Spaces:
Sleeping
Sleeping
Regino
commited on
Commit
Β·
0e83c47
1
Parent(s):
b90ceb7
sjsbfjsd
Browse files
app.py
ADDED
|
@@ -0,0 +1,154 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
import torch
|
| 3 |
+
import torch.nn as nn
|
| 4 |
+
import torchvision.transforms as transforms
|
| 5 |
+
import torchvision.models as models
|
| 6 |
+
import matplotlib.pyplot as plt
|
| 7 |
+
import seaborn as sns
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import random
|
| 10 |
+
from PIL import Image
|
| 11 |
+
from torchvision import datasets
|
| 12 |
+
from sklearn.metrics import accuracy_score, classification_report, confusion_matrix
|
| 13 |
+
|
| 14 |
+
# CIFAR-10 Class Names
|
| 15 |
+
CLASS_NAMES = [
|
| 16 |
+
"Airplane", "Automobile", "Bird", "Cat", "Deer",
|
| 17 |
+
"Dog", "Frog", "Horse", "Ship", "Truck"
|
| 18 |
+
]
|
| 19 |
+
|
| 20 |
+
# Load CIFAR-10 Dataset for Visualization
|
| 21 |
+
transform = transforms.Compose([transforms.ToTensor()])
|
| 22 |
+
dataset = datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
|
| 23 |
+
|
| 24 |
+
# Load Trained Model
|
| 25 |
+
@st.cache_resource
|
| 26 |
+
def load_model():
|
| 27 |
+
model = models.resnet18(pretrained=False)
|
| 28 |
+
model.fc = nn.Linear(model.fc.in_features, len(CLASS_NAMES))
|
| 29 |
+
model.load_state_dict(torch.load("model.pth", map_location=torch.device("cpu")))
|
| 30 |
+
model.eval()
|
| 31 |
+
return model
|
| 32 |
+
|
| 33 |
+
model = load_model()
|
| 34 |
+
|
| 35 |
+
# Sidebar Navigation
|
| 36 |
+
st.sidebar.title("Navigation")
|
| 37 |
+
page = st.sidebar.radio("Go to", ["Dataset", "Visualizations", "Model Metrics", "Predictor"])
|
| 38 |
+
|
| 39 |
+
# π Dataset Preview Page
|
| 40 |
+
if page == "Dataset":
|
| 41 |
+
st.title("π CIFAR-10 Dataset Preview")
|
| 42 |
+
|
| 43 |
+
# Dataset Information
|
| 44 |
+
st.markdown("""
|
| 45 |
+
## π About CIFAR-10
|
| 46 |
+
The **CIFAR-10 dataset** is widely used in image classification research.
|
| 47 |
+
- π **Created by**: Alex Krizhevsky, Vinod Nair, Geoffrey Hinton
|
| 48 |
+
- π **From**: University of Toronto
|
| 49 |
+
- πΈ **Images**: 60,000 color images (**32Γ32 pixels**)
|
| 50 |
+
- π· **Classes (10)**:
|
| 51 |
+
- π« Airplane
|
| 52 |
+
- π Automobile
|
| 53 |
+
- π¦ Bird
|
| 54 |
+
- π± Cat
|
| 55 |
+
- π¦ Deer
|
| 56 |
+
- πΆ Dog
|
| 57 |
+
- πΈ Frog
|
| 58 |
+
- π΄ Horse
|
| 59 |
+
- π’ Ship
|
| 60 |
+
- π Truck
|
| 61 |
+
- π **[Dataset Link](https://www.cs.toronto.edu/~kriz/cifar.html)**
|
| 62 |
+
""")
|
| 63 |
+
|
| 64 |
+
# Show 10 Random Images
|
| 65 |
+
st.subheader("π Random CIFAR-10 Images")
|
| 66 |
