica in `output/`
280
+ 3. Esamina gli esempi nel CSV ENRICHED
281
+ 4. Contatta il team di sviluppo
282
+
283
+ **Buon lavoro con Node Grouping!** 🔗
284
+
eda/pages/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ """Streamlit pages"""
2
+
eda/probe_prompts.log ADDED
File without changes
eda/utils/__init__.py ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ """Utility modules"""
2
+
eda/utils/__pycache__/__init__.cpython-313.pyc ADDED
Binary file (186 Bytes). View file
 
eda/utils/__pycache__/compute.cpython-313.pyc ADDED
Binary file (11.9 kB). View file
 
eda/utils/__pycache__/data_loader.cpython-313.pyc ADDED
Binary file (8.45 kB). View file
 
eda/utils/__pycache__/file_monitor.cpython-313.pyc ADDED
Binary file (11.6 kB). View file
 
eda/utils/__pycache__/graph_visualization.cpython-313.pyc ADDED
Binary file (26.6 kB). View file
 
eda/utils/__pycache__/pipeline_state.cpython-313.pyc ADDED
Binary file (12.8 kB). View file
 
eda/utils/__pycache__/plots.cpython-313.pyc ADDED
Binary file (10.3 kB). View file
 
eda/utils/graph_visualization.py ADDED
@@ -0,0 +1,655 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ """Utilities for interactive visualization of extracted graphs"""
2
+ import pandas as pd
3
+ import plotly.express as px
4
+ import streamlit as st
5
+
6
+
7
+ def create_scatter_plot_with_filter(graph_data):
8
+ """
9
+ Crea uno scatter plot interattivo con filtro per cumulative influence
10
+
11
+ Args:
12
+ graph_data: Dizionario contenente i dati del grafo (nodes, metadata, etc)
13
+ """
14
+ if 'nodes' not in graph_data:
15
+ st.warning("⚠️ No nodes found in graph data")
16
+ return
17
+
18
+ # Estrai prompt_tokens dalla metadata per mappare ctx_idx -> token
19
+ prompt_tokens = graph_data.get('metadata', {}).get('prompt_tokens', [])
20
+
21
+ # Crea mapping ctx_idx -> token
22
+ token_map = {i: token for i, token in enumerate(prompt_tokens)}
23
+
24
+ # Estrai i nodi con ctx_idx, layer e influence
25
+ # Mappa layer 'E' (embeddings) a -1, numeri restano numeri
26
+ scatter_data = []
27
+ skipped_nodes = [] # Per logging nodi problematici
28
+
29
+ for node in graph_data['nodes']:
30
+ layer_val = node.get('layer', '')
31
+
32
+ try:
33
+ # Mappa embedding layer a -1
34
+ if str(layer_val).upper() == 'E':
35
+ layer_numeric = -1
36
+ else:
37
+ # Prova a convertire a int
38
+ layer_numeric = int(layer_val)
39
+
40
+ # Gestisci influence: usa valore minimo se mancante o zero
41
+ influence_val = node.get('influence', 0)
42
+ if influence_val is None or influence_val == 0:
43
+ influence_val = 0.001 # Valore minimo per visibilità
44
+
45
+ # Ottieni ctx_idx e mappa al token
46
+ ctx_idx_val = node.get('ctx_idx', 0)
47
+ token_str = token_map.get(ctx_idx_val, f"ctx_{ctx_idx_val}")
48
+
49
+ # Estrai feature_index dal node_id SOLO per nodi SAE
50
+ # Formato SAE: "layer_featureIndex_sequence" → es. "24_79427_7"
51
+ # Altri tipi (MLP error, embeddings, logits) usano formati diversi
52
+ node_id = node.get('node_id', '')
53
+ node_type = node.get('feature_type', '')
54
+ feature_idx = None
55
+
56
+ if node_type == 'cross layer transcoder':
57
+ # Solo per nodi SAE: estrai feature_idx da node_id
58
+ if node_id and '_' in node_id:
59
+ parts = node_id.split('_')
60
+ if len(parts) >= 2:
61
+ try:
62
+ # Il secondo elemento è il feature_index
63
+ feature_idx = int(parts[1])
64
+ except (ValueError, IndexError):
65
+ pass
66
+
67
+ # Se il parsing fallisce per un nodo SAE, skippa!
68
+ if feature_idx is None:
69
+ skipped_nodes.append(f"layer={layer_val}, node_id={node_id}, type=SAE")
70
+ continue # Salta nodi SAE malformati
71
+ else:
72
+ # Per nodi non-SAE (embeddings, logits, MLP error, ecc.):
73
+ # usa -1 come placeholder - NON estrarre da node_id!
74
+ feature_idx = -1
75
+
76
+ scatter_data.append({
77
+ 'layer': layer_numeric,
78
+ 'ctx_idx': ctx_idx_val,
79
+ 'token': token_str,
80
+ 'id': node_id,
81
+ 'influence': influence_val,
82
+ 'feature': feature_idx # Ora contiene l'indice corretto o -1 per non-features!
83
+ })
84
+ except (ValueError, TypeError):
85
+ # Salta nodi con layer non valido
86
+ continue
87
+
88
+ # Log nodi skippati se ce ne sono
89
+ if skipped_nodes:
90
+ st.warning(f"⚠️ {len(skipped_nodes)} feature nodes with malformed node_id were skipped")
91
+ with st.expander("Skipped nodes details"):
92
+ for node_info in skipped_nodes[:10]: # Mostra solo i primi 10
93
+ st.text(node_info)
94
+ if len(skipped_nodes) > 10:
95
+ st.text(f"... and {len(skipped_nodes) - 10} more nodes")
96
+
97
+ if not scatter_data:
98
+ st.warning("⚠️ No valid nodes found for plotting")
99
+ return
100
+
101
+ scatter_df = pd.DataFrame(scatter_data)
102
+
103
+ # Pulisci NaN e valori invalidi
104
+ scatter_df['influence'] = scatter_df['influence'].fillna(0.001)
105
+ scatter_df['influence'] = scatter_df['influence'].replace(0, 0.001)
106
+
107
+ # === BINNING PER EVITARE SOVRAPPOSIZIONI (stile Neuronpedia) ===
108
+ # Per ogni combinazione (ctx_idx, layer), distribuiamo i nodi su sub-colonne
109
+ import numpy as np
110
+
111
+ bin_width = 0.3 # Larghezza della sub-colonna
112
+ scatter_df['sub_column'] = 0
113
+
114
+ for (ctx, layer), group in scatter_df.groupby(['ctx_idx', 'layer']):
115
+ n_nodes = len(group)
116
+ if n_nodes > 1:
117
+ # Calcola quante sub-colonne servono (max 5 per evitare troppa dispersione)
118
+ n_bins = min(5, int(np.ceil(np.sqrt(n_nodes))))
119
+ # Assegna ogni nodo a una sub-colonna
120
+ for i, idx in enumerate(group.index):
121
+ sub_col = (i % n_bins) - (n_bins - 1) / 2 # Centra attorno a 0
122
+ scatter_df.at[idx, 'sub_column'] = sub_col * bin_width
123
+
124
+ # Applica offset per creare sub-colonne
125
+ scatter_df['ctx_idx_display'] = scatter_df['ctx_idx'] + scatter_df['sub_column']
126
+
127
+ # === FILTRO PER CUMULATIVE INFLUENCE ===
128
+ st.markdown("### 3️⃣ Filter Features by Cumulative Influence Coverage")
129
+
130
+ # Calcola il massimo valore di influence presente nei dati
131
+ max_influence = scatter_df['influence'].max()
132
+
133
+ # Mostra il node_threshold usato durante la generazione (se disponibile)
134
+ node_threshold_used = graph_data.get('metadata', {}).get('node_threshold', None)
135
+
136
+ if node_threshold_used is not None:
137
+ st.info(f"""
138
+ **The `influence` field is the cumulative coverage (0-{max_influence:.2f})** calculated by circuit tracer pruning. When nodes are sorted by descending influence, a node with `influence=0.65` means that
139
+ **up to that node** covers 65% of the total influence.
140
+ """)
141
+ else:
142
+ st.info(f"""
143
+ **The `influence` field is the cumulative coverage (0-{max_influence:.2f})** calculated by circuit tracer pruning.
144
+
145
+ When nodes are sorted by descending influence, a node with `influence=0.65` means that
146
+ **up to that node** covers 65% of the total influence.
147
+ """)
148
+
149
+ cumulative_threshold = st.slider(
150
+ "Cumulative Influence Threshold",
151
+ min_value=0.0,
152
+ max_value=float(max_influence),
153
+ value=float(max_influence),
154
+ step=0.01,
155
+ key="cumulative_slider_main",
156
+ help=f"Keep only nodes with influence ≤ threshold. Range: 0.0 - {max_influence:.2f} (max in data)"
157
+ )
158
+
159
+ # Checkbox per filtrare reconstruction error nodes
160
+ filter_error_nodes = st.checkbox(
161
+ "Exclude Reconstruction Error Nodes (feature = -1)",
162
+ value=False,
163
+ key="filter_error_checkbox",
164
+ help="Reconstruction error nodes represent the part of the model not explained by SAE features"
165
+ )
166
+
167
+ # Filtra usando direttamente il campo influence dal JSON
168
+ num_total = len(scatter_df)
169
+
170
+ # Identifica reconstruction error nodes (feature = -1) - KPI verrà calcolato dopo
171
+ is_error_node = scatter_df['feature'] == -1
172
+ n_error_total = is_error_node.sum()
173
+ pct_error_nodes = (n_error_total / num_total * 100) if num_total > 0 else 0
174
+
175
+ # Identifica embeddings e logits da mantenere sempre
176
+ is_embedding = scatter_df['layer'] == -1 # Layer 'E' mappato a -1
177
+ # Logits hanno layer massimo (es. layer 27 per gemma-2-2b con 26 layer + 1)
178
+ max_layer = scatter_df['layer'].max()
179
+ is_logit = scatter_df['layer'] == max_layer
180
+
181
+ # Applica filtri combinati: influence threshold + error nodes (se checkbox attivo)
182
+ if cumulative_threshold < 1.0:
183
+ mask_influence = scatter_df['influence'] <= cumulative_threshold
184
+ mask_keep = mask_influence | is_embedding | is_logit
185
+ else:
186
+ mask_keep = pd.Series([True] * len(scatter_df), index=scatter_df.index)
187
+
188
+ # Applica filtro error nodes se checkbox attivo
189
+ if filter_error_nodes:
190
+ # Escludi error nodes (feature = -1), ma mantieni embeddings/logits
191
+ mask_not_error = (scatter_df['feature'] != -1) | is_embedding | is_logit
192
+ mask_keep = mask_keep & mask_not_error
193
+
194
+ scatter_filtered = scatter_df[mask_keep].copy()
195
+
196
+ # Soglia di influence effettiva (max influence tra i nodi filtrati, escludendo embeddings/logits)
197
+ feature_nodes_filtered = scatter_filtered[~((scatter_filtered['layer'] == -1) | (scatter_filtered['layer'] == max_layer))]
198
+ if len(feature_nodes_filtered) > 0:
199
+ threshold_influence = feature_nodes_filtered['influence'].max()
200
+ else:
201
+ threshold_influence = 0.0
202
+
203
+ num_selected = len(scatter_filtered)
204
+
205
+ # Conta embeddings, features e error nodes nel dataset filtrato (prima di rimuovere logit)
206
+ is_embedding_filtered = scatter_filtered['layer'] == -1
207
+ max_layer_filtered = scatter_filtered['layer'].max()
208
+ is_logit_filtered = scatter_filtered['layer'] == max_layer_filtered
209
+ is_error_filtered = scatter_filtered['feature'] == -1
210
+
211
+ n_embeddings = len(scatter_filtered[is_embedding_filtered])
212
+ n_error_nodes = len(scatter_filtered[is_error_filtered & ~is_embedding_filtered & ~is_logit_filtered])
213
+ n_features = len(scatter_filtered[~(is_embedding_filtered | is_logit_filtered | is_error_filtered)])
214
+ n_logits_excluded = len(scatter_filtered[is_logit_filtered])
215
+ n_error_excluded = n_error_total - n_error_nodes if filter_error_nodes else 0
216
+
217
+ # Mostra statistiche filtro
218
+ col1, col2, col3, col4 = st.columns(4)
219
+
220
+ with col1:
221
+ st.metric("Total Nodes", num_total)
222
+
223
+ with col2:
224
+ st.metric("Selected Nodes", num_selected)
225
+
226
+ with col3:
227
+ pct = (num_selected / num_total * 100) if num_total > 0 else 0
228
+ st.metric("% Nodes", f"{pct:.1f}%")
229
+
230
+ with col4:
231
+ st.metric("Influence Threshold", f"{threshold_influence:.6f}")
232
+
233
+
234
+ # Usa il dataframe filtrato per il plot
235
+ scatter_df = scatter_filtered
236
+
237
+ # Ricalcola le sub-colonne per il dataset filtrato
238
+ scatter_df = scatter_df.copy()
239
+ scatter_df['sub_column'] = 0
240
+
241
+ for (ctx, layer), group in scatter_df.groupby(['ctx_idx', 'layer']):
242
+ n_nodes = len(group)
243
+ if n_nodes > 1:
244
+ n_bins = min(5, int(np.ceil(np.sqrt(n_nodes))))
245
+ for i, idx in enumerate(group.index):
246
+ sub_col = (i % n_bins) - (n_bins - 1) / 2
247
+ scatter_df.at[idx, 'sub_column'] = sub_col * bin_width
248
+
249
+ scatter_df['ctx_idx_display'] = scatter_df['ctx_idx'] + scatter_df['sub_column']
250
+
251
+ # Calcola node_influence (marginal influence) per il raggio dei cerchi/quadrati
252
+ # Se non presente nel JSON (vecchi grafi), calcoliamo al volo
253
+ if 'node_influence' not in scatter_df.columns:
254
+ # Calcola marginal influence come differenza tra cumulative consecutive
255
+ df_sorted_by_cumul = scatter_df.sort_values('influence').reset_index(drop=True)
256
+ df_sorted_by_cumul['node_influence'] = df_sorted_by_cumul['influence'].diff()
257
+ df_sorted_by_cumul.loc[0, 'node_influence'] = df_sorted_by_cumul.loc[0, 'influence']
258
+
259
+ # Remap al dataframe originale
260
+ node_id_to_marginal = dict(zip(df_sorted_by_cumul['id'], df_sorted_by_cumul['node_influence']))
261
+ scatter_df['node_influence'] = scatter_df['id'].map(node_id_to_marginal).fillna(scatter_df['influence'])
262
+
263
+ # CALCOLA KPI ERROR NODES (ora che node_influence è disponibile)
264
+ # Usa scatter_df (dataset completo prima della rimozione logit) per i KPI globali
265
+ is_error_in_complete = scatter_df['feature'] == -1
266
+ total_node_influence = scatter_df['node_influence'].sum()
267
+ error_node_influence = scatter_df[is_error_in_complete]['node_influence'].sum()
268
+ pct_error_influence = (error_node_influence / total_node_influence * 100) if total_node_influence > 0 else 0
269
+
270
+ # Mostra KPI reconstruction error nodes (prima del plot)
271
+ col1, col2 = st.columns(2)
272
+ with col1:
273
+ st.metric(
274
+ "% Error Nodes",
275
+ f"{pct_error_nodes:.1f}%",
276
+ help=f"{n_error_total} out of {num_total} total nodes are reconstruction error (feature=-1)"
277
+ )
278
+ with col2:
279
+ st.metric(
280
+ "% Node Influence (Error)",
281
+ f"{pct_error_influence:.1f}%",
282
+ help=f"Reconstruction error nodes contribute {pct_error_influence:.1f}% of total node_influence"
283
+ )
284
+
285
+ # Messaggio info con breakdown
286
+ info_parts = [f"{n_embeddings} embeddings", f"{n_features} features"]
287
+ if n_error_nodes > 0:
288
