Update app.py
Browse files
app.py
CHANGED
|
@@ -35,6 +35,21 @@ def create_prompt(top_k_list: list[dict], question: str) -> str:
|
|
| 35 |
QUESTION:
|
| 36 |
{question}'''
|
| 37 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 38 |
def validate_token(token):
|
| 39 |
try:
|
| 40 |
api = HfApi()
|
|
@@ -45,7 +60,6 @@ def validate_token(token):
|
|
| 45 |
|
| 46 |
def process_files(token, pdf_files, chunk_limit, chunk_separator):
|
| 47 |
if not validate_token(token):
|
| 48 |
-
|
| 49 |
return "Invalid token. Please enter a valid Hugging Face token."
|
| 50 |
|
| 51 |
# Initialize Pixeltable
|
|
@@ -54,9 +68,11 @@ def process_files(token, pdf_files, chunk_limit, chunk_separator):
|
|
| 54 |
|
| 55 |
# Create a table to store the uploaded PDF documents
|
| 56 |
t = pxt.create_table(
|
| 57 |
-
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
| 60 |
)
|
| 61 |
|
| 62 |
# Insert the PDF files into the documents table
|
|
@@ -86,51 +102,34 @@ def process_files(token, pdf_files, chunk_limit, chunk_separator):
|
|
| 86 |
.limit(5)
|
| 87 |
)
|
| 88 |
|
| 89 |
-
# Add computed columns to the
|
| 90 |
t['question_context'] = chunks_t.queries.top_k(t.question)
|
| 91 |
-
t['prompt'] = create_prompt(
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
# Prepare messages for the API
|
| 96 |
-
msgs = [
|
| 97 |
-
{
|
| 98 |
-
'role': 'system',
|
| 99 |
-
'content': 'Answer questions using only the provided context. If the context lacks sufficient information, state this clearly.'
|
| 100 |
-
},
|
| 101 |
-
{
|
| 102 |
-
'role': 'user',
|
| 103 |
-
'content': t.prompt
|
| 104 |
-
}
|
| 105 |
-
]
|
| 106 |
-
|
| 107 |
-
# Add OpenAI response column
|
| 108 |
t['response'] = openai.chat_completions(
|
| 109 |
model='gpt-4o-mini-2024-07-18',
|
| 110 |
-
messages=
|
| 111 |
max_tokens=300,
|
| 112 |
top_p=0.9,
|
| 113 |
temperature=0.7
|
| 114 |
)
|
| 115 |
-
|
| 116 |
-
# Extract the answer text from the API response
|
| 117 |
t['gpt4omini'] = t.response.choices[0].message.content
|
| 118 |
|
| 119 |
return "Files processed successfully. You can start the discussion."
|
| 120 |
|
| 121 |
def get_answer(token, msg):
|
| 122 |
if not validate_token(token):
|
| 123 |
-
|
| 124 |
return "Invalid token. Please enter a valid Hugging Face token."
|
| 125 |
|
| 126 |
t = pxt.get_table('chatbot_demo.documents')
|
| 127 |
-
|
| 128 |
-
|
| 129 |
# Insert the question into the table
|
| 130 |
t.insert([{'question': msg}])
|
| 131 |
-
|
|
|
|
| 132 |
answer = t.select(t.gpt4omini).where(t.question == msg).collect()['gpt4omini'][0]
|
| 133 |
-
|
| 134 |
return answer
|
| 135 |
|
| 136 |
def respond(token, message, chat_history):
|
|
|
|
| 35 |
QUESTION:
|
| 36 |
{question}'''
|
| 37 |
|
| 38 |
+
# New UDF for creating messages
|
| 39 |
+
@pxt.udf
|
| 40 |
+
def create_messages(prompt: str) -> list[dict]:
|
| 41 |
+
"""Creates a structured message list for the LLM from the prompt"""
|
| 42 |
+
return [
|
| 43 |
+
{
|
| 44 |
+
'role': 'system',
|
| 45 |
+
'content': 'Answer questions using only the provided context. If the context lacks sufficient information, state this clearly.'
|
| 46 |
+
},
|
| 47 |
+
{
|
| 48 |
+
'role': 'user',
|
| 49 |
+
'content': prompt
|
| 50 |
+
}
|
| 51 |
+
]
|
| 52 |
+
|
| 53 |
def validate_token(token):
|
| 54 |
try:
|
| 55 |
api = HfApi()
|
|
|
|
| 60 |
|
| 61 |
def process_files(token, pdf_files, chunk_limit, chunk_separator):
|
| 62 |
if not validate_token(token):
|
|
|
|
| 63 |
return "Invalid token. Please enter a valid Hugging Face token."
|
| 64 |
|
| 65 |
# Initialize Pixeltable
|
|
|
|
| 68 |
|
| 69 |
# Create a table to store the uploaded PDF documents
|
| 70 |
t = pxt.create_table(
|
| 71 |
+
'chatbot_demo.documents',
|
| 72 |
+
{
|
| 73 |
+
'document': pxt.DocumentType(nullable=True),
|
| 74 |
+
'question': pxt.StringType(nullable=True)
|
| 75 |
+
}
|
| 76 |
)
|
| 77 |
|
| 78 |
# Insert the PDF files into the documents table
|
|
|
|
| 102 |
.limit(5)
|
| 103 |
)
|
| 104 |
|
| 105 |
+
# Add computed columns to create the chain of transformations
|
| 106 |
t['question_context'] = chunks_t.queries.top_k(t.question)
|
| 107 |
+
t['prompt'] = create_prompt(t.question_context, t.question)
|
| 108 |
+
t['messages'] = create_messages(t.prompt) # New computed column for messages
|
| 109 |
+
|
| 110 |
+
# Add the response column using the messages computed column
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 111 |
t['response'] = openai.chat_completions(
|
| 112 |
model='gpt-4o-mini-2024-07-18',
|
| 113 |
+
messages=t.messages, # Use the computed messages column
|
| 114 |
max_tokens=300,
|
| 115 |
top_p=0.9,
|
| 116 |
temperature=0.7
|
| 117 |
)
|
|
|
|
|
|
|
| 118 |
t['gpt4omini'] = t.response.choices[0].message.content
|
| 119 |
|
| 120 |
return "Files processed successfully. You can start the discussion."
|
| 121 |
|
| 122 |
def get_answer(token, msg):
|
| 123 |
if not validate_token(token):
|
|
|
|
| 124 |
return "Invalid token. Please enter a valid Hugging Face token."
|
| 125 |
|
| 126 |
t = pxt.get_table('chatbot_demo.documents')
|
| 127 |
+
|
|
|
|
| 128 |
# Insert the question into the table
|
| 129 |
t.insert([{'question': msg}])
|
| 130 |
+
|
| 131 |
+
# The answer will be automatically generated through the chain of computed columns
|
| 132 |
answer = t.select(t.gpt4omini).where(t.question == msg).collect()['gpt4omini'][0]
|
|
|
|
| 133 |
return answer
|
| 134 |
|
| 135 |
def respond(token, message, chat_history):
|