from transformers import BertForSequenceClassification, BertTokenizerFast, pipeline import gradio as gr model_path = "indiaai-text-classification-model" model = BertForSequenceClassification.from_pretrained(model_path) tokenizer = BertTokenizerFast.from_pretrained(model_path) nlp = pipeline("sentiment-analysis", model=model, tokenizer=tokenizer) def classify_text(input_text): result = nlp(input_text) label = result[0]['label'] score = result[0]['score'] output = f"**Prediction:** {label}\n\n**Confidence Score:** {score:.5f}" return output interface = gr.Interface( fn=classify_text, inputs=gr.Textbox(lines=2, placeholder="Enter your complaint", label="Input"), outputs=gr.Markdown(), title="INDIAai CyberGuard", description="Categorizes cyber complaints based on the victim, type of fraud, and other relevant parameters.", ) interface.launch()