""" 02_node_grouping.py Pipeline per classificare features in supernodi (Schema/Relationship/Semantic/Say X) e assegnare nomi specifici "supernode_name". Step 1: Preparazione dataset (peak_token_type e target_tokens) Step 2-4: Classificazione e naming (da implementare) Usage: python scripts/02_node_grouping.py --input output/2025-10-21T07-40_export.csv --output output/2025-10-21T07-40_GROUPED.csv """ import argparse import json import re from pathlib import Path from string import punctuation from typing import List, Dict, Tuple, Optional, Any import pandas as pd import numpy as np import requests # ============================================================================ # STEP 1: CONFIGURAZIONE E CLASSIFICAZIONE TOKEN # ============================================================================ # Token blacklist: tokens che non dovrebbero essere usati come label # Fallback al secondo (o successivo) token con max activation se il primo è in blacklist TOKEN_BLACKLIST = { # Aggiungi token da escludere qui (lowercase) # Esempio: 'the', 'a', 'is', '', '' } # Dizionario token funzionali con direzione di ricerca per target_token # forward: cerca il primo token semantico DOPO il peak_token # backward: cerca il primo token semantico PRIMA del peak_token # both: cerca sia prima che dopo (restituisce entrambi se trovati) FUNCTIONAL_TOKEN_MAP = { # Articoli "the": "forward", "a": "forward", "an": "forward", # Preposizioni comuni "of": "forward", "in": "forward", "to": "forward", "for": "forward", "with": "forward", "on": "forward", "at": "forward", "from": "forward", "by": "forward", "about": "forward", "as": "forward", "over": "forward", "under": "forward", "between": "forward", "through": "forward", # Verbi ausiliari e copule "is": "forward", "are": "forward", "was": "forward", "were": "forward", "be": "forward", "been": "forward", "being": "forward", "has": "forward", "have": "forward", "had": "forward", "do": "forward", "does": "forward", "did": "forward", "can": "forward", "could": "forward", "will": "forward", "would": "forward", "should": "forward", "may": "forward", "might": "forward", "must": "forward", # Congiunzioni (guardano in entrambe le direzioni) "and": "both", "or": "both", "but": "both", "if": "forward", "because": "forward", "so": "forward", "than": "forward", "that": "forward", # Pronomi "it": "forward", "its": "forward", "this": "forward", "these": "forward", "those": "forward", "which": "forward", "who": "forward", "whom": "forward", "whose": "forward", "where": "forward", "when": "forward", } def is_punctuation(token: str) -> bool: """Verifica se un token è solo punteggiatura.""" token_clean = str(token).strip() return token_clean != "" and all(ch in punctuation for ch in token_clean) def is_function_like(token: str) -> bool: """ Euristica per token funzionali non nel dizionario: - lunghezza <= 3 caratteri - tutto lowercase - non numeri - non acronimi uppercase (es. USA, UK) """ token_stripped = str(token).strip() token_clean = token_stripped.lower() if len(token_clean) == 0 or len(token_clean) > 3: return False if token_clean.isdigit(): return False # Escludi acronimi uppercase (USA, UK, etc.) if token_stripped.isupper() and len(token_stripped) >= 2: return False return token_clean.isalpha() def classify_peak_token(token: str) -> str: """ Classifica un peak_token come 'functional' o 'semantic'. functional: punteggiatura, token nel dizionario, o token function-like semantic: tutto il resto """ token_clean = str(token).strip() token_lower = token_clean.lower() # Punteggiatura → functional if is_punctuation(token_clean): return "functional" # Nel dizionario → functional if token_lower in FUNCTIONAL_TOKEN_MAP: return "functional" # Euristica function-like → functional if is_function_like(token_clean): return "functional" # Default: semantic return "semantic" def get_direction_for_functional(token: str) -> str: """ Restituisce la direzione di ricerca per un token funzionale. Returns: "forward", "backward", "both", o "both" (default per punteggiatura) """ token_lower = str(token).strip().lower() # Se nel dizionario, usa la direzione specificata if token_lower in FUNCTIONAL_TOKEN_MAP: return FUNCTIONAL_TOKEN_MAP[token_lower] # Punteggiatura: guarda in entrambe le direzioni if is_punctuation(token): return "both" # Default: forward return "forward" def tokenize_prompt_fallback(prompt: str) -> List[str]: """ Tokenizzazione fallback word+punct quando tokens JSON non disponibili. Pattern: cattura parole (lettere, numeri, trattini) e punteggiatura separatamente. """ return re.findall(r"[A-Za-zÀ-ÖØ-öø-ÿ0-9\-]+|[^\sA-Za-zÀ-ÖØ-öø-ÿ0-9]", prompt) def find_target_tokens( tokens: List[str], peak_idx: int, direction: str, window: int = 7 ) -> List[Dict[str, Any]]: """ Cerca i target_tokens (primi token semantici) in una o più direzioni. Args: tokens: lista di token del prompt peak_idx: indice del peak_token (0-based, BOS già escluso se necessario) direction: "forward", "backward", o "both" window: finestra massima di ricerca Returns: Lista di dict con chiavi: token, index, distance, direction Lista vuota se nessun target trovato """ targets = [] def search_direction(start_idx: int, step: int, dir_name: str) -> Optional[Dict[str, Any]]: """Helper per cercare in una direzione.""" for distance in range(1, window + 1): idx = start_idx + (distance * step) if idx < 0 or idx >= len(tokens): break candidate = tokens[idx] candidate_type = classify_peak_token(candidate) if candidate_type == "semantic": return { "token": candidate, "index": idx, "distance": distance, "direction": dir_name } return None # Cerca in base alla direzione if direction in ("forward", "both"): target_fwd = search_direction(peak_idx, 1, "forward") if target_fwd: targets.append(target_fwd) if direction in ("backward", "both"): target_bwd = search_direction(peak_idx, -1, "backward") if target_bwd: targets.append(target_bwd) return targets def prepare_dataset( df: pd.DataFrame, tokens_json: Optional[Dict[str, Any]] = None, window: int = 7, verbose: bool = True ) -> pd.DataFrame: """ Step 1: Arricchisce il dataframe con peak_token_type e target_tokens. Args: df: DataFrame con colonne: feature_key, prompt, peak_token, peak_token_idx tokens_json: Opzionale, JSON con attivazioni (per accedere a tokens array) window: Finestra di ricerca per target_tokens verbose: Stampa info di debug Returns: DataFrame arricchito con colonne: - peak_token_type: "functional" o "semantic" - target_tokens: lista JSON di dict con token, index, distance, direction - tokens_source: "json" o "fallback" """ df = df.copy() # Prepara lookup tokens dal JSON (se disponibile) tokens_lookup = {} if tokens_json and "results" in tokens_json: for result in tokens_json["results"]: prompt = result.get("prompt", "") tokens = result.get("tokens", []) if prompt and tokens: tokens_lookup[prompt] = tokens # Nuove colonne df["peak_token_type"] = "" df["target_tokens"] = "" df["tokens_source"] = "" for idx, row in df.iterrows(): peak_token = row["peak_token"] peak_idx = int(row["peak_token_idx"]) if pd.notna(row["peak_token_idx"]) else None prompt = row["prompt"] # Classifica peak_token peak_type = classify_peak_token(peak_token) df.at[idx, "peak_token_type"] = peak_type # Se semantic, target_token = peak_token stesso if peak_type == "semantic": targets = [{ "token": peak_token, "index": peak_idx, "distance": 0, "direction": "self" }] df.at[idx, "target_tokens"] = json.dumps(targets) df.at[idx, "tokens_source"] = "n/a" continue # Se functional, cerca target_tokens # 1. Prova con tokens dal JSON tokens = tokens_lookup.get(prompt) tokens_source = "json" # 2. Fallback: tokenizza il prompt if not tokens: tokens = tokenize_prompt_fallback(prompt) tokens_source = "fallback" df.at[idx, "tokens_source"] = tokens_source # Determina direzione di ricerca direction = get_direction_for_functional(peak_token) # Aggiusta l'indice se usiamo tokenizzazione fallback # Il CSV ha peak_token_idx che esclude BOS (1-based rispetto al JSON originale) # Ma il prompt non ha BOS, quindi dobbiamo sottrarre 1 adjusted_idx = peak_idx if tokens_source == "fallback" and peak_idx is not None and peak_idx > 0: adjusted_idx = peak_idx - 1 # Cerca target_tokens if adjusted_idx is not None and 0 <= adjusted_idx < len(tokens): targets = find_target_tokens(tokens, adjusted_idx, direction, window) else: targets = [] df.at[idx, "target_tokens"] = json.dumps(targets) if targets else "[]" if verbose: n_functional = (df["peak_token_type"] == "functional").sum() n_semantic = (df["peak_token_type"] == "semantic").sum() n_json = (df["tokens_source"] == "json").sum() n_fallback = (df["tokens_source"] == "fallback").sum() print(f"\n=== Step 1: Preparazione Dataset ===") print(f"Peak token types:") print(f" - functional: {n_functional} ({n_functional/len(df)*100:.1f}%)") print(f" - semantic: {n_semantic} ({n_semantic/len(df)*100:.1f}%)") print(f"\nTokens source:") print(f" - json: {n_json}") print(f" - fallback: {n_fallback}") print(f" - n/a: {len(df) - n_json - n_fallback}") # Conta target_tokens vuoti (Say ? candidati) df["_n_targets"] = df["target_tokens"].apply(lambda x: len(json.loads(x)) if x else 0) n_no_target = ((df["peak_token_type"] == "functional") & (df["_n_targets"] == 0)).sum() if n_no_target > 0: print(f"\nWARNING: {n_no_target} functional tokens senza target (-> Say (?) candidati)") df.drop(columns=["_n_targets"], inplace=True) return df # ============================================================================ # STEP 2: CLASSIFICAZIONE NODI (AGGREGAZIONE + DECISION TREE) # ============================================================================ # Soglie standard (parametriche) DEFAULT_THRESHOLDS = { # Dictionary Semantic "dict_peak_consistency_min": 0.8, "dict_n_distinct_peaks_max": 1, # Say X "sayx_func_vs_sem_min": 50.0, "sayx_conf_f_min": 0.90, "sayx_layer_min": 7, # Relationship "rel_sparsity_max": 0.45, # Semantic (concept) "sem_layer_max": 3, "sem_conf_s_min": 0.50, "sem_func_vs_sem_max": 50.0, } def calculate_peak_consistency(group_df: pd.DataFrame) -> Dict[str, Any]: """ Calcola peak_consistency per una feature (group by feature_key). Metrica: "Quando il token X appare nel prompt, e' SEMPRE il peak_token?" Args: group_df: DataFrame con righe per una singola feature Returns: dict con: - peak_consistency_main: consistency del token piu' frequente come peak - n_distinct_peaks: numero di token distinti come peak - main_peak_token: token piu' frequente come peak """ # Dizionario: token -> {as_peak: count, in_prompt: count} token_stats = {} for _, row in group_df.iterrows(): peak_token = str(row['peak_token']).strip().lower() # Conta questo token come peak if peak_token not in token_stats: token_stats[peak_token] = {'as_peak': 0, 'in_prompt': 0} token_stats[peak_token]['as_peak'] += 1 # Conta occorrenze nel prompt # Preferisci tokens JSON, fallback su prompt text if 'tokens' in row and pd.notna(row['tokens']): try: tokens = json.loads(row['tokens']) tokens_lower = [str(t).strip().lower() for t in tokens] except: tokens_lower = str(row['prompt']).lower().replace(',', ' , ').replace('.', ' . ').split() else: tokens_lower = str(row['prompt']).lower().replace(',', ' , ').replace('.', ' . ').split() # Conta occorrenze di ogni token for token in set(tokens_lower): if token not in token_stats: token_stats[token] = {'as_peak': 0, 'in_prompt': 0} token_stats[token]['in_prompt'] += tokens_lower.count(token) # Calcola consistency per ogni token token_consistencies = {} for token, stats in token_stats.items(): if stats['in_prompt'] > 0: consistency = stats['as_peak'] / stats['in_prompt'] token_consistencies[token] = { 'consistency': consistency, 'as_peak': stats['as_peak'], 'in_prompt': stats['in_prompt'] } # Trova token piu' frequente come peak if token_consistencies: most_frequent_peak = max(token_consistencies.items(), key=lambda x: x[1]['as_peak']) main_peak_consistency = most_frequent_peak[1]['consistency'] main_peak_token = most_frequent_peak[0] else: main_peak_consistency = 0.0 main_peak_token = None # Numero di token distinti come peak n_distinct_peaks = len([t for t, s in token_consistencies.items() if s['as_peak'] > 0]) return { 'peak_consistency_main': main_peak_consistency, 'n_distinct_peaks': n_distinct_peaks, 'main_peak_token': main_peak_token } def aggregate_feature_metrics(df: pd.DataFrame) -> pd.DataFrame: """ Aggrega metriche per feature_key per la classificazione. Args: df: DataFrame con righe per feature×prompt Returns: DataFrame con una riga per feature e colonne: - feature_key, layer - peak_consistency_main, n_distinct_peaks, main_peak_token - func_vs_sem_pct, conf_F, conf_S - sparsity_median, K_sem_distinct - n_active_prompts """ feature_stats = [] for feature_key, group in df.groupby('feature_key'): layer = int(group['layer'].iloc[0]) # Peak consistency consistency_metrics = calculate_peak_consistency(group) # Conta peak funzionali vs semantici (SOLO per prompt attivi, activation_max > 0) g_active = group[group['activation_max'] > 0] n_functional_peaks = (g_active['peak_token_type'] == 