Spaces:
Sleeping
Sleeping
File size: 43,306 Bytes
20a1c26 3cb9724 7dcc422 20a1c26 3cb9724 20a1c26 3cb9724 20a1c26 7dcc422 20a1c26 3cb9724 20a1c26 3cb9724 20a1c26 3cb9724 7dcc422 3cb9724 20a1c26 3cb9724 20a1c26 3cb9724 20a1c26 3cb9724 8cadfdd 20a1c26 3cb9724 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 7dcc422 20a1c26 8cadfdd 20a1c26 8cadfdd 20a1c26 8cadfdd 20a1c26 8cadfdd 20a1c26 3cb9724 20a1c26 7dcc422 3cb9724 20a1c26 3cb9724 20a1c26 7dcc422 20a1c26 7dcc422 3cb9724 20a1c26 3cb9724 20a1c26 3cb9724 7dcc422 20a1c26 7dcc422 3cb9724 7dcc422 3cb9724 20a1c26 3cb9724 7dcc422 3cb9724 7dcc422 20a1c26 3cb9724 20a1c26 3cb9724 7dcc422 3cb9724 7dcc422 3cb9724 7dcc422 3cb9724 20a1c26 3cb9724 20a1c26 8cadfdd 20a1c26 8cadfdd 20a1c26 8cadfdd 20a1c26 8cadfdd 3cb9724 8cadfdd 3cb9724 20a1c26 3cb9724 7dcc422 20a1c26 3cb9724 20a1c26 7dcc422 20a1c26 7dcc422 3cb9724 7dcc422 20a1c26 3cb9724 20a1c26 3cb9724 20a1c26 7dcc422 3cb9724 20a1c26 7dcc422 3cb9724 7dcc422 3cb9724 7dcc422 3cb9724 20a1c26 3cb9724 20a1c26 3cb9724 20a1c26 3cb9724 20a1c26 3cb9724 20a1c26 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 |
# app.py
from fastapi import FastAPI, HTTPException, Header, Request, Query
from pydantic import BaseModel
import requests
import json
import hmac
import hashlib
import pandas as pd
import os
import re
import statistics
from datetime import datetime, timedelta
from typing import Optional, Dict, Any, List, Union
import requests
import urllib.parse
app = FastAPI(title="Krishi Mitra API")
# -------------------------
# Configuration (update with env vars in production)
# -------------------------
RETELL_SECRET_KEY = os.getenv("RETELL_SECRET_KEY", "key_bdb05277a4587c7441bdad4a2c1b")
WEATHER_API_KEY = os.getenv("WEATHER_API_KEY", "ee75ffd59875aa5ca6c207e594336b30")
# -------------------------
# CSV loader
# -------------------------
def load_csv_data():
"""Load all CSV files into memory; trim whitespace from columns and string cells."""
data = {}
csv_files = {
'contact_info': './data/contact_info.csv',
'crop_advisory': './data/crop_advisory.csv',
'government_schemes': './data/government_schemes.csv',
'market_prices': './data/market_prices.csv'
}
for key, file_path in csv_files.items():
try:
if os.path.exists(file_path):
df = pd.read_csv(file_path)
# strip whitespace from column names
df.columns = df.columns.str.strip()
# strip whitespace from string columns
for col in df.select_dtypes(include=['object']).columns:
df[col] = df[col].astype(str).str.strip()
data[key] = df
print(f"Loaded {key} ({file_path}): {len(df)} records")
else:
print(f"Warning: {file_path} not found - {key} will be empty")
data[key] = pd.DataFrame()
except Exception as e:
print(f"Error loading {file_path}: {e}")
data[key] = pd.DataFrame()
return data
csv_data = load_csv_data()
# -------------------------
# Helpers
# -------------------------
def verify_retell_signature(request_body: bytes, signature: Optional[str]) -> bool:
"""Verify the request is from Retell.ai if signature provided. If no signature, treat as allowed (for local testing)."""
if not signature:
return True
expected_signature = hmac.new(
RETELL_SECRET_KEY.encode(),
request_body,
hashlib.sha256
).hexdigest()
return hmac.compare_digest(signature, expected_signature)
def find_column(df: pd.DataFrame, candidates: List[str]) -> Optional[str]:
"""Return first matching column name from candidates (case-insensitive) or None."""
cols = {c.lower(): c for c in df.columns}
for cand in candidates:
if cand and cand.lower() in cols:
return cols[cand.lower()]
return None
def extract_number_from_price(val: Any) -> Optional[float]:
"""Extract numeric value from messy price strings like '₹2,180 per quintal'."""
if pd.isna(val):
return None
if isinstance(val, (int, float)):
return float(val)
s = str(val)
s = s.replace('₹', '').replace('Rs', '').replace('INR', '')
match = re.search(r"(-?\d{1,3}(?:[,]\d{3})*(?:\.\d+)?|-?\d+(?:\.\d+)?)", s)
if match:
try:
return float(match.group(0).replace(',', ''))
except:
return None
return None
def format_scheme_row(row: pd.Series, mapping: Dict[str,str]) -> Dict[str,str]:
"""Normalize scheme row into dict keys used in responses."""
