Spaces:
Runtime error
Runtime error
| import torch | |
| import torch.nn as nn | |
| #import pytorch_lightning as pl | |
| import torch.nn.functional as F | |
| from contextlib import contextmanager | |
| # from taming.modules.vqvae.quantize import VectorQuantizer2 as VectorQuantizer | |
| from ldm.modules.diffusionmodules.model import Encoder, Decoder | |
| from ldm.modules.distributions.distributions import DiagonalGaussianDistribution | |
| from ldm.util import instantiate_from_config | |
| class AutoencoderKL(nn.Module): | |
| def __init__(self, | |
| ddconfig, | |
| embed_dim, | |
| scale_factor=1 | |
| ): | |
| super().__init__() | |
| self.encoder = Encoder(**ddconfig) | |
| self.decoder = Decoder(**ddconfig) | |
| assert ddconfig["double_z"] | |
| self.quant_conv = torch.nn.Conv2d(2*ddconfig["z_channels"], 2*embed_dim, 1) | |
| self.post_quant_conv = torch.nn.Conv2d(embed_dim, ddconfig["z_channels"], 1) | |
| self.embed_dim = embed_dim | |
| self.scale_factor = scale_factor | |
| def encode(self, x): | |
| h = self.encoder(x) | |
| moments = self.quant_conv(h) | |
| posterior = DiagonalGaussianDistribution(moments) | |
| return posterior.sample() * self.scale_factor | |
| def decode(self, z): | |
| z = 1. / self.scale_factor * z | |
| z = self.post_quant_conv(z) | |
| dec = self.decoder(z) | |
| return dec | |