'functional').sum() n_semantic_peaks = (g_active['peak_token_type'] == 'semantic').sum() n_total_peaks = len(g_active) share_F = n_functional_peaks / n_total_peaks if n_total_peaks > 0 else 0.0 # Bootstrap confidence (semplificato: usa share come proxy) conf_F = share_F conf_S = 1.0 - share_F # func_vs_sem_pct: differenza tra max activation su functional vs semantic # (SOLO per prompt attivi, activation_max > 0) g_func = g_active[g_active['peak_token_type'] == 'functional'] g_sem = g_active[g_active['peak_token_type'] == 'semantic'] if len(g_func) > 0 and len(g_sem) > 0: max_act_func = float(g_func['activation_max'].max()) max_act_sem = float(g_sem['activation_max'].max()) max_val = max(max_act_func, max_act_sem) if max_val > 0: func_vs_sem_pct = 100.0 * (max_act_func - max_act_sem) / max_val else: func_vs_sem_pct = 0.0 elif len(g_func) > 0: func_vs_sem_pct = 100.0 elif len(g_sem) > 0: func_vs_sem_pct = -100.0 else: func_vs_sem_pct = 0.0 # Sparsity: calcola solo per prompt attivi (activation > 0) n_active_prompts = len(g_active) if n_active_prompts > 0 and 'sparsity_ratio' in group.columns: sparsity_median = float(g_active['sparsity_ratio'].median()) else: sparsity_median = 0.0 # K_sem_distinct: numero di token semantici distinti sem_tokens = group[group['peak_token_type'] == 'semantic']['peak_token'].astype(str).tolist() K_sem_distinct = len(set([t.strip().lower() for t in sem_tokens])) feature_stats.append({ 'feature_key': feature_key, 'layer': layer, 'peak_consistency_main': consistency_metrics['peak_consistency_main'], 'n_distinct_peaks': consistency_metrics['n_distinct_peaks'], 'main_peak_token': consistency_metrics['main_peak_token'], 'func_vs_sem_pct': func_vs_sem_pct, 'conf_F': conf_F, 'conf_S': conf_S, 'share_F': share_F, 'sparsity_median': sparsity_median, 'K_sem_distinct': K_sem_distinct, 'n_active_prompts': n_active_prompts, 'n_prompts': len(group), }) return pd.DataFrame(feature_stats) def classify_node( metrics: Dict[str, Any], thresholds: Optional[Dict[str, float]] = None ) -> Dict[str, Any]: """ Classifica un nodo basandosi su metriche aggregate. Albero decisionale V4 Final con peak_consistency: 1. IF peak_consistency >= 0.8 AND n_distinct_peaks <= 1 -> Semantic (Dictionary) 2. ELSE IF func_vs_sem_pct >= 50 AND conf_F >= 0.90 AND layer >= 7 -> Say "X" 3. ELSE IF sparsity_median < 0.45 -> Relationship 4. ELSE IF layer <= 3 OR conf_S >= 0.50 OR func_vs_sem_pct < 50 -> Semantic (Concept) 5. ELSE -> Review Args: metrics: dict con metriche aggregate per una feature thresholds: dict con soglie (usa DEFAULT_THRESHOLDS se None) Returns: dict con: - pred_label: "Semantic", "Say \"X\"", "Relationship" - subtype: "Dictionary", "Concept", None - confidence: float - review: bool - why_review: str """ if thresholds is None: thresholds = DEFAULT_THRESHOLDS peak_cons = metrics.get('peak_consistency_main', 0.0) n_peaks = metrics.get('n_distinct_peaks', 0) func_vs_sem = metrics.get('func_vs_sem_pct', 0.0) conf_F = metrics.get('conf_F', 0.0) conf_S = metrics.get('conf_S', 0.0) sparsity = metrics.get('sparsity_median', 0.0) layer = metrics.get('layer', 0) # Regola 1: Dictionary Semantic (priorita' massima) if (peak_cons >= thresholds['dict_peak_consistency_min'] and n_peaks <= thresholds['dict_n_distinct_peaks_max']): return { 'pred_label': 'Semantic', 'subtype': 'Dictionary', 'confidence': peak_cons, 'review': False, 'why_review': '' } # Regola 2: Say "X" if (func_vs_sem >= thresholds['sayx_func_vs_sem_min'] and conf_F >= thresholds['sayx_conf_f_min'] and layer >= thresholds['sayx_layer_min']): return { 'pred_label': 'Say "X"', 'subtype': None, 'confidence': conf_F, 'review': False, 'why_review': '' } # Regola 3: Relationship if sparsity < thresholds['rel_sparsity_max']: return { 'pred_label': 'Relationship', 'subtype': None, 'confidence': 1.0, 'review': False, 'why_review': '' } # Regola 4: Semantic (concept / altri) if (layer <= thresholds['sem_layer_max'] or conf_S >= thresholds['sem_conf_s_min'] or func_vs_sem < thresholds['sem_func_vs_sem_max']): # Calcola confidence if layer <= thresholds['sem_layer_max']: confidence = 0.9 # Alta per layer basso (fallback) subtype = 'Dictionary (fallback)' elif func_vs_sem < thresholds['sem_func_vs_sem_max']: confidence = max(0.7, 1.0 - abs(func_vs_sem) / 100) subtype = 'Concept' else: confidence = conf_S subtype = 'Concept' return { 'pred_label': 'Semantic', 'subtype': subtype, 'confidence': confidence, 'review': False, 'why_review': '' } # Regola 5: Review return { 'pred_label': 'Semantic', # Default conservativo 'subtype': 'Ambiguous', 'confidence': 0.3, 'review': True, 'why_review': f"Ambiguous: peak_cons={peak_cons:.2f}, n_peaks={n_peaks}, func_vs_sem={func_vs_sem:.1f}%, layer={layer}" } def classify_nodes( df: pd.DataFrame, thresholds: Optional[Dict[str, float]] = None, verbose: bool = True ) -> pd.DataFrame: """ Step 2: Classifica tutti i nodi nel dataframe. Args: df: DataFrame preparato con Step 1 thresholds: dict con soglie (usa DEFAULT_THRESHOLDS se None) verbose: stampa info Returns: DataFrame con colonne aggiuntive: - pred_label, subtype, confidence, review, why_review """ if thresholds is None: thresholds = DEFAULT_THRESHOLDS # Aggrega metriche per feature if verbose: print(f"\n=== Step 2: Classificazione Nodi ===") print(f"Aggregazione metriche per {df['feature_key'].nunique()} feature...") feature_metrics_df = aggregate_feature_metrics(df) # Classifica ogni feature classifications = [] for _, row in feature_metrics_df.iterrows(): metrics = row.to_dict() result = classify_node(metrics, thresholds) result['feature_key'] = row['feature_key'] classifications.append(result) classifications_df = pd.DataFrame(classifications) # Merge con il dataframe originale df_classified = df.merge( classifications_df[['feature_key', 'pred_label', 'subtype', 'confidence', 'review', 'why_review']], on='feature_key', how='left' ) if verbose: # Statistiche label_counts = classifications_df['pred_label'].value_counts() print(f"\nClassificazione completata:") for label, count in label_counts.items(): pct = 100 * count / len(classifications_df) print(f" - {label:15s}: {count:3d} ({pct:5.1f}%)") n_review = classifications_df['review'].sum() if n_review > 0: print(f"\nWARNING: {n_review} feature richiedono review") review_features = classifications_df[classifications_df['review']]['feature_key'].tolist() print(f" Feature keys: {review_features[:5]}{'...' if len(review_features) > 5 else ''}") return df_classified # ============================================================================ # STEP 