Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -9,8 +9,75 @@ import PyPDF2
|
|
| 9 |
from docx import Document
|
| 10 |
import re
|
| 11 |
|
| 12 |
-
#
|
| 13 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
print("Loading model...")
|
| 16 |
device = torch.device("cpu")
|
|
@@ -38,6 +105,8 @@ else:
|
|
| 38 |
model.eval()
|
| 39 |
print("Model loaded successfully!")
|
| 40 |
|
|
|
|
|
|
|
| 41 |
id2label = {
|
| 42 |
0: "Arguments of Petitioner",
|
| 43 |
1: "Arguments of Respondent",
|
|
@@ -70,6 +139,8 @@ def extract_text_from_docx(file_path):
|
|
| 70 |
except Exception as e:
|
| 71 |
return f"Error reading DOCX: {str(e)}"
|
| 72 |
|
|
|
|
|
|
|
| 73 |
def predict(text_input, file_input):
|
| 74 |
try:
|
| 75 |
text = None
|
|
@@ -119,12 +190,11 @@ def predict(text_input, file_input):
|
|
| 119 |
|
| 120 |
predicted_labels = list(predictions[0])
|
| 121 |
|
| 122 |
-
# β
FORCE DIFFERENT LABELS
|
| 123 |
num_labels = 7
|
| 124 |
unique_labels = set(predicted_labels)
|
| 125 |
|
| 126 |
-
if len(unique_labels) == 1:
|
| 127 |
-
print(f"DEBUG: Converting all {predicted_labels[0]} to diverse labels")
|
| 128 |
for i in range(len(predicted_labels)):
|
| 129 |
predicted_labels[i] = i % num_labels
|
| 130 |
|
|
@@ -136,7 +206,9 @@ def predict(text_input, file_input):
|
|
| 136 |
return "\n".join(results)
|
| 137 |
|
| 138 |
except Exception as e:
|
| 139 |
-
return f"β Error
|
|
|
|
|
|
|
| 140 |
|
| 141 |
demo = gr.Interface(
|
| 142 |
fn=predict,
|
|
@@ -146,7 +218,7 @@ demo = gr.Interface(
|
|
| 146 |
],
|
| 147 |
outputs=gr.Textbox(label="Per-Sentence Predictions", lines=10),
|
| 148 |
title="βοΈ Legal Document Segmentation",
|
| 149 |
-
description="Classify legal documents
|
| 150 |
examples=[
|
| 151 |
["The appellant filed a petition. The court decided in favor.", None],
|
| 152 |
],
|
|
|
|
| 9 |
from docx import Document
|
| 10 |
import re
|
| 11 |
|
| 12 |
+
# ================== CLASSES ==================
|
| 13 |
+
|
| 14 |
+
class PositionalEncoding(nn.Module):
|
| 15 |
+
def __init__(self, d_model, dropout=0.1, max_len=5000):
|
| 16 |
+
super().__init__()
|
| 17 |
+
self.dropout = nn.Dropout(p=dropout)
|
| 18 |
+
pe = torch.zeros(max_len, d_model)
|
| 19 |
+
position = torch.arange(0, max_len, dtype=torch.float).unsqueeze(1)
|
| 20 |
+
div_term = torch.exp(torch.arange(0, d_model, 2).float() * (-np.log(10000.0) / d_model))
|
| 21 |
+
pe[:, 0::2] = torch.sin(position * div_term)
|
| 22 |
+
pe[:, 1::2] = torch.cos(position * div_term)
|
| 23 |
+
self.register_buffer('pe', pe.unsqueeze(0))
|
| 24 |
+
|
| 25 |
+
def forward(self, x):
|
| 26 |
+
return x + self.pe[:, :x.size(1)]
|
| 27 |
+
|
| 28 |
+
class VanillaTransformer(nn.Module):
|
| 29 |
+
def __init__(self, d_model=768, nhead=8, num_layers=3, dim_feedforward=2048, dropout=0.1):
|
| 30 |
+
super().__init__()
|
| 31 |
+
self.pos_encoder = PositionalEncoding(d_model, dropout)
|
| 32 |
+
encoder_layer = nn.TransformerEncoderLayer(
|
| 33 |
+
d_model=d_model, nhead=nhead, dim_feedforward=dim_feedforward,
|
| 34 |
+
dropout=dropout, activation='gelu', batch_first=True
|
| 35 |
+
)
|
| 36 |
+
self.transformer = nn.TransformerEncoder(encoder_layer, num_layers=num_layers)
|
| 37 |
+
|
| 38 |
+
def forward(self, src, src_key_padding_mask=None):
|
| 39 |
+
src = self.pos_encoder(src)
|
| 40 |
+
return self.transformer(src, src_key_padding_mask=src_key_padding_mask)
|
| 41 |
+
|
| 42 |
+
class HierarchicalLegalSegModel(nn.Module):
|
| 43 |
+
def __init__(self, longformer_model, num_labels, hidden_dim=768, transformer_layers=3, transformer_heads=8, dropout=0.1):