+
cols = st.columns(5) # Display in 5 columns
|
| 67 |
+
for i in range(10):
|
| 68 |
+
index = random.randint(0, len(dataset) - 1)
|
| 69 |
+
image, label = dataset[index]
|
| 70 |
+
image = transforms.ToPILImage()(image) # Convert tensor to image
|
| 71 |
+
cols[i % 5].image(image, caption=CLASS_NAMES[label], use_container_width=True)
|
| 72 |
+
|
| 73 |
+
# π Visualization Page
|
| 74 |
+
elif page == "Visualizations":
|
| 75 |
+
st.title("π Dataset Visualizations")
|
| 76 |
+
|
| 77 |
+
# Count class occurrences
|
| 78 |
+
class_counts = {cls: 0 for cls in CLASS_NAMES}
|
| 79 |
+
for _, label in dataset:
|
| 80 |
+
class_counts[CLASS_NAMES[label]] += 1
|
| 81 |
+
|
| 82 |
+
# Pie Chart
|
| 83 |
+
st.subheader("π Class Distribution (Pie Chart)")
|
| 84 |
+
fig, ax = plt.subplots()
|
| 85 |
+
colors = sns.color_palette("husl", len(CLASS_NAMES))
|
| 86 |
+
ax.pie(class_counts.values(), labels=class_counts.keys(), autopct='%1.1f%%', colors=colors)
|
| 87 |
+
st.pyplot(fig)
|
| 88 |
+
|
| 89 |
+
# Bar Chart
|
| 90 |
+
st.subheader("π Class Distribution (Bar Chart)")
|
| 91 |
+
fig, ax = plt.subplots()
|
| 92 |
+
sns.barplot(x=list(class_counts.keys()), y=list(class_counts.values()), palette="husl")
|
| 93 |
+
plt.xticks(rotation=45)
|
| 94 |
+
st.pyplot(fig)
|
| 95 |
+
|
| 96 |
+
# π Model Metrics Page
|
| 97 |
+
elif page == "Model Metrics":
|
| 98 |
+
st.title("π Model Performance")
|
| 99 |
+
|
| 100 |
+
try:
|
| 101 |
+
y_true = torch.load("y_true.pth")
|
| 102 |
+
y_pred = torch.load("y_pred.pth")
|
| 103 |
+
|
| 104 |
+
# Display Accuracy
|
| 105 |
+
st.write(f"### β
Accuracy: **{accuracy_score(y_true, y_pred):.2f}**")
|
| 106 |
+
|
| 107 |
+
# Classification Report
|
| 108 |
+
report = classification_report(y_true, y_pred, target_names=CLASS_NAMES, output_dict=True)
|
| 109 |
+
st.write(pd.DataFrame(report).T)
|
| 110 |
+
|
| 111 |
+
# Confusion Matrix
|
| 112 |
+
st.subheader("π Confusion Matrix")
|
| 113 |
+
cm = confusion_matrix(y_true, y_pred)
|
| 114 |
+
fig, ax = plt.subplots(figsize=(8, 6))
|
| 115 |
+
sns.heatmap(cm, annot=True, fmt="d", cmap="Blues", xticklabels=CLASS_NAMES, yticklabels=CLASS_NAMES)
|
| 116 |
+
st.pyplot(fig)
|
| 117 |
+
|
| 118 |
+
except:
|
| 119 |
+
st.error("π¨ Model metrics files not found!")
|
| 120 |
+
|
| 121 |
+
# π Prediction Page
|
| 122 |
+
elif page == "Predictor":
|
| 123 |
+
st.title("π CIFAR-10 Image Classifier")
|
| 124 |
+
|
| 125 |
+
# About the Classifier
|
| 126 |
+
st.markdown("""
|
| 127 |
+
## π About This App
|
| 128 |
+
This app is a **deep learning image classifier** trained on the **CIFAR-10 dataset**.