3: NAMING SUPERNODI # ============================================================================ def normalize_token_for_naming(token: str, all_occurrences: List[str]) -> str: """ Normalizza un token per il naming mantenendo maiuscola se presente. Args: token: token da normalizzare all_occurrences: tutte le occorrenze di questo token nel dataset Returns: token normalizzato """ # Strip whitespace token = str(token).strip() # Rimuovi punteggiatura trailing token = token.rstrip(punctuation) # Se vuoto, return if not token: return token # Controlla se esiste almeno un'occorrenza con prima lettera maiuscola has_uppercase = any( occ.strip() and occ.strip()[0].isupper() for occ in all_occurrences if occ.strip() ) if has_uppercase: # Mantieni la prima occorrenza con maiuscola for occ in all_occurrences: occ_clean = occ.strip() if occ_clean and occ_clean[0].isupper(): return occ_clean.rstrip(punctuation) # Altrimenti lowercase return token.lower() def get_top_activations_original( activations_by_prompt: Optional[Dict], feature_key: str, semantic_tokens_list: Optional[List[str]] ) -> List[Dict[str, Any]]: """ Estrae le top attivazioni sui token semantici ammessi. Args: activations_by_prompt: Dict con attivazioni per ogni probe prompt feature_key: Chiave della feature (es. "1_12928") semantic_tokens_list: Lista di token semantici ammessi (già lowercase) Returns: Lista di dict con {"tk": token, "act": activation}, ordinata per activation desc """ if not (activations_by_prompt and feature_key and semantic_tokens_list): return [] # semantic_tokens_list è già una lista di token lowercase semantic_tokens_original = semantic_tokens_list # Raccogli tutte le attivazioni sui token semantici originali token_activations = {} # {token_lower: max_activation} token_display = {} # {token_lower: token_originale_con_case} for prompt_text, prompt_data in activations_by_prompt.items(): probe_tokens = prompt_data.get('tokens', []) activations_dict = prompt_data.get('activations', {}) # Prendi i values per questa feature values = activations_dict.get(feature_key, []) if not values: continue for idx, probe_token in enumerate(probe_tokens): if idx >= len(values): continue probe_token_lower = probe_token.strip().lower() # Verifica se questo token è tra i semantici originali if probe_token_lower in semantic_tokens_original: activation = values[idx] # Mantieni il max per ogni token if probe_token_lower not in token_activations or activation > token_activations[probe_token_lower]: token_activations[probe_token_lower] = activation token_display[probe_token_lower] = probe_token.strip() # Converti in lista ordinata per activation desc result = [] for token_lower in sorted(token_activations.keys(), key=lambda t: token_activations[t], reverse=True): result.append({ "tk": token_display[token_lower], "act": float(token_activations[token_lower]) }) return result def name_relationship_node( feature_key: str, feature_records: pd.DataFrame, activations_by_prompt: Optional[Dict] = None, semantic_tokens_list: Optional[List[str]] = None, blacklist_tokens: Optional[set] = None ) -> str: """ Naming per nodi Relationship: "(X) related" dove X è il token semantico ammesso con max attivazione su TUTTI i probe prompts. Args: feature_key: chiave della feature (es. "1_12928") feature_records: DataFrame con tutti i record per questa feature activations_by_prompt: Dict con attivazioni per ogni probe prompt semantic_tokens_list: Lista di token semantici ammessi (prompt originale + Semantic labels) blacklist_tokens: Set di token da escludere (lowercase), fallback a successivo token Returns: supernode_name: str (es. "(capital) related") """ if blacklist_tokens is None: blacklist_tokens = TOKEN_BLACKLIST # Trova record con activation_max massima (per fallback) max_record = feature_records.loc[feature_records['activation_max'].idxmax()] # Se abbiamo tutto il necessario if (activations_by_prompt and feature_key and semantic_tokens_list): # semantic_tokens_list è già una lista di token lowercase semantic_tokens_original = semantic_tokens_list # Cerca questi token in TUTTI i probe prompts e trova quello con max activation # Ordina per activation decrescente per permettere fallback token_activations = [] # Lista di (activation, token) for prompt_text, prompt_data in activations_by_prompt.items(): probe_tokens = prompt_data.get('tokens', []) activations_dict = prompt_data.get('activations', {}) # Prendi i values per questa feature values = activations_dict.get(feature_key, []) if not values: continue # Cerca token semantici originali in questo probe prompt for idx, probe_token in enumerate(probe_tokens): if idx >= len(values): continue probe_token_lower = probe_token.strip().lower() # Verifica se questo token del probe è tra i semantici originali if probe_token_lower in semantic_tokens_original: activation = values[idx] token_activations.append((activation, probe_token)) # Ordina per activation decrescente e trova primo non in blacklist token_activations.sort(reverse=True, key=lambda x: x[0]) best_token = None for activation, token in token_activations: token_lower = token.strip().lower() if token_lower not in blacklist_tokens: best_token = token break if best_token: # Normalizza (mantieni maiuscola se presente) all_occurrences = [best_token] x = normalize_token_for_naming(best_token, all_occurrences) return f"({x}) related" # Fallback 1: Se abbiamo attivazioni ma non tokens originali, # usa token semantico qualsiasi con max activation su tutti i probe prompts if activations_by_prompt and feature_key: token_activations = [] # Lista di (activation, token) for prompt_text, prompt_data in activations_by_prompt.items(): probe_tokens = prompt_data.get('tokens', []) activations_dict = prompt_data.get('activations', {}) values = activations_dict.get(feature_key, []) if not values: continue for idx, token in enumerate(probe_tokens): if idx >= len(values): continue if token.strip() in ['', '', '', '']: continue if classify_peak_token(token) == "semantic": activation = values[idx] token_activations.append((activation, token)) # Ordina per activation decrescente e trova primo non in blacklist token_activations.sort(reverse=True, key=lambda x: x[0]) best_token = None for activation, token in token_activations: token_lower = token.strip().lower() if token_lower not in blacklist_tokens: best_token = token break if best_token: all_occurrences = [best_token] x = normalize_token_for_naming(best_token, all_occurrences) return f"({x}) related" # Fallback 2: Token qualsiasi con max activation