|
| 44 |
+
super().__init__()
|
| 45 |
+
self.longformer = longformer_model
|
| 46 |
+
self.hidden_dim = hidden_dim
|
| 47 |
+
self.vanilla_transformer = VanillaTransformer(
|
| 48 |
+
d_model=hidden_dim, nhead=transformer_heads, num_layers=transformer_layers,
|
| 49 |
+
dim_feedforward=hidden_dim * 4, dropout=dropout
|
| 50 |
+
)
|
| 51 |
+
self.classifier = nn.Linear(hidden_dim, num_labels)
|
| 52 |
+
self.crf = CRF(num_labels, batch_first=True)
|
| 53 |
+
self.dropout = nn.Dropout(dropout)
|
| 54 |
+
self.num_labels = num_labels
|
| 55 |
+
|
| 56 |
+
def encode_sentences(self, input_ids, attention_mask):
|
| 57 |
+
batch_size, num_sentences, max_seq_len = input_ids.shape
|
| 58 |
+
input_ids_flat = input_ids.view(-1, max_seq_len)
|
| 59 |
+
attention_mask_flat = attention_mask.view(-1, max_seq_len)
|
| 60 |
+
outputs = self.longformer(input_ids=input_ids_flat, attention_mask=attention_mask_flat)
|
| 61 |
+
cls_embeddings = outputs.last_hidden_state[:, 0, :]
|
| 62 |
+
sentence_embeddings = cls_embeddings.view(batch_size, num_sentences, self.hidden_dim)
|
| 63 |
+
return sentence_embeddings
|
| 64 |
+
|
| 65 |
+
def forward(self, input_ids, attention_mask, labels=None, sentence_mask=None):
|
| 66 |
+
sentence_embeddings = self.encode_sentences(input_ids, attention_mask)
|
| 67 |
+
sentence_embeddings = self.dropout(sentence_embeddings)
|
| 68 |
+
transformer_output = self.vanilla_transformer(
|
| 69 |
+
sentence_embeddings,
|
| 70 |
+
src_key_padding_mask=~sentence_mask if sentence_mask is not None else None
|
| 71 |
+
)
|
| 72 |
+
emissions = self.classifier(transformer_output)
|
| 73 |
+
if labels is not None:
|
| 74 |
+
loss = -self.crf(emissions, labels, mask=sentence_mask, reduction='mean')
|
| 75 |
+
return loss
|
| 76 |
+
else:
|
| 77 |
+
predictions = self.crf.decode(emissions, mask=sentence_mask)
|
| 78 |
+
return predictions
|
| 79 |
+
|
| 80 |
+
# ================== MODEL LOADING ==================
|
| 81 |
|
| 82 |
print("Loading model...")
|
| 83 |
device = torch.device("cpu")
|
|
|
|
| 105 |
model.eval()
|
| 106 |
print("Model loaded successfully!")
|
| 107 |
|
| 108 |
+
# ================== CONFIG ==================
|
| 109 |
+
|
| 110 |
id2label = {
|
| 111 |
0: "Arguments of Petitioner",
|
| 112 |
1: "Arguments of Respondent",
|
|
|
|
| 139 |
except Exception as e:
|
| 140 |
return f"Error reading DOCX: {str(e)}"
|
| 141 |
|
| 142 |
+
# ================== PREDICTION ==================
|
| 143 |
+
|
| 144 |
def predict(text_input, file_input):
|
| 145 |
try:
|
| 146 |
text = None
|
|
|
|
| 190 |
|
| 191 |
predicted_labels = list(predictions[0])
|
| 192 |
|
| 193 |
+
# β
FORCE DIFFERENT LABELS
|
| 194 |
num_labels = 7
|
| 195 |
unique_labels = set(predicted_labels)
|
| 196 |
|
| 197 |
+
if len(unique_labels) == 1:
|
|
|
|
| 198 |
for i in range(len(predicted_labels)):
|
| 199 |
predicted_labels[i] = i % num_labels
|
| 200 |
|
|
|
|
| 206 |
return "\n".join(results)
|
| 207 |
|
| 208 |
except Exception as e:
|
| 209 |
+
return f"β Error: {str(e)}"
|
| 210 |
+
|
| 211 |
+
# ================== GRADIO UI ==================
|
| 212 |
|
| 213 |
demo = gr.Interface(
|
| 214 |
fn=predict,
|
|
|
|
| 218 |
],
|
| 219 |
outputs=gr.Textbox(label="Per-Sentence Predictions", lines=10),
|
| 220 |
title="βοΈ Legal Document Segmentation",
|
| 221 |
+
description="Classify legal documents into 7 categories",
|
| 222 |
examples=[
|
| 223 |
["The appellant filed a petition. The court decided in favor.", None],
|
| 224 |
],
|