+ info_parts.append(f"{n_error_nodes} error nodes")
289
+
290
+ excluded_parts = [f"{n_logits_excluded} logits"]
291
+ if n_error_excluded > 0:
292
+ excluded_parts.append(f"{n_error_excluded} error nodes")
293
+
294
+ st.info(f"📊 Displaying {n_embeddings + n_features + n_error_nodes} nodes: {', '.join(info_parts)} ({', '.join(excluded_parts)} excluded)")
295
+
296
+
297
+ # Identifica i 2 gruppi: embeddings e features (escludi logits)
298
+ is_embedding_group = scatter_df['layer'] == -1
299
+ max_layer = scatter_df['layer'].max()
300
+ is_logit_group = scatter_df['layer'] == max_layer
301
+ is_feature_group = ~(is_embedding_group | is_logit_group)
302
+
303
+ # RIMUOVI I LOGIT dal dataset
304
+ scatter_df = scatter_df[~is_logit_group].copy()
305
+
306
+ # Ricalcola le maschere dopo il filtro
307
+ is_embedding_group = scatter_df['layer'] == -1
308
+ is_feature_group = scatter_df['layer'] != -1
309
+
310
+ # Aggiungi colonna per il tipo di nodo (solo 2 tipi ora)
311
+ scatter_df['node_type'] = 'feature'
312
+ scatter_df.loc[is_embedding_group, 'node_type'] = 'embedding'
313
+
314
+ # Calcola influence_log normalizzato per gruppo con formula più aggressiva
315
+ # Ogni gruppo ha la sua scala basata sul max del gruppo
316
+ scatter_df['influence_log'] = 0.0
317
+
318
+ for group_name, group_mask in [('embedding', is_embedding_group),
319
+ ('feature', is_feature_group)]:
320
+ if group_mask.sum() > 0:
321
+ group_data = scatter_df[group_mask]['node_influence'].abs()
322
+ # Normalizza rispetto al max del gruppo
323
+ max_in_group = group_data.max()
324
+ if max_in_group > 0:
325
+ normalized = group_data / max_in_group
326
+ # Formula più aggressiva: usa power 3 per estremizzare le differenze
327
+ # normalized^3 rende i valori bassi molto più piccoli e i valori alti più grandi
328
+ # Moltiplica per 1000 per avere un buon range di grandezza
329
+ scatter_df.loc[group_mask, 'influence_log'] = (normalized ** 3) * 1000 + 10
330
+ else:
331
+ scatter_df.loc[group_mask, 'influence_log'] = 10 # Valore minimo default
332
+
333
+ # Crea scatter plot con simboli diversi per gruppo (solo embeddings e features)
334
+ symbol_map = {
335
+ 'embedding': 'square',
336
+ 'feature': 'circle'
337
+ }
338
+
339
+ fig = px.scatter(
340
+ scatter_df,
341
+ x='ctx_idx_display', # Usa posizione con offset
342
+ y='layer',
343
+ size='influence_log', # Usa scala aggressiva (power 3) normalizzata per gruppo
344
+ symbol='node_type', # Simbolo diverso per tipo
345
+ symbol_map=symbol_map,
346
+ color='node_type', # Colore diverso per tipo
347
+ color_discrete_map={
348
+ 'embedding': '#4CAF50', # Verde per embeddings
349
+ 'feature': '#808080' # Grigio per features
350
+ },
351
+ labels={
352
+ 'id': 'Node ID',
353
+ 'ctx_idx_display': 'Context Position',
354
+ 'ctx_idx': 'ctx_idx',
355
+ 'layer': 'Layer',
356
+ 'influence': 'Cumulative Influence',
357
+ 'node_influence': 'Node Influence',
358
+ 'node_type': 'Node Type',
359
+ 'token': 'Token',
360
+ 'feature': 'Feature'
361
+ },
362
+ title='Features by Layer and Position (size: node_influence^3 normalized per group)',
363
+ hover_data={
364
+ 'ctx_idx': True,
365
+ 'token': True,
366
+ 'layer': True,
367
+ 'node_type': True,
368
+ 'id': True,
369
+ 'feature': True,
370
+ 'node_influence': ':.6f', # Influenza marginale (grandezza simbolo)
371
+ 'influence': ':.4f', # Cumulative influence (filtro slider)
372
+ 'ctx_idx_display': False, # Nascondi la posizione modificata
373
+ 'influence_log': False # Nascondi il valore logaritmico
374
+ }
375
+ )
376
+
377
+ # Personalizza il layout con alta trasparenza e outline marcato
378
+ # Applica a tutte le tracce (embeddings, features, logits)
379
+ max_influence_log = scatter_df['influence_log'].max()
380
+
381
+ fig.update_traces(
382
+ marker=dict(
383
+ sizemode='area',
384
+ sizeref=2.*max_influence_log/(50.**2) if max_influence_log > 0 else 1,
385
+ sizemin=2, # Dimensione minima
386
+ opacity=0.3, # Trasparenza medio-alta
387
+ line=dict(width=1.5, color='white') # Contorno bianco per distinguere
388
+ )
389
+ )
390
+
391
+ # Crea tick labels personalizzate per l'asse x (ctx_idx: token)
392
+ unique_ctx = sorted(scatter_df['ctx_idx'].unique())
393
+ tick_labels = [f"{ctx}: {token_map.get(ctx, '')}" for ctx in unique_ctx]
394
+
395
+ fig.update_layout(
396
+ template='plotly_white',
397
+ height=600,
398
+ showlegend=True, # Mostra legenda per i 3 gruppi
399
+ legend=dict(
400
+ title="Node Type",
401
+ orientation="v",
402
+ yanchor="top",
403
+ y=0.99,
404
+ xanchor="left",
405
+ x=0.99,
406
+ bgcolor="rgba(255,255,255,0.8)"
407
+ ),
408
+ xaxis=dict(
409
+ gridcolor='lightgray',
410
+ tickmode='array',
411
+ tickvals=unique_ctx,
412
+ ticktext=tick_labels,
413
+ tickangle=-45
414
+ ),
415
+ yaxis=dict(gridcolor='lightgray')
416
+ )
417
+
418
+ st.plotly_chart(fig, use_container_width=True)
419
+
420
+ # Mostra statistiche per gruppo
421
+ with st.expander("📊 Statistics by Group (Size Normalization)", expanded=False):
422
+ col1, col2 = st.columns(2)
423
+
424
+ with col1:
425
+ st.markdown("**🟩 Embeddings (green squares)**")
426
+ emb_data = scatter_df[scatter_df['node_type'] == 'embedding']
427
+ if len(emb_data) > 0:
428
+ st.metric("Nodes", len(emb_data))
429
+ st.metric("Max node_influence", f"{emb_data['node_influence'].max():.6f}")
430
+ st.metric("Mean node_influence", f"{emb_data['node_influence'].mean():.6f}")
431
+ st.metric("Min node_influence", f"{emb_data['node_influence'].min():.6f}")
432
+ else:
433
+ st.info("No embeddings in filtered dataset")
434
+
435
+ with col2:
436
+ st.markdown("**⚪ Features (gray circles)**")
437
+ feat_data = scatter_df[scatter_df['node_type'] == 'feature']
438
+ if len(feat_data) > 0:
439
+ st.metric("Nodes", len(feat_data))
440
+ st.metric("Max node_influence", f"{feat_data['node_influence'].max():.6f}")
441
+ st.metric("Mean node_influence", f"{feat_data['node_influence'].mean():.6f}")
442
+ st.metric("Min node_influence", f"{feat_data['node_influence'].min():.6f}")
443
+ else:
444
+ st.info("No features in filtered dataset")
445
+
446
+ st.info("""
447
+ 💡 **Size formula**: `size = (normalized_node_influence)³ × 1000 + 10`
448
+
449
+ Size is normalized **per group** and uses **power 3** to emphasize differences:
450
+ - A node with 50% of max → size = 0.5³ = 12.5% (much smaller)
451
+ - A node with 80% of max → size = 0.8³ = 51.2%
452
+ - A node with 100% of max → size = 1.0³ = 100%
453
+
454
+ The 2 groups (embeddings and features) have independent scales.
455
+ Note: in the JSON the "influence" field is the pre-pruning cumulative, so estimating node_influence as the difference between consecutive cumulatives is only a normalized proxy (to be renormalized on the current set), because the graph may already be topologically pruned and the selection does not coincide with a contiguous prefix of sorted nodes.
456
+ """)
457
+
458
+ # === GRAFICO PARETO: NODE INFLUENCE (solo features, no embeddings/logits) ===
459
+ with st.expander("📈 Pareto Analysis Node Influence (Features only)", expanded=False):
460
+ try:
461
+ # Filtra solo features (scatter_df ha già rimosso i logit e ha node_type)
462
+ features_only = scatter_df[scatter_df['node_type'] == 'feature'].copy()
463
+
464
+ if len(features_only) == 0:
465
+ st.warning("⚠️ No features found in filtered dataset")
466
+ return
467
+
468
+ # Ordina per node_influence decrescente
469
+ sorted_df = features_only.sort_values('node_influence', ascending=False).reset_index(drop=True)
470
+
471
+ # Calcola rank e percentile
472
+ sorted_df['rank'] = range(1, len(sorted_df) + 1)
473
+ sorted_df['rank_pct'] = sorted_df['rank'] / len(sorted_df) * 100
474
+
475
+ # Calcola node_influence cumulativa (somma progressiva)
476
+ total_node_inf = sorted_df['node_influence'].sum()
477
+
478
+ if total_node_inf == 0:
479
+ st.warning("⚠️ Total Node influence is 0")
480
+ return
481
+
482
+ sorted_df['cumulative_node_influence'] = sorted_df['node_influence'].cumsum()
483
+ sorted_df['cumulative_node_influence_pct'] = sorted_df['cumulative_node_influence'] / total_node_inf * 100
484
+
485
+ # Crea grafico Pareto con doppio asse Y
486
+ import plotly.graph_objects as go
487
+ from plotly.subplots import make_subplots
488
+
489
+ # Crea subplot con asse Y secondario
490
+ fig_pareto = make_subplots(specs=[[{"secondary_y": True}]])
491
+
492
+ # Barra: node_influence individuale (limita a primi 100 nodi per leggibilità)
493
+ display_limit = min(100, len(sorted_df))
494
+
495
+ fig_pareto.add_trace(
496
+ go.Bar(
497
+ x=sorted_df['rank'][:display_limit],
498
+ y=sorted_df['node_influence'][:display_limit],
499
+ name='Node Influence',
500
+ marker=dict(color='#2196F3', opacity=0.6),
501
+ hovertemplate='<b>Rank: %{x}</b><br>Node Influence: %{y:.6f}<extra></extra>'
502
+ ),
503
+ secondary_y=False
504
+ )
505
+
506
+ # Linea: cumulativa % (usa tutti i nodi)
507
+ fig_pareto.add_trace(
508
+ go.Scatter(
509
+ x=sorted_df['rank_pct'],
510
+ y=sorted_df['cumulative_node_influence_pct'],
511
+ mode='lines+markers',
512
+ name='Cumulative %',
513
+ line=dict(color='#FF5722', width=3),
514
+ marker=dict(size=4),
515
+ hovertemplate='<b>Top %{x:.1f}% features</b><br>Cumulative: %{y:.1f}%<extra></extra>'
516
+ ),
517
+ secondary_y=True
518
+ )
519
+
520
+ # Linee di riferimento Pareto (80%, 90%, 95%)
521
+ for pct, label in [(80, '80%'), (90, '90%'), (95, '95%')]:
522
+ fig_pareto.add_hline(
523
+ y=pct,
524
+ line_dash="dash",
525
+ line_color="gray",
526
+ opacity=0.5,
527
+ secondary_y=True
528
+ )
529
+ fig_pareto.add_annotation(
530
+ x=100,
531
+ y=pct,
532
+ text=label,
533
+ showarrow=False,
534
+ xanchor='left',
535
+ yref='y2'
536
+ )
537
+
538
+ # Trova il "knee" (punto dove la cumulativa raggiunge 80%)
539
+ knee_idx = (sorted_df['cumulative_node_influence_pct'] >= 80).idxmax()
540
+ knee_rank_pct = sorted_df.loc[knee_idx, 'rank_pct']
541
+ knee_cumul = sorted_df.loc[knee_idx, 'cumulative_node_influence_pct']
542
+
543
+ fig_pareto.add_trace(
544
+ go.Scatter(
545
+ x=[knee_rank_pct],
546
+ y=[knee_cumul],
547
+ mode='markers',
548
+ name='Knee (80%)',
549
+ marker=dict(size=15, color='#4CAF50', symbol='diamond', line=dict(width=2, color='white')),
550
+ hovertemplate=f'<b>Knee Point</b><br>Top {knee_rank_pct:.1f}% features<br>Cumulativa: {knee_cumul:.1f}%<extra></extra>',
551
+ showlegend=True
552
+ ),
553
+ secondary_y=True
554
+ )
555
+
556
+ # Layout
557
+ fig_pareto.update_xaxes(title_text="Rank % Features (by descending node_influence)")
558
+ fig_pareto.update_yaxes(title_text="Node Influence (individual)", secondary_y=False)
559
+ fig_pareto.update_yaxes(title_text="Cumulative % Node Influence", secondary_y=True, range=[0, 105])
560
+
561
+ fig_pareto.update_layout(
562
+ height=500,
563
+ showlegend=True,
564
+ template='plotly_white',
565
+ legend=dict(x=0.02, y=0.98, xanchor='left', yanchor='top'),
566
+ title="Pareto Chart: Node Influence of Features"
567
+ )
568
+
569
+ st.plotly_chart(fig_pareto, use_container_width=True)
570
+
571
+ # Statistiche chiave Pareto
572
+ st.markdown("#### 📊 Pareto Statistics (Node Influence)")
573
+
574
+ col1, col2, col3, col4 = st.columns(4)
575
+
576
+ # Trova percentili chiave
577
+ top_10_idx = max(0, int(len(sorted_df) * 0.1))
578
+ top_20_idx = max(0, int(len(sorted_df) * 0.2))
579
+ top_50_idx = max(0, int(len(sorted_df) * 0.5))
580
+
581
+ top_10_pct = sorted_df['cumulative_node_influence_pct'].iloc[top_10_idx] if top_10_idx < len(sorted_df) else 0
582
+ top_20_pct = sorted_df['cumulative_node_influence_pct'].iloc[top_20_idx] if top_20_idx < len(sorted_df) else 0
583
+ top_50_pct = sorted_df['cumulative_node_influence_pct'].iloc[top_50_idx] if top_50_idx < len(sorted_df) else 0
584
+
585
+ with col1:
586
+ st.metric("Top 10% features", f"{top_10_pct:.1f}% node_influence",
587
+ help=f"The top {int(len(sorted_df)*0.1)} most influential features cover {top_10_pct:.1f}% of total influence")
588
+ with col2:
589
+ st.metric("Top 20% features", f"{top_20_pct:.1f}% node_influence",
590
+ help=f"The top {int(len(sorted_df)*0.2)} most influential features cover {top_20_pct:.1f}% of total influence")
591
+ with col3:
592
+ st.metric("Top 50% features", f"{top_50_pct:.1f}% node_influence",
593
+ help=f"The top {int(len(sorted_df)*0.5)} most influential features cover {top_50_pct:.1f}% of total influence")
594
+ with col4:
595
+ # Gini coefficient
596
+ gini = 1 - 2 * np.trapz(sorted_df['cumulative_node_influence_pct'] / 100, sorted_df['rank_pct'] / 100)
597
+ st.metric("Gini Coefficient", f"{gini:.3f}", help="0 = equal distribution, 1 = highly concentrated")
598
+
599
+ # Info sul knee point e suggerimento threshold
600
+ # sorted_df[knee_idx] ci dà la riga del knee point
601
+ knee_cumul_threshold = sorted_df.loc[knee_idx, 'influence'] if 'influence' in sorted_df.columns else scatter_df['influence'].max()
602
+
603
+ st.success(f"""
604
+ 🎯 **Knee Point (80%)**: The first **{knee_rank_pct:.1f}%** of features ({int(len(sorted_df) * knee_rank_pct / 100)} nodes)
605
+ cover **80%** of total node_influence.
606
+
607
+ 💡 **Threshold Suggestion**: To focus on features up to the knee point (80%),
608
+ use `cumulative_threshold ≈ {knee_cumul_threshold:.4f}` in the slider above.