token_activations = [] for prompt_text, prompt_data in activations_by_prompt.items(): probe_tokens = prompt_data.get('tokens', []) activations_dict = prompt_data.get('activations', {}) values = activations_dict.get(feature_key, []) if not values: continue for idx, token in enumerate(probe_tokens): if idx >= len(values): continue if token.strip() not in ['', '', '', '']: activation = values[idx] token_activations.append((activation, token)) # Ordina per activation decrescente e trova primo non in blacklist token_activations.sort(reverse=True, key=lambda x: x[0]) best_token = None for activation, token in token_activations: token_lower = token.strip().lower() if token_lower not in blacklist_tokens: best_token = token break if best_token: all_occurrences = [best_token] x = normalize_token_for_naming(best_token, all_occurrences) return f"({x}) related" # Fallback finale: usa peak_token del record con max activation peak_token = str(max_record['peak_token']).strip() all_occurrences = feature_records['peak_token'].astype(str).tolist() x = normalize_token_for_naming(peak_token, all_occurrences) return f"({x}) related" def name_semantic_node( feature_key: str, feature_records: pd.DataFrame, graph_json_path: Optional[str] = None, blacklist_tokens: Optional[set] = None ) -> str: """ Naming per nodi Semantic: peak_token SEMANTICO con max activation. Se tutti i peak sono funzionali, usa il token dal Graph JSON alla posizione csv_ctx_idx. Args: feature_key: chiave della feature feature_records: DataFrame con tutti i record per questa feature graph_json_path: Path opzionale al Graph JSON (per csv_ctx_idx fallback) blacklist_tokens: Set di token da escludere (lowercase), fallback a successivo token Returns: supernode_name: str (es. "Texas", "city", "punctuation") """ if blacklist_tokens is None: blacklist_tokens = TOKEN_BLACKLIST # Filtra solo peak_token semantici E activation_max > 0 (prompt attivi) semantic_records = feature_records[ (feature_records['peak_token_type'] == 'semantic') & (feature_records['activation_max'] > 0) ] # Se non ci sono peak semantici attivi, usa csv_ctx_idx dal Graph JSON if len(semantic_records) == 0: if 'csv_ctx_idx' in feature_records.columns and graph_json_path: csv_ctx_idx = feature_records.iloc[0].get('csv_ctx_idx') if pd.notna(csv_ctx_idx) and graph_json_path: try: with open(graph_json_path, 'r', encoding='utf-8') as f: graph_json = json.load(f) prompt_tokens = graph_json.get('metadata', {}).get('prompt_tokens', []) csv_ctx_idx_int = int(csv_ctx_idx) if 0 <= csv_ctx_idx_int < len(prompt_tokens): token_from_graph = prompt_tokens[csv_ctx_idx_int] # Normalizza all_occurrences = [token_from_graph] return normalize_token_for_naming(token_from_graph, all_occurrences) except Exception as e: # Se fallisce, continua con la logica normale pass # Se csv_ctx_idx fallisce, usa tutti i record attivi (semantici E funzionali) semantic_records = feature_records[feature_records['activation_max'] > 0] # Se ancora nessuno (tutti inattivi), usa tutti i record if len(semantic_records) == 0: semantic_records = feature_records # Ordina per activation_max decrescente per permettere fallback semantic_records_sorted = semantic_records.sort_values('activation_max', ascending=False) # Trova primo token non in blacklist peak_token = None max_record = None for idx, record in semantic_records_sorted.iterrows(): candidate_token = str(record['peak_token']).strip() candidate_lower = candidate_token.lower() # Skip se in blacklist if candidate_lower in blacklist_tokens: continue # Primo token valido trovato peak_token = candidate_token max_record = record break # Casi edge: nessun token valido trovato (tutti in blacklist o vuoti) if not peak_token or peak_token == 'nan' or max_record is None: return "Semantic (unknown)" if is_punctuation(peak_token): return "punctuation" # Normalizza: mantieni maiuscola se presente # Raccogli solo le occorrenze di QUESTO specifico token (case-insensitive match) peak_token_lower = peak_token.lower() all_occurrences = [ str(t) for t in feature_records['peak_token'].astype(str).tolist() if str(t).strip().lower() == peak_token_lower ] # Se nessuna occorrenza trovata (edge case), usa il token stesso if not all_occurrences: all_occurrences = [peak_token] return normalize_token_for_naming(peak_token, all_occurrences) def name_sayx_node( feature_key: str, feature_records: pd.DataFrame, blacklist_tokens: Optional[set] = None ) -> str: """ Naming per nodi Say "X": "Say (X)" dove X è il target_token con max activation. Args: feature_key: chiave della feature feature_records: DataFrame con tutti i record per questa feature blacklist_tokens: Set di token da escludere (lowercase), fallback a successivo token Returns: supernode_name: str (es. "Say (Austin)", "Say (?)") """ if blacklist_tokens is None: blacklist_tokens = TOKEN_BLACKLIST # Ordina per activation_max decrescente per permettere fallback feature_records_sorted = feature_records.sort_values('activation_max', ascending=False) # Prova ogni record (ordinato per activation desc) finché non trovi target valido non in blacklist for _, max_record in feature_records_sorted.iterrows(): # Estrai target_tokens target_tokens_json = max_record.get('target_tokens', '[]') try: target_tokens = json.loads(target_tokens_json) except: target_tokens = [] # Nessun target, prova prossimo record if not target_tokens: continue # Un solo target if len(target_tokens) == 1: x_raw = str(target_tokens[0].get('token', '?')) x_raw_lower = x_raw.strip().lower() # Skip se in blacklist if x_raw_lower in blacklist_tokens: continue # Token valido trovato # Raccogli solo le occorrenze di QUESTO specifico token (case-insensitive) all_x_occurrences = [] for _, row in feature_records.iterrows(): try: row_targets = json.loads(row.get('target_tokens', '[]')) for t in row_targets: token_str = str(t.get('token', '')) if token_str.strip().lower() == x_raw_lower: all_x_occurrences.append(token_str) except: pass # Se nessuna occorrenza trovata, usa il token stesso if not all_x_occurrences: all_x_occurrences = [x_raw] x = normalize_token_for_naming(x_raw, all_x_occurrences) return f"Say ({x})" # Multipli target: tie-break per distance, poi preferisci BACKWARD (contesto) def sort_key(t): distance = t.get('distance', 999) direction = t.get('direction', '') # Backward ha priorità (0), forward (1) dir_priority = 0 if direction == 'backward' else 1 return (distance, dir_priority) sorted_targets = sorted(target_tokens, key=sort_key) # Prova i target ordinati finché non trovi uno non in blacklist for