Spaces:
Sleeping
Sleeping
| import gradio as gr | |
| import torch | |
| import torch.nn as nn | |
| import numpy as np | |
| from transformers import AutoTokenizer, AutoModel | |
| from torchcrf import CRF | |
| from huggingface_hub import hf_hub_download | |
| import PyPDF2 | |
| from docx import Document | |
| class PositionalEncoding(nn.Module): | |
| def __init__(self, d_model, dropout=0.1, max_len=5000): | |
| super().__init__() | |
| self.dropout = nn.Dropout(p=dropout) | |
| pe = torch.zeros(max_len, d_model) | |
| position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1) | |
| div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model)) | |
| pe[:, 0::2] = torch.sin(position * div_term) | |
| pe[:, 1::2] = torch.cos(position * div_term) | |
| self.register_buffer('pe', pe.unsqueeze(0)) | |
| def forward(self, x): | |
| return x + self.pe[:, :x.size(1)] | |
| class VanillaTransformer(nn.Module): | |
| def __init__(self, d_model=768, nhead=8, num_layers=3, dim_feedforward=2048, dropout=0.1): | |
| super().__init__() | |
| self.pos_encoder = PositionalEncoding(d_model, dropout) | |
| encoder_layer = nn.TransformerEncoderLayer(d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward, dropout=dropout, activation='gelu', batch_first=True) | |
| self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers) | |
| def forward(self, src, src_key_padding_mask=None): | |
| src = self.pos_encoder(src) | |
| return self.transformer(src, src_key_padding_mask=src_key_padding_mask) | |
| class HierarchicalLegalSegModel(nn.Module): | |
| def __init__(self, longformer_model, num_labels, hidden_dim=768, transformer_layers=3, transformer_heads=8, dropout=0.1): | |
| super().__init__() | |
| self.longformer = longformer_model | |
| self.hidden_dim = hidden_dim | |
| self.vanilla_transformer = VanillaTransformer(d_model=hidden_dim, nhead=transformer_heads, num_layers=transformer_layers, dim_feedforward=hidden_dim*4, dropout=dropout) | |
| self.classifier = nn.Linear(hidden_dim, num_labels) | |
| self.crf = CRF(num_labels, batch_first=True) | |
| self.dropout = nn.Dropout(dropout) | |
| def encode_sentences(self, input_ids, attention_mask): | |
| batch_size, num_sentences, max_seq_len = input_ids.shape | |
| input_ids_flat = input_ids.view(-1, max_seq_len) | |
| attention_mask_flat = attention_mask.view(-1, max_seq_len) | |
| outputs = self.longformer(input_ids=input_ids_flat, attention_mask=attention_mask_flat) | |
| cls_embeddings = outputs.last_hidden_state[:, 0, :] | |
| return cls_embeddings.view(batch_size, num_sentences, self.hidden_dim) | |
| def forward(self, input_ids, attention_mask, sentence_mask=None): | |
| embeddings = self.encode_sentences(input_ids, attention_mask) | |
| embeddings = self.dropout(embeddings) | |
| output = self.vanilla_transformer(embeddings, src_key_padding_mask=~sentence_mask if sentence_mask is not None else None) | |
| emissions = self.classifier(output) | |
| return self.crf.decode(emissions, mask=sentence_mask) | |
| device = torch.device("cpu") | |
| tokenizer = AutoTokenizer.from_pretrained("lexlms/legal-longformer-base") | |
| longformer = AutoModel.from_pretrained("lexlms/legal-longformer-base").to(device) | |
| for param in longformer.parameters(): | |
| param.requires_grad = False | |
| model = HierarchicalLegalSegModel(longformer, 7).to(device) | |
| model_path = hf_hub_download(repo_id="Prateek0515/legal-document-segmentation", filename="model.pth") | |
| model.load_state_dict(torch.load(model_path, map_location=device)) | |
| model.eval() | |
| id2label = {0: "Arguments of Petitioner", 1: "Arguments of Respondent", 2: "Decision", 3: "Facts", 4: "Issue", 5: "None", 6: "Reasoning"} | |
| def extract_text_from_pdf(file): | |
| reader = PyPDF2.PdfReader(file) | |
| text = "" | |
| for page in reader.pages: | |
| text += page.extract_text() | |
| return text.strip() | |
| def extract_text_from_docx(file): | |
| doc = Document(file) | |
| return "\n".join([para.text for para in doc.paragraphs]).strip() | |
| def predict(text_input, file_input): | |
| try: | |
| if file_input is not None: | |
| if file_input.name.endswith('.pdf'): | |
| text = extract_text_from_pdf(file_input.name) | |
| elif file_input.name.endswith('.docx'): | |
| text = extract_text_from_docx(file_input.name) | |
| elif file_input.name.endswith('.txt'): | |
| with open(file_input.name, 'r') as f: | |
| text = f.read() | |
| else: | |
| return "β Unsupported file type" | |
| else: | |
| text = text_input | |
| if not text: | |
| return "β οΈ Please provide text" | |
| encoded = tokenizer(text, padding="max_length", truncation=True, max_length=512, return_tensors="pt") | |
| input_ids = encoded["input_ids"].unsqueeze(1).to(device) | |
| attention_mask = encoded["attention_mask"].unsqueeze(1).to(device) | |
| sentence_mask = torch.ones(1, 1, dtype=torch.bool).to(device) | |
| with torch.no_grad(): | |
| predictions = model(input_ids, attention_mask, sentence_mask=sentence_mask) | |
| label = id2label[predictions[0][0]] | |
| return f"β **Label:** {label}\n\nπ **Text:** {text[:300]}..." | |
| except Exception as e: | |
| return f"β Error: {str(e)}" | |
| demo = gr.Interface(fn=predict, inputs=[gr.Textbox(label="Enter Legal Text", lines=5), gr.File(label="Or Upload (PDF/DOCX/TXT)")], outputs=gr.Textbox(label="Result", lines=5), title="βοΈ Legal Document Segmentation", api_name="predict") | |
| if __name__ == "__main__": | |
| demo.launch() | |