609
+ """)
610
+
611
+ # Histogram distribuzione node_influence (opzionale, in expander)
612
+ with st.expander("📊 Node Influence Distribution Histogram", expanded=False):
613
+ fig_hist = px.histogram(
614
+ sorted_df,
615
+ x='node_influence',
616
+ nbins=50,
617
+ title='Node Influence Distribution (Features)',
618
+ labels={'node_influence': 'Node Influence', 'count': 'Frequency'},
619
+ color_discrete_sequence=['#2196F3']
620
+ )
621
+
622
+ fig_hist.update_layout(
623
+ height=350,
624
+ template='plotly_white',
625
+ showlegend=False
626
+ )
627
+
628
+ fig_hist.update_traces(marker=dict(opacity=0.7))
629
+
630
+ st.plotly_chart(fig_hist, use_container_width=True)
631
+
632
+ # Statistiche distribuzione
633
+ col1, col2, col3, col4 = st.columns(4)
634
+ with col1:
635
+ st.metric("Mean", f"{sorted_df['node_influence'].mean():.6f}")
636
+ with col2:
637
+ st.metric("Median", f"{sorted_df['node_influence'].median():.6f}")
638
+ with col3:
639
+ st.metric("Std Dev", f"{sorted_df['node_influence'].std():.6f}")
640
+ with col4:
641
+ st.metric("Max", f"{sorted_df['node_influence'].max():.6f}")
642
+
643
+ except Exception as e:
644
+ st.error(f"❌ Error creating distribution chart: {str(e)}")
645
+ import traceback
646
+ st.code(traceback.format_exc())
647
+
648
+ # Ritorna le feature filtrate (solo SAE features, no embeddings/logits/errors)
649
+ # Utile per export
650
+ sae_features_only = scatter_filtered[
651
+ ~(is_embedding_filtered | is_logit_filtered | is_error_filtered)
652
+ ].copy()
653
+
654
+ return sae_features_only
655
+
examples_data/2025-10-21T07-40_export_ENRICHED.csv ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ feature_key,layer,index,source,prompt,activation_max,activation_sum,activation_mean,sparsity_ratio,peak_token,peak_token_idx,node_influence,csv_ctx_idx,Unnamed: 0,supernode_label,supernode_class,motivation
2
+ 1_12928,1,12928,1-clt-hp,"entity: A city in Texas, USA is Dallas",105.41461181640624,810.1840858459473,81.01840858459472,0.2314309450221265,entity,1,0.0096316039562225,7,14,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
3
+ 1_12928,1,12928,1-clt-hp,entity: The capital city of Texas is Austin,105.41461181640624,737.9229583740234,81.99143981933594,0.2222004292712752,entity,1,0.0096316039562225,7,67,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
4
+ 1_12928,1,12928,1-clt-hp,entity: A state in the United States is Texas,105.41461181640624,848.5865478515625,84.85865478515625,0.1950010219366075,entity,1,0.0096316039562225,7,120,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
5
+ 1_12928,1,12928,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,117.0110092163086,1233.4596061706543,68.52553367614746,0.4143667836462297,attribute,1,0.0096316039562225,7,173,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
6
+ 1_12928,1,12928,1-clt-hp,relationship: the state in which a city is located is the state containing,115.16062927246094,1163.957431793213,83.13981655665806,0.2780534712088466,relationship,1,0.0096316039562225,7,226,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
7
+ 1_72774,1,72774,1-clt-hp,"entity: A city in Texas, USA is Dallas",80.11094665527344,626.0174751281738,62.60174751281738,0.2185618804106777, city,4,0.0095889568328857,7,17,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
8
+ 1_72774,1,72774,1-clt-hp,entity: The capital city of Texas is Austin,84.13487243652344,613.3576698303223,68.15085220336914,0.1899809171899991, city,5,0.0095889568328857,7,70,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
9
+ 1_72774,1,72774,1-clt-hp,entity: A state in the United States is Texas,91.9457550048828,689.5408782958984,68.95408782958984,0.2500568642246941, state,4,0.0095889568328857,7,123,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
10
+ 1_72774,1,72774,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,122.51927185058594,1543.6992301940918,85.76106834411621,0.3000197679210573, primary,4,0.0095889568328857,7,175,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
11
+ 1_72774,1,72774,1-clt-hp,relationship: the state in which a city is located is the state containing,97.75382995605467,931.018913269043,66.50135094778878,0.3197059288860138, containing,14,0.0095889568328857,7,229,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
12
+ 20_44686,20,44686,20-clt-hp,"entity: A city in Texas, USA is Dallas",21.17974853515625,35.3902645111084,3.53902645111084,0.8329051714076581, Dallas,10,0.008446842432022,7,40,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte"
13
+ 20_44686,20,44686,20-clt-hp,entity: The capital city of Texas is Austin,57.44028472900391,111.7382698059082,12.415363311767578,0.7838561669681529, is,8,0.008446842432022,7,93,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte"
14
+ 20_44686,20,44686,20-clt-hp,entity: A state in the United States is Texas,31.102846145629883,31.102846145629883,3.110284614562988,0.9, Texas,10,0.008446842432022,7,146,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte"
15
+ 20_44686,20,44686,20-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.008446842432022,7,200,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte"
16
+ 20_44686,20,44686,20-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.008446842432022,7,252,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte"
17
+ 1_57794,1,57794,1-clt-hp,"entity: A city in Texas, USA is Dallas",113.94397735595705,869.7109718322754,86.97109718322754,0.2367205428371799,entity,1,0.0081024467945098,7,15,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
18
+ 1_57794,1,57794,1-clt-hp,entity: The capital city of Texas is Austin,113.94397735595705,785.0075225830078,87.22305806477864,0.2345092729886299,entity,1,0.0081024467945098,7,68,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
19
+ 1_57794,1,57794,1-clt-hp,entity: A state in the United States is Texas,113.94397735595705,817.1403198242188,81.71403198242187,0.2828578229532038,entity,1,0.0081024467945098,7,121,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
20
+ 1_57794,1,57794,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,125.45741271972656,1323.623565673828,73.53464253743489,0.4138676946757048,attribute,1,0.0081024467945098,7,174,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
21
+ 1_57794,1,57794,1-clt-hp,relationship: the state in which a city is located is the state containing,121.10602569580078,1136.5441207885742,81.18172291346959,0.3296640489434831,relationship,1,0.0081024467945098,7,227,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt"
22
+ 0_40780,0,40780,0-clt-hp,"entity: A city in Texas, USA is Dallas",50.744911193847656,183.38724303245544,18.338724303245545,0.6386095891824334, is,9,0.0069027841091156,7,3,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is"
23
+ 0_40780,0,40780,0-clt-hp,entity: The capital city of Texas is Austin,48.96206283569336,128.85796904563904,14.317552116182116,0.7075786581086487, is,8,0.0069027841091156,7,58,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is"
24
+ 0_40780,0,40780,0-clt-hp,entity: A state in the United States is Texas,53.07304382324219,192.2147843837738,19.221478438377385,0.6378297332560423, the,6,0.0069027841091156,7,107,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is"
25
+ 0_40780,0,40780,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,50.93766784667969,365.7576293945313,20.319868299696186,0.6010836546176759, is,15,0.0069027841091156,7,163,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is"
26
+ 0_40780,0,40780,0-clt-hp,relationship: the state in which a city is located is the state containing,59.61247253417969,401.4472732543945,28.67480523245675,0.5189797702818713, which,6,0.0069027841091156,7,213,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is"
27
+ 1_52044,1,52044,1-clt-hp,"entity: A city in Texas, USA is Dallas",101.82122802734376,719.1115570068359,71.9111557006836,0.2937508504476877, USA,8,0.0067475140094757,7,16,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
28
+ 1_52044,1,52044,1-clt-hp,entity: The capital city of Texas is Austin,111.89495849609376,656.9445991516113,72.99384435017903,0.347657433978786, capital,4,0.0067475140094757,7,69,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
29
+ 1_52044,1,52044,1-clt-hp,entity: A state in the United States is Texas,95.29304504394533,751.4510955810547,75.14510955810547,0.2114313324393026, state,4,0.0067475140094757,7,122,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
30
+ 1_52044,1,52044,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,118.34194946289062,1567.5587120056152,87.08659511142307,0.2641105245715809, capital,17,0.0067475140094757,7,176,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
31
+ 1_52044,1,52044,1-clt-hp,relationship: the state in which a city is located is the state containing,125.9399642944336,1198.040008544922,85.57428632463727,0.3205152407017193, containing,14,0.0067475140094757,7,228,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation"
32
+ 16_89970,16,89970,16-clt-hp,"entity: A city in Texas, USA is Dallas",18.21431350708008,18.21431350708008,1.821431350708008,0.9, Texas,6,0.0067293047904968,6,28,"""Texas""",Semantic, si attiva solo su Texas
33
+ 16_89970,16,89970,16-clt-hp,entity: The capital city of Texas is Austin,18.45095634460449,24.438182830810547,2.7153536478678384,0.8528339888104568, Texas,7,0.0067293047904968,6,82,"""Texas""",Semantic, si attiva solo su Texas
34
+ 16_89970,16,89970,16-clt-hp,entity: A state in the United States is Texas,7.996506690979004,7.996506690979004,0.7996506690979004,0.9, Texas,10,0.0067293047904968,6,134,"""Texas""",Semantic, si attiva solo su Texas
35
+ 16_89970,16,89970,16-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0067293047904968,6,189,"""Texas""",Semantic, si attiva solo su Texas
36
+ 16_89970,16,89970,16-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0067293047904968,6,241,"""Texas""",Semantic, si attiva solo su Texas
37
+ 22_11998,22,11998,22-clt-hp,"entity: A city in Texas, USA is Dallas",21.473478317260746,21.473478317260746,2.147347831726074,0.9, Dallas,10,0.005888283252716,7,46,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')"
38
+ 22_11998,22,11998,22-clt-hp,entity: The capital city of Texas is Austin,20.13431739807129,20.13431739807129,2.237146377563477,0.8888888888888888, is,8,0.005888283252716,7,101,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')"
39
+ 22_11998,22,11998,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.005888283252716,7,152,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')"
40
+ 22_11998,22,11998,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.005888283252716,7,205,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')"
41
+ 22_11998,22,11998,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.005888283252716,7,258,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')"
42
+ 0_91045,0,91045,0-clt-hp,"entity: A city in Texas, USA is Dallas",46.246559143066406,46.246559143066406,4.624655914306641,0.8999999999999999, is,9,0.0052919089794158,7,5,"""is""",Semantic,attivazione aselettiva su is
43
+ 0_91045,0,91045,0-clt-hp,entity: The capital city of Texas is Austin,41.82666778564453,41.82666778564453,4.647407531738281,0.8888888888888888, is,8,0.0052919089794158,7,63,"""is""",Semantic,attivazione aselettiva su is
44
+ 0_91045,0,91045,0-clt-hp,entity: A state in the United States is Texas,45.03489685058594,45.03489685058594,4.503489685058594,0.8999999999999999, is,9,0.0052919089794158,7,112,"""is""",Semantic,attivazione aselettiva su is
45
+ 0_91045,0,91045,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,53.5222053527832,53.5222053527832,2.9734558529324,0.9444444444444444, is,15,0.0052919089794158,7,161,"""is""",Semantic,attivazione aselettiva su is
46
+ 0_91045,0,91045,0-clt-hp,relationship: the state in which a city is located is the state containing,62.28597259521485,113.89995193481444,8.135710852486747,0.8693813307635213, is,11,0.0052919089794158,7,212,"""is""",Semantic,attivazione aselettiva su is
47
+ 0_5200,0,5200,0-clt-hp,"entity: A city in Texas, USA is Dallas",47.27579116821289,47.27579116821289,4.727579116821289,0.9, is,9,0.0052788853645324,7,4,"""is""",Semantic,attivazione aselettiva su is
48
+ 0_5200,0,5200,0-clt-hp,entity: The capital city of Texas is Austin,43.82829284667969,43.82829284667969,4.869810316297743,0.8888888888888888, is,8,0.0052788853645324,7,62,"""is""",Semantic,attivazione aselettiva su is
49
+ 0_5200,0,5200,0-clt-hp,entity: A state in the United States is Texas,36.06181335449219,36.06181335449219,3.606181335449219,0.8999999999999999, is,9,0.0052788853645324,7,114,"""is""",Semantic,attivazione aselettiva su is
50
+ 0_5200,0,5200,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,37.01258087158203,37.01258087158203,2.0562544928656683,0.9444444444444444, is,15,0.0052788853645324,7,167,"""is""",Semantic,attivazione aselettiva su is
51
+ 0_5200,0,5200,0-clt-hp,relationship: the state in which a city is located is the state containing,31.49920654296875,59.72468566894531,4.266048976353237,0.8645664623160007, is,9,0.0052788853645324,7,219,"""is""",Semantic,attivazione aselettiva su is
52
+ 21_84338,21,84338,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0047608315944671,7,45,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
53
+ 21_84338,21,84338,21-clt-hp,entity: The capital city of Texas is Austin,38.49139404296875,57.22371768951416,6.358190854390462,0.8348152616324397, is,8,0.0047608315944671,7,95,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
54
+ 21_84338,21,84338,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0047608315944671,7,151,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
55
+ 21_84338,21,84338,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,8.62592601776123,8.62592601776123,0.4792181120978461,0.9444444444444444, is,15,0.0047608315944671,7,203,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
56
+ 21_84338,21,84338,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0047608315944671,7,257,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
57
+ 0_230,0,230,0-clt-hp,"entity: A city in Texas, USA is Dallas",42.41893768310547,42.41893768310547,4.241893768310547,0.9, is,9,0.0046725273132324,7,8,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
58
+ 0_230,0,230,0-clt-hp,entity: The capital city of Texas is Austin,46.301795959472656,46.301795959472656,5.144643995496962,0.8888888888888888, is,8,0.0046725273132324,7,59,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
59
+ 0_230,0,230,0-clt-hp,entity: A state in the United States is Texas,47.897682189941406,47.897682189941406,4.789768218994141,0.9, is,9,0.0046725273132324,7,110,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
60
+ 0_230,0,230,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,41.60439300537109,41.60439300537109,2.3113551669650607,0.9444444444444444, is,15,0.0046725273132324,7,166,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
61
+ 0_230,0,230,0-clt-hp,relationship: the state in which a city is located is the state containing,43.75920486450195,71.13797760009766,5.08128411429269,0.8838807942231441, is,9,0.0046725273132324,7,216,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
62
+ 0_1861,0,1861,0-clt-hp,"entity: A city in Texas, USA is Dallas",54.92845916748047,72.53322219848633,7.253322219848632,0.8679496506950471, Texas,6,0.0041899383068084,6,1,"""Texas""",Semantic,attivazioni solo su texas embedding
63
+ 0_1861,0,1861,0-clt-hp,entity: The capital city of Texas is Austin,55.11215591430664,80.40324020385742,8.933693355984158,0.8378997662534727, Texas,7,0.0041899383068084,6,54,"""Texas""",Semantic,attivazioni solo su texas embedding
64
+ 0_1861,0,1861,0-clt-hp,entity: A state in the United States is Texas,55.28260040283203,55.28260040283203,5.528260040283203,0.9, Texas,10,0.0041899383068084,6,106,"""Texas""",Semantic,attivazioni solo su texas embedding
65
+ 0_1861,0,1861,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0041899383068084,6,170,"""Texas""",Semantic,attivazioni solo su texas embedding
66
+ 0_1861,0,1861,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0041899383068084,6,222,"""Texas""",Semantic,attivazioni solo su texas embedding
67
+ 7_24743,7,24743,7-clt-hp,"entity: A city in Texas, USA is Dallas",13.26353645324707,20.89326572418213,2.089326572418213,0.8424759052924591, Texas,6,0.00392746925354,6,19,"""Texas""",Semantic,Attivazione solo su Texas
68
+ 7_24743,7,24743,7-clt-hp,entity: The capital city of Texas is Austin,13.514944076538086,26.310606002807617,2.9234006669786243,0.7836912494478138, Texas,7,0.00392746925354,6,73,"""Texas""",Semantic,Attivazione solo su Texas
69
+ 7_24743,7,24743,7-clt-hp,entity: A state in the United States is Texas,8.938840866088867,8.938840866088867,0.8938840866088867,0.8999999999999999, Texas,10,0.00392746925354,6,125,"""Texas""",Semantic,Attivazione solo su Texas
70
+ 7_24743,7,24743,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.00392746925354,6,179,"""Texas""",Semantic,Attivazione solo su Texas
71
+ 7_24743,7,24743,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.00392746925354,6,232,"""Texas""",Semantic,Attivazione solo su Texas
72
+ 16_98048,16,98048,16-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038511157035827,7,30,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
73
+ 16_98048,16,98048,16-clt-hp,entity: The capital city of Texas is Austin,25.97924995422364,30.72956657409668,3.414396286010742,0.8685721761780255, is,8,0.0038511157035827,7,81,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
74
+ 16_98048,16,98048,16-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038511157035827,7,136,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
75
+ 16_98048,16,98048,16-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,6.895334243774414,12.294490814208984,0.6830272674560547,0.9009435593245188, is,15,0.0038511157035827,7,187,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
76
+ 16_98048,16,98048,16-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038511157035827,7,242,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
77
+ 20_74108,20,74108,20-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038157403469085,7,41,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
78
+ 20_74108,20,74108,20-clt-hp,entity: The capital city of Texas is Austin,26.576478958129883,31.370362758636475,3.48559586207072,0.8688465892128853, is,8,0.0038157403469085,7,94,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
79
+ 20_74108,20,74108,20-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038157403469085,7,147,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
80
+ 20_74108,20,74108,20-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,63.30609893798828,130.92694854736328,7.273719363742405,0.8851023916215813, the,16,0.0038157403469085,7,199,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
81
+ 20_74108,20,74108,20-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038157403469085,7,253,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
82
+ 18_3623,18,3623,18-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038073360919952,7,37,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
83
+ 18_3623,18,3623,18-clt-hp,entity: The capital city of Texas is Austin,14.909049987792969,14.909049987792969,1.6565611097547743,0.888888888888889, is,8,0.0038073360919952,7,88,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
84
+ 18_3623,18,3623,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038073360919952,7,142,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
85
+ 18_3623,18,3623,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0038073360919952,7,195,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
86
+ 18_3623,18,3623,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038073360919952,7,248,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
87
+ 0_95057,0,95057,0-clt-hp,"entity: A city in Texas, USA is Dallas",44.93249130249024,167.4211540222168,16.74211540222168,0.6273940100602924,:,2,0.0037478804588317,7,6,"""punctuation""",Semantic,attuazione solo su ':'
88
+ 0_95057,0,95057,0-clt-hp,entity: The capital city of Texas is Austin,44.93249130249024,108.54875183105467,12.060972425672745,0.7315757022134157,:,2,0.0037478804588317,7,61,"""punctuation""",Semantic,attuazione solo su ':'
89
+ 0_95057,0,95057,0-clt-hp,entity: A state in the United States is Texas,44.93249130249024,150.82857513427734,15.082857513427737,0.6643218064209181,:,2,0.0037478804588317,7,113,"""punctuation""",Semantic,attuazione solo su ':'
90
+ 0_95057,0,95057,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,45.49790191650391,195.7961578369141,10.877564324273004,0.7609216278975872,:,2,0.0037478804588317,7,165,"""punctuation""",Semantic,attuazione solo su ':'
91
+ 0_95057,0,95057,0-clt-hp,relationship: the state in which a city is located is the state containing,39.0150146484375,185.28181552886963,13.234415394919258,0.660786609612377,:,2,0.0037478804588317,7,218,"""punctuation""",Semantic,attuazione solo su ':'
92
+ 0_32742,0,32742,0-clt-hp,"entity: A city in Texas, USA is Dallas",52.04083251953125,88.8308334350586,8.88308334350586,0.8293055104341003, Texas,6,0.0035841464996337,6,2,"""Texas""",Semantic,attivazione solo su texas
93