|
| 129 |
+
It can recognize **10 different objects/animals**:
|
| 130 |
+
- π« Airplane, π Automobile, π¦ Bird, π± Cat, π¦ Deer
|
| 131 |
+
- πΆ Dog, πΈ Frog, π΄ Horse, π’ Ship, π Truck
|
| 132 |
+
""")
|
| 133 |
+
|
| 134 |
+
# Upload Image
|
| 135 |
+
uploaded_file = st.file_uploader("π€ Upload an image", type=["jpg", "png", "jpeg"])
|
| 136 |
+
if uploaded_file is not None:
|
| 137 |
+
image = Image.open(uploaded_file)
|
| 138 |
+
st.image(image, caption="πΌ Uploaded Image", use_container_width=True)
|
| 139 |
+
|
| 140 |
+
# Transform image for model
|
| 141 |
+
transform = transforms.Compose([
|
| 142 |
+
transforms.Resize((224, 224)),
|
| 143 |
+
transforms.ToTensor(),
|
| 144 |
+
transforms.Normalize([0.5], [0.5])
|
| 145 |
+
])
|
| 146 |
+
image_tensor = transform(image).unsqueeze(0)
|
| 147 |
+
|
| 148 |
+
# Make prediction
|
| 149 |
+
with torch.no_grad():
|
| 150 |
+
output = model(image_tensor)
|
| 151 |
+
predicted_class = torch.argmax(output, dim=1).item()
|
| 152 |
+
|
| 153 |
+
# Display Prediction
|
| 154 |
+
st.success(f"### β
Prediction: **{CLASS_NAMES[predicted_class]}**")
|
data.zip
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:606dc5044505a1048b1a6527d230d6dd9172ab373ffb638519c3b2edc1fb1cd4
|
| 3 |
+
size 340726644
|
model.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:a0911fbb81fcf760f000c8e6b5eef931a7ca7077f0b702738011b1956b11294a
|
| 3 |
+
size 44796930
|
trainmodel.py
ADDED
|
@@ -0,0 +1,53 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.optim as optim
|
| 4 |
+
import torchvision
|
| 5 |
+
import torchvision.transforms as transforms
|
| 6 |
+
import tqdm
|
| 7 |
+
|
| 8 |
+
# Define transformations
|
| 9 |
+
transform = transforms.Compose([
|
| 10 |
+
transforms.Resize((224, 224)), # Resize images for ResNet
|
| 11 |
+
transforms.ToTensor(),
|
| 12 |
+
transforms.Normalize((0.5,), (0.5,))
|
| 13 |
+
])
|
| 14 |
+
|
| 15 |
+
# Load CIFAR-10 Dataset
|
| 16 |
+
trainset = torchvision.datasets.CIFAR10(root="./data", train=True, download=True, transform=transform)
|
| 17 |
+
trainloader = torch.utils.data.DataLoader(trainset, batch_size=64, shuffle=True)
|
| 18 |
+
|
| 19 |
+
testset = torchvision.datasets.CIFAR10(root="./data", train=False, download=True, transform=transform)
|
| 20 |
+
testloader = torch.utils.data.DataLoader(testset, batch_size=64, shuffle=False)
|
| 21 |
+
|
| 22 |
+
# Define Model (ResNet-18)
|
| 23 |
+
model = torchvision.models.resnet18(pretrained=True)
|
| 24 |
+
model.fc = nn.Linear(model.fc.in_features, 10) # Adjust for 10 CIFAR-10 classes
|
| 25 |
+
|
| 26 |
+
# Define Loss and Optimizer
|
| 27 |
+
criterion = nn.CrossEntropyLoss()
|
| 28 |
+
optimizer = optim.Adam(model.parameters(), lr=0.001)
|
| 29 |
+
|
| 30 |
+
# Train the Model
|
| 31 |
+
num_epochs = 5
|
| 32 |
+
device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
|
| 33 |
+
model.to(device)
|
| 34 |
+
|
| 35 |
+
for epoch in range(num_epochs):
|
| 36 |
+
model.train()
|
| 37 |
+
running_loss = 0.0
|
| 38 |
+
for images, labels in tqdm.tqdm(trainloader):
|
| 39 |
+
images, labels = images.to(device), labels.to(device)
|
| 40 |
+
|
| 41 |
+
optimizer.zero_grad()
|
| 42 |
+
outputs = model(images)
|
| 43 |
+
loss = criterion(outputs, labels)
|
| 44 |
+
loss.backward()
|
| 45 |
+
optimizer.step()
|
| 46 |
+
|
| 47 |
+
running_loss += loss.item()
|
| 48 |
+
|
| 49 |
+
print(f"Epoch {epoch+1}/{num_epochs}, Loss: {running_loss/len(trainloader)}")
|
| 50 |
+
|
| 51 |
+
# Save the Trained Model
|
| 52 |
+
torch.save(model.state_dict(), "model.pth")
|
| 53 |
+
print("Model training complete and saved as model.pth!")
|