target in sorted_targets: x_raw = str(target.get('token', '?')) x_raw_lower = x_raw.strip().lower() # Skip se in blacklist if x_raw_lower in blacklist_tokens: continue # Token valido trovato # Raccogli solo le occorrenze di QUESTO specifico token (case-insensitive) all_x_occurrences = [] for _, row in feature_records.iterrows(): try: row_targets = json.loads(row.get('target_tokens', '[]')) for t in row_targets: token_str = str(t.get('token', '')) if token_str.strip().lower() == x_raw_lower: all_x_occurrences.append(token_str) except: pass # Se nessuna occorrenza trovata, usa il token stesso if not all_x_occurrences: all_x_occurrences = [x_raw] x = normalize_token_for_naming(x_raw, all_x_occurrences) return f"Say ({x})" # Nessun target valido trovato (tutti in blacklist o vuoti) return "Say (?)" def name_nodes( df: pd.DataFrame, activations_json_path: Optional[str] = None, graph_json_path: Optional[str] = None, blacklist_tokens: Optional[set] = None, verbose: bool = True ) -> pd.DataFrame: """ Step 3: Assegna supernode_name a tutte le feature. Args: df: DataFrame classificato (con pred_label, subtype) activations_json_path: Path al JSON delle attivazioni (per Relationship) graph_json_path: Path al Graph JSON (per Semantic con csv_ctx_idx fallback) blacklist_tokens: Set di token da escludere (lowercase), fallback a successivo token verbose: stampa info Returns: DataFrame con colonna supernode_name """ if blacklist_tokens is None: blacklist_tokens = TOKEN_BLACKLIST df = df.copy() df['supernode_name'] = '' df['top_activations_probe_original'] = '' if verbose: print(f"\n=== Step 3: Naming Supernodi ===") # Carica JSON attivazioni se disponibile activations_by_prompt = {} if activations_json_path: try: with open(activations_json_path, 'r', encoding='utf-8') as f: activations_json = json.load(f) # Indicizza per prompt text # Usa 'activations' invece di 'counts' per avere i valori corretti for result in activations_json.get('results', []): prompt_text = result.get('prompt', '') tokens = result.get('tokens', []) activations_list = result.get('activations', []) # Crea dict {feature_key: values} per questo prompt activations_dict = {} for act in activations_list: source = act.get('source', '') index = act.get('index', 0) feature_key = f"{source.split('-')[0]}_{index}" # es. "1-clt-hp" -> "1_12928" activations_dict[feature_key] = act.get('values', []) activations_by_prompt[prompt_text] = { 'tokens': tokens, 'activations': activations_dict # {feature_key: [values]} } if verbose: print(f" JSON attivazioni caricato: {len(activations_by_prompt)} prompt") except Exception as e: if verbose: print(f" WARNING: Impossibile caricare JSON attivazioni: {e}") activations_by_prompt = {} # Carica Graph JSON per tokens originali (per Relationship naming) graph_tokens_original = None if graph_json_path: try: with open(graph_json_path, 'r', encoding='utf-8') as f: graph_json = json.load(f) graph_tokens_original = graph_json.get('metadata', {}).get('prompt_tokens', []) if verbose: print(f" Graph JSON caricato: {len(graph_tokens_original)} tokens originali") except Exception as e: if verbose: print(f" WARNING: Impossibile caricare Graph JSON: {e}") graph_tokens_original = None # Aggrega per feature_key # FASE 1: Naming per Semantic e Say X for feature_key, group in df.groupby('feature_key'): pred_label = group['pred_label'].iloc[0] if pred_label == "Semantic": name = name_semantic_node(feature_key, group, graph_json_path, blacklist_tokens) df.loc[df['feature_key'] == feature_key, 'supernode_name'] = name elif pred_label == 'Say "X"': name = name_sayx_node(feature_key, group, blacklist_tokens) df.loc[df['feature_key'] == feature_key, 'supernode_name'] = name # FASE 2: Raccogli token semantici dai nomi Semantic per Relationship semantic_labels = set() for feature_key, group in df.groupby('feature_key'): pred_label = group['pred_label'].iloc[0] if pred_label == "Semantic": supernode_name = group['supernode_name'].iloc[0] if supernode_name and supernode_name not in ['Semantic (unknown)', 'punctuation']: # Normalizza: lowercase e strip semantic_labels.add(supernode_name.strip().lower()) # Combina con token originali (evita duplicati) if graph_tokens_original: for token in graph_tokens_original: if token.strip() not in ['', '', '', '']: if classify_peak_token(token) == "semantic": semantic_labels.add(token.strip().lower()) # Converti in lista per passare alle funzioni extended_semantic_tokens = list(semantic_labels) if semantic_labels else None if verbose and extended_semantic_tokens: print(f" Token semantici estesi (originali + Semantic labels): {len(extended_semantic_tokens)}") # FASE 3: Naming per Relationship (usa token estesi) for feature_key, group in df.groupby('feature_key'): pred_label = group['pred_label'].iloc[0] if pred_label == "Relationship": # Per Relationship, usa token semantici estesi name = name_relationship_node( feature_key, group, activations_by_prompt, extended_semantic_tokens, # ← Token estesi invece di graph_tokens_original blacklist_tokens ) df.loc[df['feature_key'] == feature_key, 'supernode_name'] = name elif pred_label not in ["Semantic", 'Say "X"']: # Fallback per altre classi (se esistono) df.loc[df['feature_key'] == feature_key, 'supernode_name'] = pred_label # FASE 4: Calcola top_activations_probe_original (dopo aver calcolato tutti i nomi) for feature_key, group in df.groupby('feature_key'): top_activations = get_top_activations_original( activations_by_prompt, feature_key, extended_semantic_tokens # ← Usa token estesi ) top_activations_json = json.dumps(top_activations) if top_activations else "[]" df.loc[df['feature_key'] == feature_key, 'top_activations_probe_original'] = top_activations_json if verbose: # Statistiche n_features = df['feature_key'].nunique() n_unique_names = df.groupby('feature_key')['supernode_name'].first().nunique() print(f"Naming completato:") print(f" - {n_features} feature") print(f" - {n_unique_names} nomi unici") # Conta per tipo name_counts = df.groupby('feature_key').agg({ 'pred_label': 'first', 'supernode_name': 'first' })['pred_label'].value_counts() print(f"\nNomi per classe:") for label, count in name_counts.items(): print(f" - {label:15s}: {count:3d}") # Mostra alcuni esempi print(f"\nEsempi:") for label in ['Relationship', 'Semantic', 'Say "X"']: examples = df[df['pred_label'] == label].groupby('feature_key')['supernode_name'].first().head(3) if len(examples) > 0: print(f" {label}:") for name in examples: print(f" - {name}") return df # ============================================================================ # STEP 4: UPLOAD SUBGRAFO SU NEURONPEDIA # ============================================================================ def upload_subgraph_to_neuronpedia( df_grouped: pd.DataFrame, graph_json_path: str, api_key: str, display_name: Optional[str] = None, overwrite_id: Optional[str] = None, selected_nodes_data: Optional[Dict[str, Any]] = None, verbose: bool = True ) -> Dict[str, Any]: """ Carica il subgrafo con supernodes su Neuronpedia. Args: df_grouped: DataFrame con supernode_name (output di name_nodes) graph_json_path: Path al Graph JSON originale api_key: API key di Neuronpedia display_name: Nome display per il subgrafo (opzionale) overwrite_id: ID del subgrafo da sovrascrivere (opzionale) verbose: Stampa info Returns: Response JSON da Neuronpedia API """ if verbose: print(f"\n=== Upload Subgrafo su Neuronpedia ===") # Carica Graph JSON per metadata try: with open(graph_json_path, 'r', encoding='utf-8') as f: graph_json = json.load(f) except Exception as e: raise ValueError(f"Impossibile caricare Graph JSON: {e}") # Estrai metadata metadata = graph_json.get('metadata', {}) slug = metadata.get('slug', 'unknown') model_id = metadata.get('scan', 'gemma-2-2b') # Estrai nodes e qParams nodes = graph_json.get('nodes', []) q_params = graph_json.get('qParams', {}) # Crea mapping node_id → feature_key # node_id formato: "layer_feature_ctx_idx" (es. "0_12284_1") node_id_to_feature = {} for node in nodes: node_id = node.get('node_id', '') # Estrai layer e feature da node_id parts = node_id.split('_') if len(parts) >= 2: layer = parts[0] feature = parts[1] feature_key = f"{layer}_{feature}" node_id_to_feature[node_id] = feature_key if verbose: print(f" Graph JSON: {len(nodes)} nodi, {len(node_id_to_feature)} feature uniche") # Crea mapping feature_key → supernode_name feature_to_supernode = df_grouped.groupby('feature_key')['supernode_name'].first().to_dict() # Crea supernodes: raggruppa node_id per supernode_name supernode_groups = {} # {supernode_name: [node_ids]} for node_id, feature_key in node_id_to_feature.items(): supernode_name = feature_to_supernode.get(feature_key) if supernode_name: if supernode_name not in supernode_groups: supernode_groups[supernode_name] = [] supernode_groups[supernode_name].append(node_id) # Converti in formato Neuronpedia: [["supernode_name", "node_id1", "node_id2", ...], ...] supernodes = [] for supernode_name, node_ids in supernode_groups.items(): if len(node_ids) > 0: # Solo supernodes con almeno 1 nodo supernodes.append([supernode_name] + node_ids) if verbose: print(f" Supernodes: {len(supernodes)} gruppi") print(f" - Totale nodi raggruppati: {sum(len(s)-1 for s in supernodes)}") print(f" - Esempi:") for sn in supernodes[:3]: print(f" - {sn[0]}: {len(sn)-1} nodi") # Estrai pinnedIds: usa node_ids dal selected_nodes_data se disponibile # altrimenti usa tutti i node_id che sono nei supernodes if selected_nodes_data and 'node_ids' in selected_nodes_data: # Usa il subset di node_ids selezionati in Graph Generation all_selected_node_ids = selected_nodes_data['node_ids'] # Filtra solo quelli che appartengono alle feature nei supernodes feature_keys_in_supernodes = set(feature_to_supernode.keys()) pinned_ids = [] for node_id in all_selected_node_ids: # Estrai feature_key da node_id (es. "0_12284_1" -> "0_12284") parts = node_id.split('_') if len(parts) >= 2: feature_key = f"{parts[0]}_{parts[1]}" if feature_key in feature_keys_in_supernodes: pinned_ids.append(node_id) if verbose: print(f" PinnedIds (features): {len(pinned_ids)} nodi (da selected_nodes_data, filtrati per supernodes)") print(f" - Nodi totali in selected_nodes_data: {len(all_selected_node_ids)}") print(f" - Nodi feature nei supernodes: {len(pinned_ids)}") else: # Fallback: usa tutti i node_id che sono nei supernodes pinned_ids = [] for supernode in supernodes: # supernode formato: ["supernode_name", "node_id1", "node_id2", ...] pinned_ids.extend(supernode[1:]) # Salta il nome, prendi solo i node_id if verbose: print(f" PinnedIds (features): {len(pinned_ids)} nodi (fallback: tutti i nodi nei supernodes)") print(f" ⚠️ WARNING: selected_nodes_data non fornito, usando tutti i nodi del grafo") # Aggiungi embeddings e logit target dal Graph JSON # Per embeddings: solo se il token corrisponde a un supernode_name esistente # Raccogli tutti i supernode_name (normalizzati a lowercase per matching) supernode_names_lower = set() for supernode_name in set(feature_to_supernode.values()): if supernode_name: supernode_names_lower.add(supernode_name.strip().lower()) # Estrai prompt_tokens per mappare ctx_idx → token prompt_tokens = metadata.get('prompt_tokens', []) embeddings_and_logits = [] for node in nodes: node_id = node.get('node_id', '') feature_type = node.get('feature_type', '') is_target_logit = node.get('is_target_logit', False) # Aggiungi embeddings (layer "E") solo se il token corrisponde a un supernode_name if feature_type == 'embedding': ctx_idx = node.get('ctx_idx', -1) if 0 <= ctx_idx < len(prompt_tokens): token = prompt_tokens[ctx_idx].strip().lower() if token in supernode_names_lower: embeddings_and_logits.append(node_id) # Aggiungi logit target elif feature_type == 'logit' and is_target_logit: embeddings_and_logits.append(node_id) # Combina feature nodes + embeddings + logits pinned_ids.extend(embeddings_and_logits) if verbose: print(f" PinnedIds (embeddings + logits): +{len(embeddings_and_logits)} nodi") print(f" - Embeddings filtrati: {len([n for n in embeddings_and_logits if n.startswith('E_')])}") print(f" - Logit target: {len([n for n in embeddings_and_logits if not n.startswith('E_')])}") print(f" PinnedIds (totale): {len(pinned_ids)} nodi") # Estrai pruning/density thresholds pruning_settings = metadata.get('pruning_settings', {}) pruning_threshold = pruning_settings.get('node_threshold', 0.8) density_threshold = 0.99 # Default # Display name if not display_name: display_name = f"{slug} (grouped)" # Prepara payload payload = { "modelId": model_id, "slug": slug, "displayName": display_name, "pinnedIds": pinned_ids, "supernodes": supernodes, "clerps": [], # Non gestiamo clerps per ora "pruningThreshold": pruning_threshold, "densityThreshold": density_threshold, "overwriteId": overwrite_id or "" } # Save payload to temp file for debugging debug_payload_path = Path("output") / "debug_neuronpedia_payload.json" try: with open(debug_payload_path, 'w', encoding='utf-8') as f: json.dump(payload, f, indent=2) if verbose: print(f" Debug: payload salvato in {debug_payload_path}") except