+ 0_32742,0,32742,0-clt-hp,entity: The capital city of Texas is Austin,52.179874420166016,70.19295501708984,7.799217224121094,0.8505320813668551, Texas,7,0.0035841464996337,6,56,"""Texas""",Semantic,attivazione solo su texas
94
+ 0_32742,0,32742,0-clt-hp,entity: A state in the United States is Texas,49.56887435913086,49.56887435913086,4.956887435913086,0.8999999999999999, Texas,10,0.0035841464996337,6,109,"""Texas""",Semantic,attivazione solo su texas
95
+ 0_32742,0,32742,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0035841464996337,6,171,"""Texas""",Semantic,attivazione solo su texas
96
+ 0_32742,0,32742,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0035841464996337,6,223,"""Texas""",Semantic,attivazione solo su texas
97
+ 1_89326,1,89326,1-clt-hp,"entity: A city in Texas, USA is Dallas",69.7168960571289,69.7168960571289,6.971689605712891,0.9, Dallas,10,0.0034727156162261,6,18,"""Dallas""",Semantic,Unica attivazione solo su Dallas
98
+ 1_89326,1,89326,1-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0034727156162261,6,71,"""Dallas""",Semantic,Unica attivazione solo su Dallas
99
+ 1_89326,1,89326,1-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0034727156162261,6,124,"""Dallas""",Semantic,Unica attivazione solo su Dallas
100
+ 1_89326,1,89326,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0034727156162261,6,177,"""Dallas""",Semantic,Unica attivazione solo su Dallas
101
+ 1_89326,1,89326,1-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0034727156162261,6,230,"""Dallas""",Semantic,Unica attivazione solo su Dallas
102
+ 22_32893,22,32893,22-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.003369390964508,7,48,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
103
+ 22_32893,22,32893,22-clt-hp,entity: The capital city of Texas is Austin,46.686065673828125,46.686065673828125,5.187340630425347,0.888888888888889, is,8,0.003369390964508,7,99,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
104
+ 22_32893,22,32893,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.003369390964508,7,153,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
105
+ 22_32893,22,32893,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.003369390964508,7,206,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
106
+ 22_32893,22,32893,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.003369390964508,7,259,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
107
+ 21_61721,21,61721,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0032654702663421,7,44,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
108
+ 21_61721,21,61721,21-clt-hp,entity: The capital city of Texas is Austin,18.76114654541016,18.76114654541016,2.0845718383789062,0.8888888888888888, is,8,0.0032654702663421,7,98,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
109
+ 21_61721,21,61721,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0032654702663421,7,150,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
110
+ 21_61721,21,61721,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0032654702663421,7,204,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
111
+ 21_61721,21,61721,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0032654702663421,7,256,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
112
+ 0_49560,0,49560,0-clt-hp,"entity: A city in Texas, USA is Dallas",42.66587448120117,42.66587448120117,4.266587448120117,0.8999999999999999, is,9,0.0031878352165222,7,7,"""is""",Semantic,attivazione aselettiva su is
113
+ 0_49560,0,49560,0-clt-hp,entity: The capital city of Texas is Austin,45.84932327270508,45.84932327270508,5.094369252522786,0.8888888888888888, is,8,0.0031878352165222,7,60,"""is""",Semantic,attivazione aselettiva su is
114
+ 0_49560,0,49560,0-clt-hp,entity: A state in the United States is Texas,47.70016479492188,47.70016479492188,4.770016479492187,0.9, is,9,0.0031878352165222,7,111,"""is""",Semantic,attivazione aselettiva su is
115
+ 0_49560,0,49560,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,49.51710510253906,49.51710510253906,2.7509502834743924,0.9444444444444444, is,15,0.0031878352165222,7,164,"""is""",Semantic,attivazione aselettiva su is
116
+ 0_49560,0,49560,0-clt-hp,relationship: the state in which a city is located is the state containing,54.55234146118164,104.65689086914062,7.475492204938616,0.8629666114284383, is,11,0.0031878352165222,7,215,"""is""",Semantic,attivazione aselettiva su is
117
+ 7_89264,7,89264,7-clt-hp,"entity: A city in Texas, USA is Dallas",0.8238649368286133,0.8238649368286133,0.0823864936828613,0.9,",",7,0.003050148487091,7,20,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole"
118
+ 7_89264,7,89264,7-clt-hp,entity: The capital city of Texas is Austin,8.95943546295166,8.95943546295166,0.9954928292168512,0.8888888888888888, is,8,0.003050148487091,7,74,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole"
119
+ 7_89264,7,89264,7-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.003050148487091,7,127,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole"
120
+ 7_89264,7,89264,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.003050148487091,7,180,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole"
121
+ 7_89264,7,89264,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.003050148487091,7,233,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole"
122
+ 19_54790,19,54790,19-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0028801560401916,7,39,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
123
+ 19_54790,19,54790,19-clt-hp,entity: The capital city of Texas is Austin,44.76298522949219,44.76298522949219,4.973665025499132,0.888888888888889, is,8,0.0028801560401916,7,92,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
124
+ 19_54790,19,54790,19-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0028801560401916,7,145,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
125
+ 19_54790,19,54790,19-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,5.89443302154541,5.89443302154541,0.3274685011969672,0.9444444444444444, is,15,0.0028801560401916,7,198,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
126
+ 19_54790,19,54790,19-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0028801560401916,7,251,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'"
127
+ 0_39374,0,39374,0-clt-hp,"entity: A city in Texas, USA is Dallas",21.213979721069336,21.213979721069336,2.1213979721069336,0.9, is,9,0.0028547048568725,7,9,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
128
+ 0_39374,0,39374,0-clt-hp,entity: The capital city of Texas is Austin,19.35468482971192,19.35468482971192,2.150520536634657,0.8888888888888888, is,8,0.0028547048568725,7,64,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
129
+ 0_39374,0,39374,0-clt-hp,entity: A state in the United States is Texas,19.664194107055664,19.664194107055664,1.9664194107055664,0.9, is,9,0.0028547048568725,7,115,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
130
+ 0_39374,0,39374,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,8.938578605651855,8.938578605651855,0.4965877003139919,0.9444444444444444, is,15,0.0028547048568725,7,168,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
131
+ 0_39374,0,39374,0-clt-hp,relationship: the state in which a city is located is the state containing,13.01608657836914,23.16886329650879,1.654918806893485,0.8728558851441782, is,9,0.0028547048568725,7,220,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,"
132
+ 17_1822,17,1822,17-clt-hp,"entity: A city in Texas, USA is Dallas",2.5688390731811523,2.5688390731811523,0.2568839073181152,0.9,",",7,0.0027894973754882,7,31,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin"
133
+ 17_1822,17,1822,17-clt-hp,entity: The capital city of Texas is Austin,15.288778305053713,15.288778305053713,1.698753145005968,0.8888888888888888, is,8,0.0027894973754882,7,85,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin"
134
+ 17_1822,17,1822,17-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027894973754882,7,138,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin"
135
+ 17_1822,17,1822,17-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0027894973754882,7,192,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin"
136
+ 17_1822,17,1822,17-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027894973754882,7,244,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin"
137
+ 0_55815,0,55815,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0027363300323486,2,13,"""capital""",Semantic,unica attivazione solo su capital
138
+ 0_55815,0,55815,0-clt-hp,entity: The capital city of Texas is Austin,53.67196273803711,53.67196273803711,5.963551415337457,0.888888888888889, capital,4,0.0027363300323486,2,55,"""capital""",Semantic,unica attivazione solo su capital
139
+ 0_55815,0,55815,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027363300323486,2,119,"""capital""",Semantic,unica attivazione solo su capital
140
+ 0_55815,0,55815,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,57.75386428833008,57.75386428833008,3.2085480160183377,0.9444444444444444, capital,17,0.0027363300323486,2,160,"""capital""",Semantic,unica attivazione solo su capital
141
+ 0_55815,0,55815,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027363300323486,2,225,"""capital""",Semantic,unica attivazione solo su capital
142
+ 22_81571,22,81571,22-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.002730906009674,7,49,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
143
+ 22_81571,22,81571,22-clt-hp,entity: The capital city of Texas is Austin,27.45061683654785,27.45061683654785,3.0500685373942056,0.8888888888888888, is,8,0.002730906009674,7,100,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
144
+ 22_81571,22,81571,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.002730906009674,7,155,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
145
+ 22_81571,22,81571,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.002730906009674,7,208,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
146
+ 22_81571,22,81571,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.002730906009674,7,261,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
147
+ 0_40936,0,40936,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0027021169662475,3,12,"""of""",Semantic,attivazioni significative solo su of
148
+ 0_40936,0,40936,0-clt-hp,entity: The capital city of Texas is Austin,76.25304412841797,76.25304412841797,8.472560458713108,0.888888888888889, of,6,0.0027021169662475,3,53,"""of""",Semantic,attivazioni significative solo su of
149
+ 0_40936,0,40936,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027021169662475,3,118,"""of""",Semantic,attivazioni significative solo su of
150
+ 0_40936,0,40936,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,80.70610809326172,80.70610809326172,4.483672671847874,0.9444444444444444, of,10,0.0027021169662475,3,159,"""of""",Semantic,attivazioni significative solo su of
151
+ 0_40936,0,40936,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027021169662475,3,224,"""of""",Semantic,attivazioni significative solo su of
152
+ 18_61980,18,61980,18-clt-hp,"entity: A city in Texas, USA is Dallas",14.10042667388916,14.10042667388916,1.410042667388916,0.9,",",7,0.0026986598968505,7,34,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
153
+ 18_61980,18,61980,18-clt-hp,entity: The capital city of Texas is Austin,32.00542449951172,32.00542449951172,3.556158277723524,0.8888888888888888, is,8,0.0026986598968505,7,87,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
154
+ 18_61980,18,61980,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0026986598968505,7,140,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
155
+ 18_61980,18,61980,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0026986598968505,7,193,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
156
+ 18_61980,18,61980,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0026986598968505,7,246,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
157
+ 17_98126,17,98126,17-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0024870038032531,7,33,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
158
+ 17_98126,17,98126,17-clt-hp,entity: The capital city of Texas is Austin,20.15220642089844,25.09380292892456,2.7882003254360623,0.861642925484099, is,8,0.0024870038032531,7,84,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
159
+ 17_98126,17,98126,17-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0024870038032531,7,139,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
160
+ 17_98126,17,98126,17-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,20.67333602905273,54.458144187927246,3.025452454884847,0.8536543666376291, the,16,0.0024870038032531,7,190,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
161
+ 17_98126,17,98126,17-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0024870038032531,7,245,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
162
+ 12_87969,12,87969,12-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0023558735847473,7,24,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
163
+ 12_87969,12,87969,12-clt-hp,entity: The capital city of Texas is Austin,15.27625846862793,15.27625846862793,1.69736205206977,0.8888888888888888, is,8,0.0023558735847473,7,76,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
164
+ 12_87969,12,87969,12-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023558735847473,7,130,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
165
+ 12_87969,12,87969,12-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,30.10682678222656,84.44636726379395,4.691464847988552,0.8441727226212316, the,16,0.0023558735847473,7,182,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
166
+ 12_87969,12,87969,12-clt-hp,relationship: the state in which a city is located is the state containing,7.160322189331055,7.160322189331055,0.5114515849522182,0.9285714285714286, the,12,0.0023558735847473,7,235,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
167
+ 22_74186,22,74186,22-clt-hp,"entity: A city in Texas, USA is Dallas",8.636338233947754,8.636338233947754,0.8636338233947753,0.9,",",7,0.0023505687713623,7,47,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
168
+ 22_74186,22,74186,22-clt-hp,entity: The capital city of Texas is Austin,0.5329599380493164,0.5329599380493164,0.0592177708943684,0.888888888888889, is,8,0.0023505687713623,7,102,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
169
+ 22_74186,22,74186,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023505687713623,7,154,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
170
+ 22_74186,22,74186,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0023505687713623,7,207,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
171
+ 22_74186,22,74186,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0023505687713623,7,260,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva"
172
+ 18_56027,18,56027,18-clt-hp,"entity: A city in Texas, USA is Dallas",34.67882537841797,34.67882537841797,3.467882537841797,0.9, Dallas,10,0.0023038387298583,7,35,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza"
173
+ 18_56027,18,56027,18-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0023038387298583,7,90,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza"
174
+ 18_56027,18,56027,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023038387298583,7,143,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza"
175
+ 18_56027,18,56027,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0023038387298583,7,196,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza"
176
+ 18_56027,18,56027,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0023038387298583,7,249,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza"
177
+ 21_16875,21,16875,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0021759271621704,7,42,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
178
+ 21_16875,21,16875,21-clt-hp,entity: The capital city of Texas is Austin,17.112422943115234,17.112422943115234,1.901380327012804,0.8888888888888888, is,8,0.0021759271621704,7,96,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
179
+ 21_16875,21,16875,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0021759271621704,7,148,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
180
+ 21_16875,21,16875,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0021759271621704,7,201,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
181
+ 21_16875,21,16875,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0021759271621704,7,254,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin'
182
+ 0_37567,0,37567,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,11,"""containing""",Semantic,unica attivazione solo su containing
183
+ 0_37567,0,37567,0-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,66,"""containing""",Semantic,unica attivazione solo su containing
184
+ 0_37567,0,37567,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,117,"""containing""",Semantic,unica attivazione solo su containing
185
+ 0_37567,0,37567,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0020866394042968,5,172,"""containing""",Semantic,unica attivazione solo su containing
186
+ 0_37567,0,37567,0-clt-hp,relationship: the state in which a city is located is the state containing,41.10612106323242,41.10612106323242,2.9361515045166016,0.9285714285714286, containing,14,0.0020866394042968,5,217,"""containing""",Semantic,unica attivazione solo su containing
187
+ 7_3144,7,3144,7-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.002021312713623,7,21,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat"
188
+ 7_3144,7,3144,7-clt-hp,entity: The capital city of Texas is Austin,14.262575149536133,18.0198335647583,2.002203729417589,0.8596183572443643, is,8,0.002021312713623,7,72,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat"
189
+ 7_3144,7,3144,7-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.002021312713623,7,126,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat"
190
+ 7_3144,7,3144,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,19.09012985229492,91.89447498321532,5.10524861017863,0.73257129995033, seat,9,0.002021312713623,7,178,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat"
191
+ 7_3144,7,3144,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.002021312713623,7,231,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat"
192
+ 19_13946,19,13946,19-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.001940906047821,7,38,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
193
+ 19_13946,19,13946,19-clt-hp,entity: The capital city of Texas is Austin,45.02559280395508,45.02559280395508,5.002843644883898,0.888888888888889, is,8,0.001940906047821,7,91,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
194
+ 19_13946,19,13946,19-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.001940906047821,7,144,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
195
+ 19_13946,19,13946,19-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,66.8328628540039,118.54381847381592,6.585767692989773,0.901459141330271, the,16,0.001940906047821,7,197,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
196
+ 19_13946,19,13946,19-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.001940906047821,7,250,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'"
examples_data/README.md ADDED
@@ -0,0 +1,45 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Example Data - Dallas
2
+
3
+ This directory contains a complete example analysis for demonstration purposes.
4
+
5
+ ## Dataset: Dallas - Austin Prediction
6
+
7
+ **Prompt**: "The capital of state containing Dallas is"
8
+ **Target**: " Austin"
9
+ **Model**: Gemma-2-2B with Cross-Layer Transcoders (CLT)
10
+ **Features**: 55 features analyzed
11
+
12
+ ## Files Included
13
+
14
+ ### Stage 1: Graph Generation
15
+ - `clt-hp-the-capital-of-201020250035-20251020-003525.json` - Complete attribution graph
16
+ - `selected_features_with_nodes.json` - Selected features for analysis
17
+
18
+ ### Stage 2: Probe Prompts
19
+ - `prompts.json` - Semantic concepts used for probing
20
+ - `2025-10-21T07-40_export_ENRICHED.csv` - Activation analysis results
21
+ - `activations_dump (2).json` - Raw activation data
22
+
23
+ ### Stage 3: Node Grouping
24
+ - `node_grouping_final_20251027_173744.csv` - Final classification and naming
25
+ - `node_grouping_summary_20251027_173749.json` - Summary statistics
26
+ - `node_grouping_step1_20251027_180825.csv` - Token classification
27
+ - `node_grouping_step2_20251027_180821.csv` - Feature classification
28
+
29
+ ## How to Use
30
+
31
+ 1. Navigate to each stage page in the Streamlit app
32
+ 2. Use the "Load Example" or file upload options
33
+ 3. Load the corresponding files from this directory
34
+ 4. Explore the visualizations and results
35
+
36
+ ## Results Summary
37
+
38
+ The analysis identified:
39
+ - **Semantic (Dictionary)** features: Tokens like "Dallas", "Texas", "Austin"
40
+ - **Semantic (Concept)** features: Related concepts about cities and states
41
+ - **Say "X"** features: Output prediction mechanisms
42
+ - **Relationship** features: Connections between geographical entities
43
+
44
+ This demonstrates the complete pipeline for automated sparse feature interpretation.
45
+
examples_data/activations_dump (2).json ADDED
The diff for this file is too large to render. See raw diff
 
examples_data/clt-hp-the-capital-of-201020250035-20251020-003525.json ADDED
The diff for this file is too large to render. See raw diff
 
examples_data/features without errors.json ADDED
@@ -0,0 +1,162 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ [
2
+ {
3
+ "layer": 0,
4
+ "index": 230
5
+ },
6
+ {
7
+ "layer": 0,
8
+ "index": 1861
9
+ },
10
+ {
11
+ "layer": 0,
12
+ "index": 5200
13
+ },
14
+ {
15
+ "layer": 0,
16
+ "index": 18753
17
+ },
18
+ {
19
+ "layer": 0,
20
+ "index": 32742
21
+ },
22
+ {
23
+ "layer": 0,
24
+ "index": 37567
25
+ },
26
+ {
27
+ "layer": 0,
28
+ "index": 39374
29
+ },
30
+ {
31
+ "layer": 0,
32
+ "index": 40780
33
+ },
34
+ {
35
+ "layer": 0,
36
+ "index": 40936
37
+ },
38
+ {
39
+ "layer": 0,
40
+ "index": 49560
41
+ },
42
+ {
43
+ "layer": 0,
44
+ "index": 55815
45
+ },
46
+ {
47
+ "layer": 0,
48
+ "index": 91045
49
+ },
50
+ {
51
+ "layer": 0,
52
+ "index": 95057
53
+ },
54
+ {
55
+ "layer": 1,
56
+ "index": 12928
57
+ },
58
+ {
59
+ "layer": 1,
60
+ "index": 52044
61
+ },
62
+ {
63
+ "layer": 1,
64
+ "index": 57794
65
+ },
66
+ {
67
+ "layer": 1,
68
+ "index": 72774
69
+ },
70
+ {
71
+ "layer": 1,
72
+ "index": 89326
73
+ },
74
+ {
75
+ "layer": 7,
76
+ "index": 3144
77
+ },
78
+ {
79
+ "layer": 7,
80
+ "index": 24743
81
+ },
82
+ {
83
+ "layer": 7,
84
+ "index": 89264
85
+ },
86
+ {
87
+ "layer": 12,
88
+ "index": 87969
89
+ },
90
+ {
91
+ "layer": 16,
92
+ "index": 89970
93
+ },
94
+ {
95
+ "layer": 16,
96
+ "index": 98048
97
+ },
98
+ {
99
+ "layer": 17,
100
+ "index": 1822
101
+ },
102
+ {
103
+ "layer": 17,
104
+ "index": 98126
105
+ },
106
+ {
107
+ "layer": 18,
108
+ "index": 3623
109
+ },
110
+ {
111
+ "layer": 18,
112
+ "index": 56027
113
+ },
114
+ {
115
+ "layer": 18,
116
+ "index": 61980
117
+ },
118
+ {
119
+ "layer": 19,
120
+ "index": 13946
121
+ },
122
+ {
123
+ "layer": 19,
124
+ "index": 54790
125
+ },
126
+ {
127
+ "layer": 20,
128
+ "index": 44686
129
+ },
130
+ {
131
+ "layer": 20,
132
+ "index": 74108
133
+ },
134
+ {
135
+ "layer": 21,
136
+ "index": 16875
137
+ },
138
+ {
139
+ "layer": 21,
140
+ "index": 61721
141
+ },
142
+ {
143
+ "layer": 21,
144
+ "index": 84338
145
+ },
146
+ {
147
+ "layer": 22,
148
+ "index": 11998
149
+ },
150
+ {
151
+ "layer": 22,
152
+ "index": 32893
153
+ },
154
+ {
155
+ "layer": 22,
156
+ "index": 74186
157
+ },
158
+ {
159
+ "layer": 22,
160
+ "index": 81571
161
+ }
162
+ ]
examples_data/node_grouping_final_20251027_173744.csv ADDED
The diff for this file is too large to render. See raw diff
 
examples_data/node_grouping_step1_20251027_180825.csv ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ feature_key,layer,index,source,prompt,activation_max,activation_sum,activation_mean,sparsity_ratio,peak_token,peak_token_idx,node_influence,csv_ctx_idx,Unnamed: 0,supernode_label,supernode_class,motivation,peak_token_type,target_tokens,tokens_source
2
+ 1_12928,1,12928,1-clt-hp,"entity: A city in Texas, USA is Dallas",105.41461181640624,810.1840858459473,81.01840858459472,0.2314309450221265,entity,1,0.0096316039562225,7,14,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
3
+ 1_12928,1,12928,1-clt-hp,entity: The capital city of Texas is Austin,105.41461181640624,737.9229583740234,81.99143981933594,0.2222004292712752,entity,1,0.0096316039562225,7,67,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
4
+ 1_12928,1,12928,1-clt-hp,entity: A state in the United States is Texas,105.41461181640624,848.5865478515625,84.85865478515625,0.1950010219366075,entity,1,0.0096316039562225,7,120,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
5
+ 1_12928,1,12928,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,117.0110092163086,1233.4596061706543,68.52553367614746,0.4143667836462297,attribute,1,0.0096316039562225,7,173,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
6
+ 1_12928,1,12928,1-clt-hp,relationship: the state in which a city is located is the state containing,115.16062927246094,1163.957431793213,83.13981655665806,0.2780534712088466,relationship,1,0.0096316039562225,7,226,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
7
+ 1_72774,1,72774,1-clt-hp,"entity: A city in Texas, USA is Dallas",80.11094665527344,626.0174751281738,62.60174751281738,0.2185618804106777, city,4,0.0095889568328857,7,17,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" city"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a
8
+ 1_72774,1,72774,1-clt-hp,entity: The capital city of Texas is Austin,84.13487243652344,613.3576698303223,68.15085220336914,0.1899809171899991, city,5,0.0095889568328857,7,70,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" city"", ""index"": 5, ""distance"": 0, ""direction"": ""self""}]",n/a
9
+ 1_72774,1,72774,1-clt-hp,entity: A state in the United States is Texas,91.9457550048828,689.5408782958984,68.95408782958984,0.2500568642246941, state,4,0.0095889568328857,7,123,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" state"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a
10
+ 1_72774,1,72774,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,122.51927185058594,1543.6992301940918,85.76106834411621,0.3000197679210573, primary,4,0.0095889568328857,7,175,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" primary"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a
11
+ 1_72774,1,72774,1-clt-hp,relationship: the state in which a city is located is the state containing,97.75382995605467,931.018913269043,66.50135094778878,0.3197059288860138, containing,14,0.0095889568328857,7,229,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" containing"", ""index"": 14, ""distance"": 0, ""direction"": ""self""}]",n/a
12
+ 20_44686,20,44686,20-clt-hp,"entity: A city in Texas, USA is Dallas",21.17974853515625,35.3902645111084,3.53902645111084,0.8329051714076581, Dallas,10,0.008446842432022,7,40,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
13
+ 20_44686,20,44686,20-clt-hp,entity: The capital city of Texas is Austin,57.44028472900391,111.7382698059082,12.415363311767578,0.7838561669681529, is,8,0.008446842432022,7,93,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
14
+ 20_44686,20,44686,20-clt-hp,entity: A state in the United States is Texas,31.102846145629883,31.102846145629883,3.110284614562988,0.9, Texas,10,0.008446842432022,7,146,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
15
+ 20_44686,20,44686,20-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.008446842432022,7,200,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
16
+ 20_44686,20,44686,20-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.008446842432022,7,252,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
17
+ 1_57794,1,57794,1-clt-hp,"entity: A city in Texas, USA is Dallas",113.94397735595705,869.7109718322754,86.97109718322754,0.2367205428371799,entity,1,0.0081024467945098,7,15,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
18
+ 1_57794,1,57794,1-clt-hp,entity: The capital city of Texas is Austin,113.94397735595705,785.0075225830078,87.22305806477864,0.2345092729886299,entity,1,0.0081024467945098,7,68,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
19
+ 1_57794,1,57794,1-clt-hp,entity: A state in the United States is Texas,113.94397735595705,817.1403198242188,81.71403198242187,0.2828578229532038,entity,1,0.0081024467945098,7,121,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
20
+ 1_57794,1,57794,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,125.45741271972656,1323.623565673828,73.53464253743489,0.4138676946757048,attribute,1,0.0081024467945098,7,174,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
21
+ 1_57794,1,57794,1-clt-hp,relationship: the state in which a city is located is the state containing,121.10602569580078,1136.5441207885742,81.18172291346959,0.3296640489434831,relationship,1,0.0081024467945098,7,227,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
22
+ 0_40780,0,40780,0-clt-hp,"entity: A city in Texas, USA is Dallas",50.744911193847656,183.38724303245544,18.338724303245545,0.6386095891824334, is,9,0.0069027841091156,7,3,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
23
+ 0_40780,0,40780,0-clt-hp,entity: The capital city of Texas is Austin,48.96206283569336,128.85796904563904,14.317552116182116,0.7075786581086487, is,8,0.0069027841091156,7,58,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
24
+ 0_40780,0,40780,0-clt-hp,entity: A state in the United States is Texas,53.07304382324219,192.2147843837738,19.221478438377385,0.6378297332560423, the,6,0.0069027841091156,7,107,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" United"", ""index"": 7, ""distance"": 1, ""direction"": ""forward""}]",json
25
+ 0_40780,0,40780,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,50.93766784667969,365.7576293945313,20.319868299696186,0.6010836546176759, is,15,0.0069027841091156,7,163,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
26
+ 0_40780,0,40780,0-clt-hp,relationship: the state in which a city is located is the state containing,59.61247253417969,401.4472732543945,28.67480523245675,0.5189797702818713, which,6,0.0069027841091156,7,213,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" city"", ""index"": 8, ""distance"": 2, ""direction"": ""forward""}]",json
27
+ 1_52044,1,52044,1-clt-hp,"entity: A city in Texas, USA is Dallas",101.82122802734376,719.1115570068359,71.9111557006836,0.2937508504476877, USA,8,0.0067475140094757,7,16,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" USA"", ""index"": 8, ""distance"": 0, ""direction"": ""self""}]",n/a
28
+ 1_52044,1,52044,1-clt-hp,entity: The capital city of Texas is Austin,111.89495849609376,656.9445991516113,72.99384435017903,0.347657433978786, capital,4,0.0067475140094757,7,69,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" capital"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a
29
+ 1_52044,1,52044,1-clt-hp,entity: A state in the United States is Texas,95.29304504394533,751.4510955810547,75.14510955810547,0.2114313324393026, state,4,0.0067475140094757,7,122,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" state"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a
30
+ 1_52044,1,52044,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,118.34194946289062,1567.5587120056152,87.08659511142307,0.2641105245715809, capital,17,0.0067475140094757,7,176,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" capital"", ""index"": 17, ""distance"": 0, ""direction"": ""self""}]",n/a
31
+ 1_52044,1,52044,1-clt-hp,relationship: the state in which a city is located is the state containing,125.9399642944336,1198.040008544922,85.57428632463727,0.3205152407017193, containing,14,0.0067475140094757,7,228,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" containing"", ""index"": 14, ""distance"": 0, ""direction"": ""self""}]",n/a
32
+ 16_89970,16,89970,16-clt-hp,"entity: A city in Texas, USA is Dallas",18.21431350708008,18.21431350708008,1.821431350708008,0.9, Texas,6,0.0067293047904968,6,28,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a
33
+ 16_89970,16,89970,16-clt-hp,entity: The capital city of Texas is Austin,18.45095634460449,24.438182830810547,2.7153536478678384,0.8528339888104568, Texas,7,0.0067293047904968,6,82,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a
34
+ 16_89970,16,89970,16-clt-hp,entity: A state in the United States is Texas,7.996506690979004,7.996506690979004,0.7996506690979004,0.9, Texas,10,0.0067293047904968,6,134,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
35
+ 16_89970,16,89970,16-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0067293047904968,6,189,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
36
+ 16_89970,16,89970,16-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0067293047904968,6,241,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
37
+ 22_11998,22,11998,22-clt-hp,"entity: A city in Texas, USA is Dallas",21.473478317260746,21.473478317260746,2.147347831726074,0.9, Dallas,10,0.005888283252716,7,46,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
38
+ 22_11998,22,11998,22-clt-hp,entity: The capital city of Texas is Austin,20.13431739807129,20.13431739807129,2.237146377563477,0.8888888888888888, is,8,0.005888283252716,7,101,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
39
+ 22_11998,22,11998,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.005888283252716,7,152,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
40
+ 22_11998,22,11998,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.005888283252716,7,205,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
41
+ 22_11998,22,11998,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.005888283252716,7,258,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
42
+ 0_91045,0,91045,0-clt-hp,"entity: A city in Texas, USA is Dallas",46.246559143066406,46.246559143066406,4.624655914306641,0.8999999999999999, is,9,0.0052919089794158,7,5,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
43
+ 0_91045,0,91045,0-clt-hp,entity: The capital city of Texas is Austin,41.82666778564453,41.82666778564453,4.647407531738281,0.8888888888888888, is,8,0.0052919089794158,7,63,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
44
+ 0_91045,0,91045,0-clt-hp,entity: A state in the United States is Texas,45.03489685058594,45.03489685058594,4.503489685058594,0.8999999999999999, is,9,0.0052919089794158,7,112,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
45
+ 0_91045,0,91045,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,53.5222053527832,53.5222053527832,2.9734558529324,0.9444444444444444, is,15,0.0052919089794158,7,161,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
46
+ 0_91045,0,91045,0-clt-hp,relationship: the state in which a city is located is the state containing,62.28597259521485,113.89995193481444,8.135710852486747,0.8693813307635213, is,11,0.0052919089794158,7,212,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" state"", ""index"": 13, ""distance"": 2, ""direction"": ""forward""}]",json
47
+ 0_5200,0,5200,0-clt-hp,"entity: A city in Texas, USA is Dallas",47.27579116821289,47.27579116821289,4.727579116821289,0.9, is,9,0.0052788853645324,7,4,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
48
+ 0_5200,0,5200,0-clt-hp,entity: The capital city of Texas is Austin,43.82829284667969,43.82829284667969,4.869810316297743,0.8888888888888888, is,8,0.0052788853645324,7,62,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
49
+ 0_5200,0,5200,0-clt-hp,entity: A state in the United States is Texas,36.06181335449219,36.06181335449219,3.606181335449219,0.8999999999999999, is,9,0.0052788853645324,7,114,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
50
+ 0_5200,0,5200,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,37.01258087158203,37.01258087158203,2.0562544928656683,0.9444444444444444, is,15,0.0052788853645324,7,167,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
51
+ 0_5200,0,5200,0-clt-hp,relationship: the state in which a city is located is the state containing,31.49920654296875,59.72468566894531,4.266048976353237,0.8645664623160007, is,9,0.0052788853645324,7,219,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" located"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
52
+ 21_84338,21,84338,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0047608315944671,7,45,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
53
+ 21_84338,21,84338,21-clt-hp,entity: The capital city of Texas is Austin,38.49139404296875,57.22371768951416,6.358190854390462,0.8348152616324397, is,8,0.0047608315944671,7,95,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
54
+ 21_84338,21,84338,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0047608315944671,7,151,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
55
+ 21_84338,21,84338,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,8.62592601776123,8.62592601776123,0.4792181120978461,0.9444444444444444, is,15,0.0047608315944671,7,203,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
56
+ 21_84338,21,84338,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0047608315944671,7,257,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
57
+ 0_230,0,230,0-clt-hp,"entity: A city in Texas, USA is Dallas",42.41893768310547,42.41893768310547,4.241893768310547,0.9, is,9,0.0046725273132324,7,8,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
58
+ 0_230,0,230,0-clt-hp,entity: The capital city of Texas is Austin,46.301795959472656,46.301795959472656,5.144643995496962,0.8888888888888888, is,8,0.0046725273132324,7,59,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
59
+ 0_230,0,230,0-clt-hp,entity: A state in the United States is Texas,47.897682189941406,47.897682189941406,4.789768218994141,0.9, is,9,0.0046725273132324,7,110,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
60
+ 0_230,0,230,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,41.60439300537109,41.60439300537109,2.3113551669650607,0.9444444444444444, is,15,0.0046725273132324,7,166,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
61
+ 0_230,0,230,0-clt-hp,relationship: the state in which a city is located is the state containing,43.75920486450195,71.13797760009766,5.08128411429269,0.8838807942231441, is,9,0.0046725273132324,7,216,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" located"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
62
+ 0_1861,0,1861,0-clt-hp,"entity: A city in Texas, USA is Dallas",54.92845916748047,72.53322219848633,7.253322219848632,0.8679496506950471, Texas,6,0.0041899383068084,6,1,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a
63
+ 0_1861,0,1861,0-clt-hp,entity: The capital city of Texas is Austin,55.11215591430664,80.40324020385742,8.933693355984158,0.8378997662534727, Texas,7,0.0041899383068084,6,54,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a
64
+ 0_1861,0,1861,0-clt-hp,entity: A state in the United States is Texas,55.28260040283203,55.28260040283203,5.528260040283203,0.9, Texas,10,0.0041899383068084,6,106,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
65
+ 0_1861,0,1861,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0041899383068084,6,170,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
66
+ 0_1861,0,1861,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0041899383068084,6,222,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
67
+ 7_24743,7,24743,7-clt-hp,"entity: A city in Texas, USA is Dallas",13.26353645324707,20.89326572418213,2.089326572418213,0.8424759052924591, Texas,6,0.00392746925354,6,19,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a
68
+ 7_24743,7,24743,7-clt-hp,entity: The capital city of Texas is Austin,13.514944076538086,26.310606002807617,2.9234006669786243,0.7836912494478138, Texas,7,0.00392746925354,6,73,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a
69
+ 7_24743,7,24743,7-clt-hp,entity: A state in the United States is Texas,8.938840866088867,8.938840866088867,0.8938840866088867,0.8999999999999999, Texas,10,0.00392746925354,6,125,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
70
+ 7_24743,7,24743,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.00392746925354,6,179,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
71
+ 7_24743,7,24743,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.00392746925354,6,232,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
72
+ 16_98048,16,98048,16-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038511157035827,7,30,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
73
+ 16_98048,16,98048,16-clt-hp,entity: The capital city of Texas is Austin,25.97924995422364,30.72956657409668,3.414396286010742,0.8685721761780255, is,8,0.0038511157035827,7,81,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
74
+ 16_98048,16,98048,16-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038511157035827,7,136,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
75
+ 16_98048,16,98048,16-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,6.895334243774414,12.294490814208984,0.6830272674560547,0.9009435593245188, is,15,0.0038511157035827,7,187,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
76
+ 16_98048,16,98048,16-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038511157035827,7,242,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
77
+ 20_74108,20,74108,20-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038157403469085,7,41,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
78
+ 20_74108,20,74108,20-clt-hp,entity: The capital city of Texas is Austin,26.576478958129883,31.370362758636475,3.48559586207072,0.8688465892128853, is,8,0.0038157403469085,7,94,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
79
+ 20_74108,20,74108,20-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038157403469085,7,147,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
80
+ 20_74108,20,74108,20-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,63.30609893798828,130.92694854736328,7.273719363742405,0.8851023916215813, the,16,0.0038157403469085,7,199,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json
81
+ 20_74108,20,74108,20-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038157403469085,7,253,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
82
+ 18_3623,18,3623,18-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038073360919952,7,37,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
83
+ 18_3623,18,3623,18-clt-hp,entity: The capital city of Texas is Austin,14.909049987792969,14.909049987792969,1.6565611097547743,0.888888888888889, is,8,0.0038073360919952,7,88,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
84
+ 18_3623,18,3623,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038073360919952,7,142,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
85
+ 18_3623,18,3623,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0038073360919952,7,195,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
86
+ 18_3623,18,3623,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038073360919952,7,248,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
87
+ 0_95057,0,95057,0-clt-hp,"entity: A city in Texas, USA is Dallas",44.93249130249024,167.4211540222168,16.74211540222168,0.6273940100602924,:,2,0.0037478804588317,7,6,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" city"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""entity"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json
88
+ 0_95057,0,95057,0-clt-hp,entity: The capital city of Texas is Austin,44.93249130249024,108.54875183105467,12.060972425672745,0.7315757022134157,:,2,0.0037478804588317,7,61,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" capital"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""entity"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json