Exception as e: if verbose: print(f" Warning: impossibile salvare payload debug: {e}") # Validate payload validation_errors = [] if not model_id or not isinstance(model_id, str): validation_errors.append("modelId mancante o non valido") if not slug or not isinstance(slug, str): validation_errors.append("slug mancante o non valido") if not supernodes or len(supernodes) == 0: validation_errors.append("supernodes vuoto") if not pinned_ids or len(pinned_ids) == 0: validation_errors.append("pinnedIds vuoto") # Check for empty supernodes empty_supernodes = [sn for sn in supernodes if len(sn) <= 1] if empty_supernodes: validation_errors.append(f"{len(empty_supernodes)} supernodes vuoti (senza nodi)") if validation_errors: error_msg = "Errori validazione payload:\n - " + "\n - ".join(validation_errors) raise ValueError(error_msg) if verbose: print(f"\n Payload:") print(f" - modelId: {model_id}") print(f" - slug: {slug}") print(f" - displayName: {display_name}") print(f" - pinnedIds: {len(pinned_ids)}") print(f" - supernodes: {len(supernodes)}") print(f" - pruningThreshold: {pruning_threshold}") print(f" - densityThreshold: {density_threshold}") print(f" - overwriteId: {overwrite_id or '(nuovo)'}") # Upload try: if verbose: print(f"\n Uploading su Neuronpedia...") response = requests.post( "https://www.neuronpedia.org/api/graph/subgraph/save", headers={ "Content-Type": "application/json", "x-api-key": api_key }, json=payload, timeout=30 ) response.raise_for_status() result = response.json() if verbose: print(f" ✅ Upload completato!") print(f" Response: {json.dumps(result, indent=2)}") return result except requests.exceptions.RequestException as e: # Always show response details on error, regardless of verbose flag error_msg = f"Errore upload: {e}" if hasattr(e, 'response') and e.response is not None: error_msg += f"\nResponse status: {e.response.status_code}" error_msg += f"\nResponse body: {e.response.text}" if verbose: print(f" ❌ {error_msg}") # Re-raise with enhanced error message raise RuntimeError(error_msg) from e # ============================================================================ # MAIN CLI # ============================================================================ def main(): parser = argparse.ArgumentParser( description="Node Grouping Pipeline: Step 1 (prepare) + Step 2 (classify) + Step 3 (naming)" ) parser.add_argument( "--input", type=str, required=True, help="Path al CSV di input (es. output/*_export.csv)" ) parser.add_argument( "--output", type=str, required=True, help="Path al CSV di output (es. output/*_GROUPED.csv)" ) parser.add_argument( "--json", type=str, default=None, help="Path opzionale al JSON di attivazioni (per tokens array)" ) parser.add_argument( "--graph", type=str, default=None, help="Path opzionale al Graph JSON (per csv_ctx_idx fallback in Semantic naming)" ) parser.add_argument( "--window", type=int, default=7, help="Finestra di ricerca per target_tokens (default: 7)" ) parser.add_argument( "--skip-classify", action="store_true", help="Salta Step 2 (classificazione), esegui solo Step 1" ) parser.add_argument( "--skip-naming", action="store_true", help="Salta Step 3 (naming), esegui solo Step 1+2" ) # Soglie parametriche (opzionali) parser.add_argument( "--dict-consistency-min", type=float, default=None, help=f"Soglia min peak_consistency per Dictionary (default: {DEFAULT_THRESHOLDS['dict_peak_consistency_min']})" ) parser.add_argument( "--sayx-func-min", type=float, default=None, help=f"Soglia min func_vs_sem_pct per Say X (default: {DEFAULT_THRESHOLDS['sayx_func_vs_sem_min']})" ) parser.add_argument( "--sayx-layer-min", type=int, default=None, help=f"Soglia min layer per Say X (default: {DEFAULT_THRESHOLDS['sayx_layer_min']})" ) parser.add_argument( "--rel-sparsity-max", type=float, default=None, help=f"Soglia max sparsity per Relationship (default: {DEFAULT_THRESHOLDS['rel_sparsity_max']})" ) parser.add_argument( "--verbose", action="store_true", help="Stampa info dettagliate" ) parser.add_argument( "--blacklist", type=str, default="", help="Token da escludere (separati da virgola, es: 'the,a,is'). Fallback al secondo token con max activation." ) args = parser.parse_args() # Carica CSV print(f"Caricamento CSV: {args.input}") df = pd.read_csv(args.input, encoding="utf-8") print(f" -> {len(df)} righe caricate") # Carica JSON (opzionale) tokens_json = None if args.json: print(f"Caricamento JSON: {args.json}") with open(args.json, "r", encoding="utf-8") as f: tokens_json = json.load(f) print(f" -> JSON caricato") # Step 1: Preparazione df_prepared = prepare_dataset( df, tokens_json=tokens_json, window=args.window, verbose=args.verbose ) # Step 2: Classificazione (opzionale) if not args.skip_classify: # Prepara soglie custom (se specificate) thresholds = DEFAULT_THRESHOLDS.copy() if args.dict_consistency_min is not None: thresholds['dict_peak_consistency_min'] = args.dict_consistency_min if args.sayx_func_min is not None: thresholds['sayx_func_vs_sem_min'] = args.sayx_func_min if args.sayx_layer_min is not None: thresholds['sayx_layer_min'] = args.sayx_layer_min if args.rel_sparsity_max is not None: thresholds['rel_sparsity_max'] = args.rel_sparsity_max # Classifica df_classified = classify_nodes( df_prepared, thresholds=thresholds, verbose=args.verbose ) else: df_classified = df_prepared if args.verbose: print("\nStep 2 skipped (--skip-classify)") # Step 3: Naming (opzionale) if not args.skip_naming and not args.skip_classify: # Parse blacklist blacklist_tokens = set() if args.blacklist: for token in args.blacklist.split(','): token_clean = token.strip().lower() if token_clean: blacklist_tokens.add(token_clean) if args.verbose and blacklist_tokens: print(f"\nToken Blacklist: {len(blacklist_tokens)} token") print(f" - {', '.join(sorted(blacklist_tokens))}") # Naming richiede classificazione df_final = name_nodes( df_classified, activations_json_path=args.json, graph_json_path=args.graph, blacklist_tokens=blacklist_tokens if blacklist_tokens else None, verbose=args.verbose ) else: df_final = df_classified if args.verbose and args.skip_naming: print("\nStep 3 skipped (--skip-naming)") elif args.verbose and args.skip_classify: print("\nStep 3 skipped (richiede Step 2)") # Salva output output_path = Path(args.output) output_path.parent.mkdir(parents=True, exist_ok=True) df_final.to_csv(output_path, index=False, encoding="utf-8") print(f"\nOK Output salvato: {output_path}") print(f" {len(df_final)} righe, {len(df_final.columns)} colonne") if __name__ == "__main__": main()