89
+ 0_95057,0,95057,0-clt-hp,entity: A state in the United States is Texas,44.93249130249024,150.82857513427734,15.082857513427737,0.6643218064209181,:,2,0.0037478804588317,7,113,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" state"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""entity"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json
90
+ 0_95057,0,95057,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,45.49790191650391,195.7961578369141,10.877564324273004,0.7609216278975872,:,2,0.0037478804588317,7,165,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" primary"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""attribute"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json
91
+ 0_95057,0,95057,0-clt-hp,relationship: the state in which a city is located is the state containing,39.0150146484375,185.28181552886963,13.234415394919258,0.660786609612377,:,2,0.0037478804588317,7,218,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" state"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""relationship"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json
92
+ 0_32742,0,32742,0-clt-hp,"entity: A city in Texas, USA is Dallas",52.04083251953125,88.8308334350586,8.88308334350586,0.8293055104341003, Texas,6,0.0035841464996337,6,2,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a
93
+ 0_32742,0,32742,0-clt-hp,entity: The capital city of Texas is Austin,52.179874420166016,70.19295501708984,7.799217224121094,0.8505320813668551, Texas,7,0.0035841464996337,6,56,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a
94
+ 0_32742,0,32742,0-clt-hp,entity: A state in the United States is Texas,49.56887435913086,49.56887435913086,4.956887435913086,0.8999999999999999, Texas,10,0.0035841464996337,6,109,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
95
+ 0_32742,0,32742,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0035841464996337,6,171,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
96
+ 0_32742,0,32742,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0035841464996337,6,223,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
97
+ 1_89326,1,89326,1-clt-hp,"entity: A city in Texas, USA is Dallas",69.7168960571289,69.7168960571289,6.971689605712891,0.9, Dallas,10,0.0034727156162261,6,18,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
98
+ 1_89326,1,89326,1-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0034727156162261,6,71,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
99
+ 1_89326,1,89326,1-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0034727156162261,6,124,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
100
+ 1_89326,1,89326,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0034727156162261,6,177,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
101
+ 1_89326,1,89326,1-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0034727156162261,6,230,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
102
+ 22_32893,22,32893,22-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.003369390964508,7,48,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
103
+ 22_32893,22,32893,22-clt-hp,entity: The capital city of Texas is Austin,46.686065673828125,46.686065673828125,5.187340630425347,0.888888888888889, is,8,0.003369390964508,7,99,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
104
+ 22_32893,22,32893,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.003369390964508,7,153,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
105
+ 22_32893,22,32893,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.003369390964508,7,206,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
106
+ 22_32893,22,32893,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.003369390964508,7,259,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
107
+ 21_61721,21,61721,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0032654702663421,7,44,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
108
+ 21_61721,21,61721,21-clt-hp,entity: The capital city of Texas is Austin,18.76114654541016,18.76114654541016,2.0845718383789062,0.8888888888888888, is,8,0.0032654702663421,7,98,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
109
+ 21_61721,21,61721,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0032654702663421,7,150,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
110
+ 21_61721,21,61721,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0032654702663421,7,204,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
111
+ 21_61721,21,61721,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0032654702663421,7,256,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
112
+ 0_49560,0,49560,0-clt-hp,"entity: A city in Texas, USA is Dallas",42.66587448120117,42.66587448120117,4.266587448120117,0.8999999999999999, is,9,0.0031878352165222,7,7,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
113
+ 0_49560,0,49560,0-clt-hp,entity: The capital city of Texas is Austin,45.84932327270508,45.84932327270508,5.094369252522786,0.8888888888888888, is,8,0.0031878352165222,7,60,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
114
+ 0_49560,0,49560,0-clt-hp,entity: A state in the United States is Texas,47.70016479492188,47.70016479492188,4.770016479492187,0.9, is,9,0.0031878352165222,7,111,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
115
+ 0_49560,0,49560,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,49.51710510253906,49.51710510253906,2.7509502834743924,0.9444444444444444, is,15,0.0031878352165222,7,164,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
116
+ 0_49560,0,49560,0-clt-hp,relationship: the state in which a city is located is the state containing,54.55234146118164,104.65689086914062,7.475492204938616,0.8629666114284383, is,11,0.0031878352165222,7,215,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" state"", ""index"": 13, ""distance"": 2, ""direction"": ""forward""}]",json
117
+ 7_89264,7,89264,7-clt-hp,"entity: A city in Texas, USA is Dallas",0.8238649368286133,0.8238649368286133,0.0823864936828613,0.9,",",7,0.003050148487091,7,20,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json
118
+ 7_89264,7,89264,7-clt-hp,entity: The capital city of Texas is Austin,8.95943546295166,8.95943546295166,0.9954928292168512,0.8888888888888888, is,8,0.003050148487091,7,74,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
119
+ 7_89264,7,89264,7-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.003050148487091,7,127,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
120
+ 7_89264,7,89264,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.003050148487091,7,180,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
121
+ 7_89264,7,89264,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.003050148487091,7,233,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
122
+ 19_54790,19,54790,19-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0028801560401916,7,39,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
123
+ 19_54790,19,54790,19-clt-hp,entity: The capital city of Texas is Austin,44.76298522949219,44.76298522949219,4.973665025499132,0.888888888888889, is,8,0.0028801560401916,7,92,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
124
+ 19_54790,19,54790,19-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0028801560401916,7,145,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
125
+ 19_54790,19,54790,19-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,5.89443302154541,5.89443302154541,0.3274685011969672,0.9444444444444444, is,15,0.0028801560401916,7,198,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
126
+ 19_54790,19,54790,19-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0028801560401916,7,251,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
127
+ 0_39374,0,39374,0-clt-hp,"entity: A city in Texas, USA is Dallas",21.213979721069336,21.213979721069336,2.1213979721069336,0.9, is,9,0.0028547048568725,7,9,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
128
+ 0_39374,0,39374,0-clt-hp,entity: The capital city of Texas is Austin,19.35468482971192,19.35468482971192,2.150520536634657,0.8888888888888888, is,8,0.0028547048568725,7,64,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
129
+ 0_39374,0,39374,0-clt-hp,entity: A state in the United States is Texas,19.664194107055664,19.664194107055664,1.9664194107055664,0.9, is,9,0.0028547048568725,7,115,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
130
+ 0_39374,0,39374,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,8.938578605651855,8.938578605651855,0.4965877003139919,0.9444444444444444, is,15,0.0028547048568725,7,168,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json
131
+ 0_39374,0,39374,0-clt-hp,relationship: the state in which a city is located is the state containing,13.01608657836914,23.16886329650879,1.654918806893485,0.8728558851441782, is,9,0.0028547048568725,7,220,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" located"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json
132
+ 17_1822,17,1822,17-clt-hp,"entity: A city in Texas, USA is Dallas",2.5688390731811523,2.5688390731811523,0.2568839073181152,0.9,",",7,0.0027894973754882,7,31,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json
133
+ 17_1822,17,1822,17-clt-hp,entity: The capital city of Texas is Austin,15.288778305053713,15.288778305053713,1.698753145005968,0.8888888888888888, is,8,0.0027894973754882,7,85,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
134
+ 17_1822,17,1822,17-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027894973754882,7,138,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
135
+ 17_1822,17,1822,17-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0027894973754882,7,192,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
136
+ 17_1822,17,1822,17-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027894973754882,7,244,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
137
+ 0_55815,0,55815,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0027363300323486,2,13,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
138
+ 0_55815,0,55815,0-clt-hp,entity: The capital city of Texas is Austin,53.67196273803711,53.67196273803711,5.963551415337457,0.888888888888889, capital,4,0.0027363300323486,2,55,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": "" capital"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a
139
+ 0_55815,0,55815,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027363300323486,2,119,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
140
+ 0_55815,0,55815,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,57.75386428833008,57.75386428833008,3.2085480160183377,0.9444444444444444, capital,17,0.0027363300323486,2,160,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": "" capital"", ""index"": 17, ""distance"": 0, ""direction"": ""self""}]",n/a
141
+ 0_55815,0,55815,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027363300323486,2,225,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
142
+ 22_81571,22,81571,22-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.002730906009674,7,49,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
143
+ 22_81571,22,81571,22-clt-hp,entity: The capital city of Texas is Austin,27.45061683654785,27.45061683654785,3.0500685373942056,0.8888888888888888, is,8,0.002730906009674,7,100,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
144
+ 22_81571,22,81571,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.002730906009674,7,155,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
145
+ 22_81571,22,81571,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.002730906009674,7,208,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
146
+ 22_81571,22,81571,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.002730906009674,7,261,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
147
+ 0_40936,0,40936,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0027021169662475,3,12,"""of""",Semantic,attivazioni significative solo su of,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
148
+ 0_40936,0,40936,0-clt-hp,entity: The capital city of Texas is Austin,76.25304412841797,76.25304412841797,8.472560458713108,0.888888888888889, of,6,0.0027021169662475,3,53,"""of""",Semantic,attivazioni significative solo su of,functional,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 1, ""direction"": ""forward""}]",json
149
+ 0_40936,0,40936,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027021169662475,3,118,"""of""",Semantic,attivazioni significative solo su of,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
150
+ 0_40936,0,40936,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,80.70610809326172,80.70610809326172,4.483672671847874,0.9444444444444444, of,10,0.0027021169662475,3,159,"""of""",Semantic,attivazioni significative solo su of,functional,"[{""token"": "" government"", ""index"": 11, ""distance"": 1, ""direction"": ""forward""}]",json
151
+ 0_40936,0,40936,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027021169662475,3,224,"""of""",Semantic,attivazioni significative solo su of,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
152
+ 18_61980,18,61980,18-clt-hp,"entity: A city in Texas, USA is Dallas",14.10042667388916,14.10042667388916,1.410042667388916,0.9,",",7,0.0026986598968505,7,34,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json
153
+ 18_61980,18,61980,18-clt-hp,entity: The capital city of Texas is Austin,32.00542449951172,32.00542449951172,3.556158277723524,0.8888888888888888, is,8,0.0026986598968505,7,87,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
154
+ 18_61980,18,61980,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0026986598968505,7,140,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
155
+ 18_61980,18,61980,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0026986598968505,7,193,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
156
+ 18_61980,18,61980,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0026986598968505,7,246,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
157
+ 17_98126,17,98126,17-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0024870038032531,7,33,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
158
+ 17_98126,17,98126,17-clt-hp,entity: The capital city of Texas is Austin,20.15220642089844,25.09380292892456,2.7882003254360623,0.861642925484099, is,8,0.0024870038032531,7,84,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
159
+ 17_98126,17,98126,17-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0024870038032531,7,139,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
160
+ 17_98126,17,98126,17-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,20.67333602905273,54.458144187927246,3.025452454884847,0.8536543666376291, the,16,0.0024870038032531,7,190,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json
161
+ 17_98126,17,98126,17-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0024870038032531,7,245,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
162
+ 12_87969,12,87969,12-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0023558735847473,7,24,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
163
+ 12_87969,12,87969,12-clt-hp,entity: The capital city of Texas is Austin,15.27625846862793,15.27625846862793,1.69736205206977,0.8888888888888888, is,8,0.0023558735847473,7,76,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
164
+ 12_87969,12,87969,12-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023558735847473,7,130,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
165
+ 12_87969,12,87969,12-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,30.10682678222656,84.44636726379395,4.691464847988552,0.8441727226212316, the,16,0.0023558735847473,7,182,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json
166
+ 12_87969,12,87969,12-clt-hp,relationship: the state in which a city is located is the state containing,7.160322189331055,7.160322189331055,0.5114515849522182,0.9285714285714286, the,12,0.0023558735847473,7,235,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" state"", ""index"": 13, ""distance"": 1, ""direction"": ""forward""}]",json
167
+ 22_74186,22,74186,22-clt-hp,"entity: A city in Texas, USA is Dallas",8.636338233947754,8.636338233947754,0.8636338233947753,0.9,",",7,0.0023505687713623,7,47,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json
168
+ 22_74186,22,74186,22-clt-hp,entity: The capital city of Texas is Austin,0.5329599380493164,0.5329599380493164,0.0592177708943684,0.888888888888889, is,8,0.0023505687713623,7,102,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
169
+ 22_74186,22,74186,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023505687713623,7,154,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
170
+ 22_74186,22,74186,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0023505687713623,7,207,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
171
+ 22_74186,22,74186,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0023505687713623,7,260,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
172
+ 18_56027,18,56027,18-clt-hp,"entity: A city in Texas, USA is Dallas",34.67882537841797,34.67882537841797,3.467882537841797,0.9, Dallas,10,0.0023038387298583,7,35,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a
173
+ 18_56027,18,56027,18-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0023038387298583,7,90,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
174
+ 18_56027,18,56027,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023038387298583,7,143,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
175
+ 18_56027,18,56027,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0023038387298583,7,196,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
176
+ 18_56027,18,56027,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0023038387298583,7,249,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
177
+ 21_16875,21,16875,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0021759271621704,7,42,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
178
+ 21_16875,21,16875,21-clt-hp,entity: The capital city of Texas is Austin,17.112422943115234,17.112422943115234,1.901380327012804,0.8888888888888888, is,8,0.0021759271621704,7,96,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
179
+ 21_16875,21,16875,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0021759271621704,7,148,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
180
+ 21_16875,21,16875,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0021759271621704,7,201,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
181
+ 21_16875,21,16875,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0021759271621704,7,254,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
182
+ 0_37567,0,37567,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,11,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
183
+ 0_37567,0,37567,0-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,66,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
184
+ 0_37567,0,37567,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,117,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
185
+ 0_37567,0,37567,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0020866394042968,5,172,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
186
+ 0_37567,0,37567,0-clt-hp,relationship: the state in which a city is located is the state containing,41.10612106323242,41.10612106323242,2.9361515045166016,0.9285714285714286, containing,14,0.0020866394042968,5,217,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": "" containing"", ""index"": 14, ""distance"": 0, ""direction"": ""self""}]",n/a
187
+ 7_3144,7,3144,7-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.002021312713623,7,21,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
188
+ 7_3144,7,3144,7-clt-hp,entity: The capital city of Texas is Austin,14.262575149536133,18.0198335647583,2.002203729417589,0.8596183572443643, is,8,0.002021312713623,7,72,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
189
+ 7_3144,7,3144,7-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.002021312713623,7,126,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
190
+ 7_3144,7,3144,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,19.09012985229492,91.89447498321532,5.10524861017863,0.73257129995033, seat,9,0.002021312713623,7,178,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": "" seat"", ""index"": 9, ""distance"": 0, ""direction"": ""self""}]",n/a
191
+ 7_3144,7,3144,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.002021312713623,7,231,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
192
+ 19_13946,19,13946,19-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.001940906047821,7,38,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
193
+ 19_13946,19,13946,19-clt-hp,entity: The capital city of Texas is Austin,45.02559280395508,45.02559280395508,5.002843644883898,0.888888888888889, is,8,0.001940906047821,7,91,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json
194
+ 19_13946,19,13946,19-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.001940906047821,7,144,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
195
+ 19_13946,19,13946,19-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,66.8328628540039,118.54381847381592,6.585767692989773,0.901459141330271, the,16,0.001940906047821,7,197,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json
196
+ 19_13946,19,13946,19-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.001940906047821,7,250,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a
examples_data/node_grouping_step2_20251027_180821.csv ADDED
@@ -0,0 +1,196 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ feature_key,layer,index,source,prompt,activation_max,activation_sum,activation_mean,sparsity_ratio,peak_token,peak_token_idx,node_influence,csv_ctx_idx,Unnamed: 0,supernode_label,supernode_class,motivation,peak_token_type,target_tokens,tokens_source,pred_label,subtype,confidence,review,why_review
2
+ 1_12928,1,12928,1-clt-hp,"entity: A city in Texas, USA is Dallas",105.41461181640624,810.1840858459473,81.01840858459472,0.2314309450221265,entity,1,0.0096316039562225,7,14,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
3
+ 1_12928,1,12928,1-clt-hp,entity: The capital city of Texas is Austin,105.41461181640624,737.9229583740234,81.99143981933594,0.2222004292712752,entity,1,0.0096316039562225,7,67,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
4
+ 1_12928,1,12928,1-clt-hp,entity: A state in the United States is Texas,105.41461181640624,848.5865478515625,84.85865478515625,0.1950010219366075,entity,1,0.0096316039562225,7,120,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
5
+ 1_12928,1,12928,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,117.0110092163086,1233.4596061706543,68.52553367614746,0.4143667836462297,attribute,1,0.0096316039562225,7,173,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
6
+ 1_12928,1,12928,1-clt-hp,relationship: the state in which a city is located is the state containing,115.16062927246094,1163.957431793213,83.13981655665806,0.2780534712088466,relationship,1,0.0096316039562225,7,226,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
7
+ 1_72774,1,72774,1-clt-hp,"entity: A city in Texas, USA is Dallas",80.11094665527344,626.0174751281738,62.60174751281738,0.2185618804106777, city,4,0.0095889568328857,7,17,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" city"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
8
+ 1_72774,1,72774,1-clt-hp,entity: The capital city of Texas is Austin,84.13487243652344,613.3576698303223,68.15085220336914,0.1899809171899991, city,5,0.0095889568328857,7,70,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" city"", ""index"": 5, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
9
+ 1_72774,1,72774,1-clt-hp,entity: A state in the United States is Texas,91.9457550048828,689.5408782958984,68.95408782958984,0.2500568642246941, state,4,0.0095889568328857,7,123,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" state"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
10
+ 1_72774,1,72774,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,122.51927185058594,1543.6992301940918,85.76106834411621,0.3000197679210573, primary,4,0.0095889568328857,7,175,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" primary"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
11
+ 1_72774,1,72774,1-clt-hp,relationship: the state in which a city is located is the state containing,97.75382995605467,931.018913269043,66.50135094778878,0.3197059288860138, containing,14,0.0095889568328857,7,229,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" containing"", ""index"": 14, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
12
+ 20_44686,20,44686,20-clt-hp,"entity: A city in Texas, USA is Dallas",21.17974853515625,35.3902645111084,3.53902645111084,0.8329051714076581, Dallas,10,0.008446842432022,7,40,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7,False,
13
+ 20_44686,20,44686,20-clt-hp,entity: The capital city of Texas is Austin,57.44028472900391,111.7382698059082,12.415363311767578,0.7838561669681529, is,8,0.008446842432022,7,93,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Concept,0.7,False,
14
+ 20_44686,20,44686,20-clt-hp,entity: A state in the United States is Texas,31.102846145629883,31.102846145629883,3.110284614562988,0.9, Texas,10,0.008446842432022,7,146,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7,False,
15
+ 20_44686,20,44686,20-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.008446842432022,7,200,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7,False,
16
+ 20_44686,20,44686,20-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.008446842432022,7,252,"""Texas""",Semantic,"attivazione non nettamente più forte su token funzionale 'is' prima di 'Austin, presenza di attivazioni forti token semantici Texas e Dallas, scelgo Texas perché più forte",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7,False,
17
+ 1_57794,1,57794,1-clt-hp,"entity: A city in Texas, USA is Dallas",113.94397735595705,869.7109718322754,86.97109718322754,0.2367205428371799,entity,1,0.0081024467945098,7,15,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
18
+ 1_57794,1,57794,1-clt-hp,entity: The capital city of Texas is Austin,113.94397735595705,785.0075225830078,87.22305806477864,0.2345092729886299,entity,1,0.0081024467945098,7,68,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
19
+ 1_57794,1,57794,1-clt-hp,entity: A state in the United States is Texas,113.94397735595705,817.1403198242188,81.71403198242187,0.2828578229532038,entity,1,0.0081024467945098,7,121,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
20
+ 1_57794,1,57794,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,125.45741271972656,1323.623565673828,73.53464253743489,0.4138676946757048,attribute,1,0.0081024467945098,7,174,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
21
+ 1_57794,1,57794,1-clt-hp,relationship: the state in which a city is located is the state containing,121.10602569580078,1136.5441207885742,81.18172291346959,0.3296640489434831,relationship,1,0.0081024467945098,7,227,Relationship,Relationship,"layer ≤ 3, altissima attivazione, varianza bassa, attivazioni uniformi e molto alte su ruoli semantici generali; funzione di scaffolding concettuale del prompt",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
22
+ 0_40780,0,40780,0-clt-hp,"entity: A city in Texas, USA is Dallas",50.744911193847656,183.38724303245544,18.338724303245545,0.6386095891824334, is,9,0.0069027841091156,7,3,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary (fallback),0.9,False,
23
+ 0_40780,0,40780,0-clt-hp,entity: The capital city of Texas is Austin,48.96206283569336,128.85796904563904,14.317552116182116,0.7075786581086487, is,8,0.0069027841091156,7,58,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary (fallback),0.9,False,
24
+ 0_40780,0,40780,0-clt-hp,entity: A state in the United States is Texas,53.07304382324219,192.2147843837738,19.221478438377385,0.6378297332560423, the,6,0.0069027841091156,7,107,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" United"", ""index"": 7, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary (fallback),0.9,False,
25
+ 0_40780,0,40780,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,50.93766784667969,365.7576293945313,20.319868299696186,0.6010836546176759, is,15,0.0069027841091156,7,163,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary (fallback),0.9,False,
26
+ 0_40780,0,40780,0-clt-hp,relationship: the state in which a city is located is the state containing,59.61247253417969,401.4472732543945,28.67480523245675,0.5189797702818713, which,6,0.0069027841091156,7,213,"""is""",Semantic,"diverse functional token (nessuna semantica), ma influenza massima su is",functional,"[{""token"": "" city"", ""index"": 8, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary (fallback),0.9,False,
27
+ 1_52044,1,52044,1-clt-hp,"entity: A city in Texas, USA is Dallas",101.82122802734376,719.1115570068359,71.9111557006836,0.2937508504476877, USA,8,0.0067475140094757,7,16,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" USA"", ""index"": 8, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
28
+ 1_52044,1,52044,1-clt-hp,entity: The capital city of Texas is Austin,111.89495849609376,656.9445991516113,72.99384435017903,0.347657433978786, capital,4,0.0067475140094757,7,69,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" capital"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
29
+ 1_52044,1,52044,1-clt-hp,entity: A state in the United States is Texas,95.29304504394533,751.4510955810547,75.14510955810547,0.2114313324393026, state,4,0.0067475140094757,7,122,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" state"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
30
+ 1_52044,1,52044,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,118.34194946289062,1567.5587120056152,87.08659511142307,0.2641105245715809, capital,17,0.0067475140094757,7,176,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" capital"", ""index"": 17, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
31
+ 1_52044,1,52044,1-clt-hp,relationship: the state in which a city is located is the state containing,125.9399642944336,1198.040008544922,85.57428632463727,0.3205152407017193, containing,14,0.0067475140094757,7,228,Relationship,Relationship,"layer medio-basso, più picchi distinti, max activation diversa da media activation",semantic,"[{""token"": "" containing"", ""index"": 14, ""distance"": 0, ""direction"": ""self""}]",n/a,Relationship,,1.0,False,
32
+ 16_89970,16,89970,16-clt-hp,"entity: A city in Texas, USA is Dallas",18.21431350708008,18.21431350708008,1.821431350708008,0.9, Texas,6,0.0067293047904968,6,28,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
33
+ 16_89970,16,89970,16-clt-hp,entity: The capital city of Texas is Austin,18.45095634460449,24.438182830810547,2.7153536478678384,0.8528339888104568, Texas,7,0.0067293047904968,6,82,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
34
+ 16_89970,16,89970,16-clt-hp,entity: A state in the United States is Texas,7.996506690979004,7.996506690979004,0.7996506690979004,0.9, Texas,10,0.0067293047904968,6,134,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
35
+ 16_89970,16,89970,16-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0067293047904968,6,189,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
36
+ 16_89970,16,89970,16-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0067293047904968,6,241,"""Texas""",Semantic, si attiva solo su Texas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
37
+ 22_11998,22,11998,22-clt-hp,"entity: A city in Texas, USA is Dallas",21.473478317260746,21.473478317260746,2.147347831726074,0.9, Dallas,10,0.005888283252716,7,46,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.9376365161058693,False,
38
+ 22_11998,22,11998,22-clt-hp,entity: The capital city of Texas is Austin,20.13431739807129,20.13431739807129,2.237146377563477,0.8888888888888888, is,8,0.005888283252716,7,101,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Concept,0.9376365161058693,False,
39
+ 22_11998,22,11998,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.005888283252716,7,152,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.9376365161058693,False,
40
+ 22_11998,22,11998,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.005888283252716,7,205,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.9376365161058693,False,
41
+ 22_11998,22,11998,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.005888283252716,7,258,"""Dallas""",Semantic,"attivazione forte su Dallas, attivazione su is(Austin) debole, le feature Say(qualcosa) sono molto selettive e si attivano sullo stesso token funzionale (es. 'is')",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.9376365161058693,False,
42
+ 0_91045,0,91045,0-clt-hp,"entity: A city in Texas, USA is Dallas",46.246559143066406,46.246559143066406,4.624655914306641,0.8999999999999999, is,9,0.0052919089794158,7,5,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
43
+ 0_91045,0,91045,0-clt-hp,entity: The capital city of Texas is Austin,41.82666778564453,41.82666778564453,4.647407531738281,0.8888888888888888, is,8,0.0052919089794158,7,63,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
44
+ 0_91045,0,91045,0-clt-hp,entity: A state in the United States is Texas,45.03489685058594,45.03489685058594,4.503489685058594,0.8999999999999999, is,9,0.0052919089794158,7,112,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
45
+ 0_91045,0,91045,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,53.5222053527832,53.5222053527832,2.9734558529324,0.9444444444444444, is,15,0.0052919089794158,7,161,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
46
+ 0_91045,0,91045,0-clt-hp,relationship: the state in which a city is located is the state containing,62.28597259521485,113.89995193481444,8.135710852486747,0.8693813307635213, is,11,0.0052919089794158,7,212,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" state"", ""index"": 13, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
47
+ 0_5200,0,5200,0-clt-hp,"entity: A city in Texas, USA is Dallas",47.27579116821289,47.27579116821289,4.727579116821289,0.9, is,9,0.0052788853645324,7,4,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
48
+ 0_5200,0,5200,0-clt-hp,entity: The capital city of Texas is Austin,43.82829284667969,43.82829284667969,4.869810316297743,0.8888888888888888, is,8,0.0052788853645324,7,62,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
49
+ 0_5200,0,5200,0-clt-hp,entity: A state in the United States is Texas,36.06181335449219,36.06181335449219,3.606181335449219,0.8999999999999999, is,9,0.0052788853645324,7,114,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
50
+ 0_5200,0,5200,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,37.01258087158203,37.01258087158203,2.0562544928656683,0.9444444444444444, is,15,0.0052788853645324,7,167,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
51
+ 0_5200,0,5200,0-clt-hp,relationship: the state in which a city is located is the state containing,31.49920654296875,59.72468566894531,4.266048976353237,0.8645664623160007, is,9,0.0052788853645324,7,219,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" located"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
52
+ 21_84338,21,84338,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0047608315944671,7,45,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
53
+ 21_84338,21,84338,21-clt-hp,entity: The capital city of Texas is Austin,38.49139404296875,57.22371768951416,6.358190854390462,0.8348152616324397, is,8,0.0047608315944671,7,95,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
54
+ 21_84338,21,84338,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0047608315944671,7,151,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
55
+ 21_84338,21,84338,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,8.62592601776123,8.62592601776123,0.4792181120978461,0.9444444444444444, is,15,0.0047608315944671,7,203,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
56
+ 21_84338,21,84338,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0047608315944671,7,257,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
57
+ 0_230,0,230,0-clt-hp,"entity: A city in Texas, USA is Dallas",42.41893768310547,42.41893768310547,4.241893768310547,0.9, is,9,0.0046725273132324,7,8,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
58
+ 0_230,0,230,0-clt-hp,entity: The capital city of Texas is Austin,46.301795959472656,46.301795959472656,5.144643995496962,0.8888888888888888, is,8,0.0046725273132324,7,59,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
59
+ 0_230,0,230,0-clt-hp,entity: A state in the United States is Texas,47.897682189941406,47.897682189941406,4.789768218994141,0.9, is,9,0.0046725273132324,7,110,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
60
+ 0_230,0,230,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,41.60439300537109,41.60439300537109,2.3113551669650607,0.9444444444444444, is,15,0.0046725273132324,7,166,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
61
+ 0_230,0,230,0-clt-hp,relationship: the state in which a city is located is the state containing,43.75920486450195,71.13797760009766,5.08128411429269,0.8838807942231441, is,9,0.0046725273132324,7,216,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" located"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
62
+ 0_1861,0,1861,0-clt-hp,"entity: A city in Texas, USA is Dallas",54.92845916748047,72.53322219848633,7.253322219848632,0.8679496506950471, Texas,6,0.0041899383068084,6,1,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
63
+ 0_1861,0,1861,0-clt-hp,entity: The capital city of Texas is Austin,55.11215591430664,80.40324020385742,8.933693355984158,0.8378997662534727, Texas,7,0.0041899383068084,6,54,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
64
+ 0_1861,0,1861,0-clt-hp,entity: A state in the United States is Texas,55.28260040283203,55.28260040283203,5.528260040283203,0.9, Texas,10,0.0041899383068084,6,106,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
65
+ 0_1861,0,1861,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0041899383068084,6,170,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
66
+ 0_1861,0,1861,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0041899383068084,6,222,"""Texas""",Semantic,attivazioni solo su texas embedding,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
67
+ 7_24743,7,24743,7-clt-hp,"entity: A city in Texas, USA is Dallas",13.26353645324707,20.89326572418213,2.089326572418213,0.8424759052924591, Texas,6,0.00392746925354,6,19,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
68
+ 7_24743,7,24743,7-clt-hp,entity: The capital city of Texas is Austin,13.514944076538086,26.310606002807617,2.9234006669786243,0.7836912494478138, Texas,7,0.00392746925354,6,73,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
69
+ 7_24743,7,24743,7-clt-hp,entity: A state in the United States is Texas,8.938840866088867,8.938840866088867,0.8938840866088867,0.8999999999999999, Texas,10,0.00392746925354,6,125,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
70
+ 7_24743,7,24743,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.00392746925354,6,179,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
71
+ 7_24743,7,24743,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.00392746925354,6,232,"""Texas""",Semantic,Attivazione solo su Texas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
72
+ 16_98048,16,98048,16-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038511157035827,7,30,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
73
+ 16_98048,16,98048,16-clt-hp,entity: The capital city of Texas is Austin,25.97924995422364,30.72956657409668,3.414396286010742,0.8685721761780255, is,8,0.0038511157035827,7,81,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
74
+ 16_98048,16,98048,16-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038511157035827,7,136,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
75
+ 16_98048,16,98048,16-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,6.895334243774414,12.294490814208984,0.6830272674560547,0.9009435593245188, is,15,0.0038511157035827,7,187,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
76
+ 16_98048,16,98048,16-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038511157035827,7,242,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
77
+ 20_74108,20,74108,20-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038157403469085,7,41,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
78
+ 20_74108,20,74108,20-clt-hp,entity: The capital city of Texas is Austin,26.576478958129883,31.370362758636475,3.48559586207072,0.8688465892128853, is,8,0.0038157403469085,7,94,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
79
+ 20_74108,20,74108,20-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038157403469085,7,147,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
80
+ 20_74108,20,74108,20-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,63.30609893798828,130.92694854736328,7.273719363742405,0.8851023916215813, the,16,0.0038157403469085,7,199,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
81
+ 20_74108,20,74108,20-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038157403469085,7,253,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
82
+ 18_3623,18,3623,18-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0038073360919952,7,37,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
83
+ 18_3623,18,3623,18-clt-hp,entity: The capital city of Texas is Austin,14.909049987792969,14.909049987792969,1.6565611097547743,0.888888888888889, is,8,0.0038073360919952,7,88,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
84
+ 18_3623,18,3623,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0038073360919952,7,142,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
85
+ 18_3623,18,3623,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0038073360919952,7,195,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
86
+ 18_3623,18,3623,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0038073360919952,7,248,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
87
+ 0_95057,0,95057,0-clt-hp,"entity: A city in Texas, USA is Dallas",44.93249130249024,167.4211540222168,16.74211540222168,0.6273940100602924,:,2,0.0037478804588317,7,6,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" city"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""entity"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json,Semantic,Dictionary (fallback),0.9,False,
88
+ 0_95057,0,95057,0-clt-hp,entity: The capital city of Texas is Austin,44.93249130249024,108.54875183105467,12.060972425672745,0.7315757022134157,:,2,0.0037478804588317,7,61,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" capital"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""entity"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json,Semantic,Dictionary (fallback),0.9,False,
89
+ 0_95057,0,95057,0-clt-hp,entity: A state in the United States is Texas,44.93249130249024,150.82857513427734,15.082857513427737,0.6643218064209181,:,2,0.0037478804588317,7,113,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" state"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""entity"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json,Semantic,Dictionary (fallback),0.9,False,
90
+ 0_95057,0,95057,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,45.49790191650391,195.7961578369141,10.877564324273004,0.7609216278975872,:,2,0.0037478804588317,7,165,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" primary"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""attribute"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json,Semantic,Dictionary (fallback),0.9,False,
91
+ 0_95057,0,95057,0-clt-hp,relationship: the state in which a city is located is the state containing,39.0150146484375,185.28181552886963,13.234415394919258,0.660786609612377,:,2,0.0037478804588317,7,218,"""punctuation""",Semantic,attuazione solo su ':',functional,"[{""token"": "" state"", ""index"": 4, ""distance"": 2, ""direction"": ""forward""}, {""token"": ""relationship"", ""index"": 1, ""distance"": 1, ""direction"": ""backward""}]",json,Semantic,Dictionary (fallback),0.9,False,
92
+ 0_32742,0,32742,0-clt-hp,"entity: A city in Texas, USA is Dallas",52.04083251953125,88.8308334350586,8.88308334350586,0.8293055104341003, Texas,6,0.0035841464996337,6,2,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": "" Texas"", ""index"": 6, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
93
+ 0_32742,0,32742,0-clt-hp,entity: The capital city of Texas is Austin,52.179874420166016,70.19295501708984,7.799217224121094,0.8505320813668551, Texas,7,0.0035841464996337,6,56,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
94
+ 0_32742,0,32742,0-clt-hp,entity: A state in the United States is Texas,49.56887435913086,49.56887435913086,4.956887435913086,0.8999999999999999, Texas,10,0.0035841464996337,6,109,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
95
+ 0_32742,0,32742,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0035841464996337,6,171,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
96
+ 0_32742,0,32742,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0035841464996337,6,223,"""Texas""",Semantic,attivazione solo su texas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
97
+ 1_89326,1,89326,1-clt-hp,"entity: A city in Texas, USA is Dallas",69.7168960571289,69.7168960571289,6.971689605712891,0.9, Dallas,10,0.0034727156162261,6,18,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
98
+ 1_89326,1,89326,1-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0034727156162261,6,71,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
99
+ 1_89326,1,89326,1-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0034727156162261,6,124,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
100
+ 1_89326,1,89326,1-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0034727156162261,6,177,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
101
+ 1_89326,1,89326,1-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0034727156162261,6,230,"""Dallas""",Semantic,Unica attivazione solo su Dallas,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
102
+ 22_32893,22,32893,22-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.003369390964508,7,48,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
103
+ 22_32893,22,32893,22-clt-hp,entity: The capital city of Texas is Austin,46.686065673828125,46.686065673828125,5.187340630425347,0.888888888888889, is,8,0.003369390964508,7,99,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
104
+ 22_32893,22,32893,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.003369390964508,7,153,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
105
+ 22_32893,22,32893,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.003369390964508,7,206,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
106
+ 22_32893,22,32893,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.003369390964508,7,259,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
107
+ 21_61721,21,61721,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0032654702663421,7,44,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
108
+ 21_61721,21,61721,21-clt-hp,entity: The capital city of Texas is Austin,18.76114654541016,18.76114654541016,2.0845718383789062,0.8888888888888888, is,8,0.0032654702663421,7,98,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
109
+ 21_61721,21,61721,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0032654702663421,7,150,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
110
+ 21_61721,21,61721,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0032654702663421,7,204,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
111
+ 21_61721,21,61721,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0032654702663421,7,256,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
112
+ 0_49560,0,49560,0-clt-hp,"entity: A city in Texas, USA is Dallas",42.66587448120117,42.66587448120117,4.266587448120117,0.8999999999999999, is,9,0.0031878352165222,7,7,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
113
+ 0_49560,0,49560,0-clt-hp,entity: The capital city of Texas is Austin,45.84932327270508,45.84932327270508,5.094369252522786,0.8888888888888888, is,8,0.0031878352165222,7,60,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
114
+ 0_49560,0,49560,0-clt-hp,entity: A state in the United States is Texas,47.70016479492188,47.70016479492188,4.770016479492187,0.9, is,9,0.0031878352165222,7,111,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
115
+ 0_49560,0,49560,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,49.51710510253906,49.51710510253906,2.7509502834743924,0.9444444444444444, is,15,0.0031878352165222,7,164,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
116
+ 0_49560,0,49560,0-clt-hp,relationship: the state in which a city is located is the state containing,54.55234146118164,104.65689086914062,7.475492204938616,0.8629666114284383, is,11,0.0031878352165222,7,215,"""is""",Semantic,attivazione aselettiva su is,functional,"[{""token"": "" state"", ""index"": 13, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
117
+ 7_89264,7,89264,7-clt-hp,"entity: A city in Texas, USA is Dallas",0.8238649368286133,0.8238649368286133,0.0823864936828613,0.9,",",7,0.003050148487091,7,20,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json,"Say ""X""",,1.0,False,
118
+ 7_89264,7,89264,7-clt-hp,entity: The capital city of Texas is Austin,8.95943546295166,8.95943546295166,0.9954928292168512,0.8888888888888888, is,8,0.003050148487091,7,74,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
119
+ 7_89264,7,89264,7-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.003050148487091,7,127,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
120
+ 7_89264,7,89264,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.003050148487091,7,180,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
121
+ 7_89264,7,89264,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.003050148487091,7,233,"Say ""Austin""","Say ""X""","Attivazione nettamente più forte su token funzionale 'is' prima di Austin, su 'is' dallas molto più debole",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
122
+ 19_54790,19,54790,19-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0028801560401916,7,39,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
123
+ 19_54790,19,54790,19-clt-hp,entity: The capital city of Texas is Austin,44.76298522949219,44.76298522949219,4.973665025499132,0.888888888888889, is,8,0.0028801560401916,7,92,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
124
+ 19_54790,19,54790,19-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0028801560401916,7,145,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
125
+ 19_54790,19,54790,19-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,5.89443302154541,5.89443302154541,0.3274685011969672,0.9444444444444444, is,15,0.0028801560401916,7,198,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
126
+ 19_54790,19,54790,19-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0028801560401916,7,251,"Say ""Austin""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di 'Austin, altra attivazione molto più lieve su token funzionale 'is' prima di 'Capital' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
127
+ 0_39374,0,39374,0-clt-hp,"entity: A city in Texas, USA is Dallas",21.213979721069336,21.213979721069336,2.1213979721069336,0.9, is,9,0.0028547048568725,7,9,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
128
+ 0_39374,0,39374,0-clt-hp,entity: The capital city of Texas is Austin,19.35468482971192,19.35468482971192,2.150520536634657,0.8888888888888888, is,8,0.0028547048568725,7,64,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
129
+ 0_39374,0,39374,0-clt-hp,entity: A state in the United States is Texas,19.664194107055664,19.664194107055664,1.9664194107055664,0.9, is,9,0.0028547048568725,7,115,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" Texas"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
130
+ 0_39374,0,39374,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,8.938578605651855,8.938578605651855,0.4965877003139919,0.9444444444444444, is,15,0.0028547048568725,7,168,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 2, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
131
+ 0_39374,0,39374,0-clt-hp,relationship: the state in which a city is located is the state containing,13.01608657836914,23.16886329650879,1.654918806893485,0.8728558851441782, is,9,0.0028547048568725,7,220,"""is""",Semantic,"attivazione su token funzionale 'is' ma aselettiva,",functional,"[{""token"": "" located"", ""index"": 10, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,0.8333333333333334,False,
132
+ 17_1822,17,1822,17-clt-hp,"entity: A city in Texas, USA is Dallas",2.5688390731811523,2.5688390731811523,0.2568839073181152,0.9,",",7,0.0027894973754882,7,31,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json,"Say ""X""",,1.0,False,
133
+ 17_1822,17,1822,17-clt-hp,entity: The capital city of Texas is Austin,15.288778305053713,15.288778305053713,1.698753145005968,0.8888888888888888, is,8,0.0027894973754882,7,85,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
134
+ 17_1822,17,1822,17-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027894973754882,7,138,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
135
+ 17_1822,17,1822,17-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0027894973754882,7,192,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
136
+ 17_1822,17,1822,17-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027894973754882,7,244,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, l'attivazione più forte è su is Austin",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
137
+ 0_55815,0,55815,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0027363300323486,2,13,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
138
+ 0_55815,0,55815,0-clt-hp,entity: The capital city of Texas is Austin,53.67196273803711,53.67196273803711,5.963551415337457,0.888888888888889, capital,4,0.0027363300323486,2,55,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": "" capital"", ""index"": 4, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
139
+ 0_55815,0,55815,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027363300323486,2,119,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
140
+ 0_55815,0,55815,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,57.75386428833008,57.75386428833008,3.2085480160183377,0.9444444444444444, capital,17,0.0027363300323486,2,160,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": "" capital"", ""index"": 17, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
141
+ 0_55815,0,55815,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027363300323486,2,225,"""capital""",Semantic,unica attivazione solo su capital,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
142
+ 22_81571,22,81571,22-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.002730906009674,7,49,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
143
+ 22_81571,22,81571,22-clt-hp,entity: The capital city of Texas is Austin,27.45061683654785,27.45061683654785,3.0500685373942056,0.8888888888888888, is,8,0.002730906009674,7,100,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
144
+ 22_81571,22,81571,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.002730906009674,7,155,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
145
+ 22_81571,22,81571,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.002730906009674,7,208,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
146
+ 22_81571,22,81571,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.002730906009674,7,261,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
147
+ 0_40936,0,40936,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0027021169662475,3,12,"""of""",Semantic,attivazioni significative solo su of,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
148
+ 0_40936,0,40936,0-clt-hp,entity: The capital city of Texas is Austin,76.25304412841797,76.25304412841797,8.472560458713108,0.888888888888889, of,6,0.0027021169662475,3,53,"""of""",Semantic,attivazioni significative solo su of,functional,"[{""token"": "" Texas"", ""index"": 7, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,1.0,False,
149
+ 0_40936,0,40936,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0027021169662475,3,118,"""of""",Semantic,attivazioni significative solo su of,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
150
+ 0_40936,0,40936,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,80.70610809326172,80.70610809326172,4.483672671847874,0.9444444444444444, of,10,0.0027021169662475,3,159,"""of""",Semantic,attivazioni significative solo su of,functional,"[{""token"": "" government"", ""index"": 11, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Dictionary,1.0,False,
151
+ 0_40936,0,40936,0-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0027021169662475,3,224,"""of""",Semantic,attivazioni significative solo su of,semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
152
+ 18_61980,18,61980,18-clt-hp,"entity: A city in Texas, USA is Dallas",14.10042667388916,14.10042667388916,1.410042667388916,0.9,",",7,0.0026986598968505,7,34,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json,"Say ""X""",,1.0,False,
153
+ 18_61980,18,61980,18-clt-hp,entity: The capital city of Texas is Austin,32.00542449951172,32.00542449951172,3.556158277723524,0.8888888888888888, is,8,0.0026986598968505,7,87,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
154
+ 18_61980,18,61980,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0026986598968505,7,140,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
155
+ 18_61980,18,61980,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0026986598968505,7,193,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
156
+ 18_61980,18,61980,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0026986598968505,7,246,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
157
+ 17_98126,17,98126,17-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0024870038032531,7,33,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
158
+ 17_98126,17,98126,17-clt-hp,entity: The capital city of Texas is Austin,20.15220642089844,25.09380292892456,2.7882003254360623,0.861642925484099, is,8,0.0024870038032531,7,84,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
159
+ 17_98126,17,98126,17-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0024870038032531,7,139,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
160
+ 17_98126,17,98126,17-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,20.67333602905273,54.458144187927246,3.025452454884847,0.8536543666376291, the,16,0.0024870038032531,7,190,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
161
+ 17_98126,17,98126,17-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0024870038032531,7,245,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'is' prima di Capital, altra attivazione poco più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
162
+ 12_87969,12,87969,12-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0023558735847473,7,24,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
163
+ 12_87969,12,87969,12-clt-hp,entity: The capital city of Texas is Austin,15.27625846862793,15.27625846862793,1.69736205206977,0.8888888888888888, is,8,0.0023558735847473,7,76,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
164
+ 12_87969,12,87969,12-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023558735847473,7,130,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
165
+ 12_87969,12,87969,12-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,30.10682678222656,84.44636726379395,4.691464847988552,0.8441727226212316, the,16,0.0023558735847473,7,182,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
166
+ 12_87969,12,87969,12-clt-hp,relationship: the state in which a city is located is the state containing,7.160322189331055,7.160322189331055,0.5114515849522182,0.9285714285714286, the,12,0.0023558735847473,7,235,"Say ""Capital""","Say ""X""","attivazione più forte su token funzionale 'the' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" state"", ""index"": 13, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
167
+ 22_74186,22,74186,22-clt-hp,"entity: A city in Texas, USA is Dallas",8.636338233947754,8.636338233947754,0.8636338233947753,0.9,",",7,0.0023505687713623,7,47,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" USA"", ""index"": 8, ""distance"": 1, ""direction"": ""forward""}, {""token"": "" Texas"", ""index"": 6, ""distance"": 1, ""direction"": ""backward""}]",json,"Say ""X""",,1.0,False,
168
+ 22_74186,22,74186,22-clt-hp,entity: The capital city of Texas is Austin,0.5329599380493164,0.5329599380493164,0.0592177708943684,0.888888888888889, is,8,0.0023505687713623,7,102,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
169
+ 22_74186,22,74186,22-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023505687713623,7,154,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
170
+ 22_74186,22,74186,22-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0023505687713623,7,207,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
171
+ 22_74186,22,74186,22-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0023505687713623,7,260,"Say ""Austin""","Say ""X""","è sicuramente una feature sayX:attivazione solo su token funzionali (',' e 'is) la virgola sta tra Texas e USA, is è prima di austin, è un caso forse particolare l'attivazione più forte è sulla virgola tra luoghi americani ma potrebbe essere una differenziazione successiva",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
172
+ 18_56027,18,56027,18-clt-hp,"entity: A city in Texas, USA is Dallas",34.67882537841797,34.67882537841797,3.467882537841797,0.9, Dallas,10,0.0023038387298583,7,35,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": "" Dallas"", ""index"": 10, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
173
+ 18_56027,18,56027,18-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0023038387298583,7,90,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
174
+ 18_56027,18,56027,18-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0023038387298583,7,143,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
175
+ 18_56027,18,56027,18-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0023038387298583,7,196,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
176
+ 18_56027,18,56027,18-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0023038387298583,7,249,"""Dallas""",Semantic,"Unica attivazione forte su Dallas, che è anche un embedding del prompt di partenza",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
177
+ 21_16875,21,16875,21-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0021759271621704,7,42,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
178
+ 21_16875,21,16875,21-clt-hp,entity: The capital city of Texas is Austin,17.112422943115234,17.112422943115234,1.901380327012804,0.8888888888888888, is,8,0.0021759271621704,7,96,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
179
+ 21_16875,21,16875,21-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0021759271621704,7,148,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
180
+ 21_16875,21,16875,21-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0021759271621704,7,201,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
181
+ 21_16875,21,16875,21-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.0021759271621704,7,254,"Say ""Austin""","Say ""X""",unica attivazione su token funzionale 'is' prima di 'Austin',semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
182
+ 0_37567,0,37567,0-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,11,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
183
+ 0_37567,0,37567,0-clt-hp,entity: The capital city of Texas is Austin,0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,66,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
184
+ 0_37567,0,37567,0-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.0020866394042968,5,117,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
185
+ 0_37567,0,37567,0-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,0.0,0.0,0.0,0.0,attribute,1,0.0020866394042968,5,172,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": ""attribute"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
186
+ 0_37567,0,37567,0-clt-hp,relationship: the state in which a city is located is the state containing,41.10612106323242,41.10612106323242,2.9361515045166016,0.9285714285714286, containing,14,0.0020866394042968,5,217,"""containing""",Semantic,unica attivazione solo su containing,semantic,"[{""token"": "" containing"", ""index"": 14, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Dictionary,1.0,False,
187
+ 7_3144,7,3144,7-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.002021312713623,7,21,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7471177650382277,False,
188
+ 7_3144,7,3144,7-clt-hp,entity: The capital city of Texas is Austin,14.262575149536133,18.0198335647583,2.002203729417589,0.8596183572443643, is,8,0.002021312713623,7,72,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,Semantic,Concept,0.7471177650382277,False,
189
+ 7_3144,7,3144,7-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.002021312713623,7,126,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7471177650382277,False,
190
+ 7_3144,7,3144,7-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,19.09012985229492,91.89447498321532,5.10524861017863,0.73257129995033, seat,9,0.002021312713623,7,178,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": "" seat"", ""index"": 9, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7471177650382277,False,
191
+ 7_3144,7,3144,7-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.002021312713623,7,231,"""seat""",Semantic,"non è una feature sayX: attivazione più debole su token funzionale 'is' prima di 'Austin, presenza di attivazione forte su token semantico Seat",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,Semantic,Concept,0.7471177650382277,False,
192
+ 19_13946,19,13946,19-clt-hp,"entity: A city in Texas, USA is Dallas",0.0,0.0,0.0,0.0,entity,1,0.001940906047821,7,38,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
193
+ 19_13946,19,13946,19-clt-hp,entity: The capital city of Texas is Austin,45.02559280395508,45.02559280395508,5.002843644883898,0.888888888888889, is,8,0.001940906047821,7,91,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" Austin"", ""index"": 9, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
194
+ 19_13946,19,13946,19-clt-hp,entity: A state in the United States is Texas,0.0,0.0,0.0,0.0,entity,1,0.001940906047821,7,144,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""entity"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,
195
+ 19_13946,19,13946,19-clt-hp,attribute: The primary city serving as the seat of government for a state is the capital city,66.8328628540039,118.54381847381592,6.585767692989773,0.901459141330271, the,16,0.001940906047821,7,197,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",functional,"[{""token"": "" capital"", ""index"": 17, ""distance"": 1, ""direction"": ""forward""}]",json,"Say ""X""",,1.0,False,
196
+ 19_13946,19,13946,19-clt-hp,relationship: the state in which a city is located is the state containing,0.0,0.0,0.0,0.0,relationship,1,0.001940906047821,7,250,"Say ""Capital""","Say ""X""","attivazione nettamente più forte su token funzionale 'is' prima di Capital, altra attivazione più lieve su token funzionale 'is' prima di 'Austin' parola semanticante vicina'",semantic,"[{""token"": ""relationship"", ""index"": 1, ""distance"": 0, ""direction"": ""self""}]",n/a,"Say ""X""",,1.0,False,