return {
"scheme": row.get(mapping.get("name", ""), "N/A"),
"introduction": row.get(mapping.get("introduction", ""), ""),
"objective": row.get(mapping.get("objective", ""), ""),
"benefit": row.get(mapping.get("benefit", ""), ""),
"eligibility": row.get(mapping.get("eligibility", ""), ""),
"process": row.get(mapping.get("process", ""), "Contact local agriculture office"),
"contact": row.get(mapping.get("contact", ""), ""),
"extra": row.get(mapping.get("extra", ""), "")
}
def get_schemes_from_csv(farmer_category: str, land_size: float, state: str, crop_type: str) -> List[Dict[str,str]]:
"""Return list of scheme dicts from government_schemes CSV (with simple heuristics)."""
schemes_out = []
df = csv_data.get('government_schemes', pd.DataFrame())
if df.empty:
return []
mapping = {
"name": find_column(df, ["Name", "scheme_name", "Scheme", "Scheme Name"]),
"introduction": find_column(df, ["Introduction", "introduction", "Description"]),
"objective": find_column(df, ["Objective", "objective"]),
"benefit": find_column(df, ["Benefits", "Benefit", "benefit"]),
"eligibility": find_column(df, ["Eligibility Criteria", "eligibility", "Eligibility", "eligibility_criteria"]),
"process": find_column(df, ["Application Process & Required Documents", "application_process", "Process", "application_process & required_documents"]),
"contact": find_column(df, ["Helpline & Website", "contact", "Helpline", "helpline"]),
"extra": find_column(df, ["Extra Details", "extra_details", "Extra"])
}
all_schemes = []
for _, r in df.iterrows():
all_schemes.append(format_scheme_row(r, mapping))
prioritized = []
others = []
state_lower = (state or "").lower()
farmer_cat_lower = (farmer_category or "").lower()
crop_lower = (crop_type or "").lower()
for s in all_schemes:
elig = str(s.get("eligibility", "")).lower()
text_blob = " ".join([
str(s.get("scheme","") or ""),
str(s.get("introduction","") or ""),
str(s.get("objective","") or ""),
str(s.get("benefit","") or ""),
str(s.get("eligibility","") or ""),
str(s.get("extra","") or "")
]).lower()
score = 0
if state_lower and state_lower in text_blob:
score += 2
if land_size and ("land" in elig or "landholding" in elig or "land" in text_blob):
score += 2
if "all" in elig or "all farmers" in elig:
score += 1
if crop_lower and crop_lower in text_blob:
score += 2
if farmer_cat_lower and farmer_cat_lower in text_blob:
score += 1
if score >= 2:
prioritized.append((score, s))
else:
others.append((score, s))
prioritized.sort(key=lambda x: x[0], reverse=True)
others.sort(key=lambda x: x[0], reverse=True)
schemes_out = [s for _, s in prioritized] + [s for _, s in others]
return schemes_out
# -------------------------
# Weather helper (simple)
# -------------------------
def get_weather(city: str):
"""Fetch weather data from OpenWeatherMap API. Returns (temperature, humidity, description, pressure) or (None,...)."""
if not city:
return None, None, None, None
url = f"https://api.openweathermap.org/data/2.5/weather?q={city}&appid={WEATHER_API_KEY}&units=metric"
try:
resp = requests.get(url, timeout=5)
resp.raise_for_status()
data = resp.json()
if str(data.get("cod")) == "200":
weather_description = data['weather'][0]['description']
temperature = data['main']['temp']
humidity = data['main']['humidity']
pressure = data['main']['pressure']
return temperature, humidity, weather_description, pressure
except Exception as e:
print(f"Weather fetch error: {e}")
return None, None, None, None
# -------------------------
# Market Prices Helper Functions (Updated for CSV)
# -------------------------
def get_market_prices_from_csv(state: str, district: Optional[str] = None, crop_name: Optional[str] = None):
"""
Fetch market price data from local CSV file
Returns (success: bool, data: list, message: str)
"""
try:
# Load market prices CSV
market_df = csv_data.get('market_prices', pd.DataFrame())
# If market_prices not loaded, try to load it directly
if market_df.empty:
market_csv_path = './data/market_prices.csv'
if os.path.exists(market_csv_path):
market_df = pd.read_csv(market_csv_path)
# Clean column names and string data
market_df.columns = market_df.columns.str.strip()
for col in market_df.select_dtypes(include=['object']).columns:
market_df[col] = market_df[col].astype(str).str.strip()
# Update the global csv_data
csv_data['market_prices'] = market_df
else:
return False, [], f"Market prices CSV file not found at {market_csv_path}"
if market_df.empty:
return False, [], "No market price data available"
# Find relevant columns (case-insensitive matching)
state_col = find_column(market_df, ["State", "state"])
district_col = find_column(market_df, ["District", "district"])
commodity_col = find_column(market_df, ["Commodity", "commodity", "Crop", "crop"])
market_col = find_column(market_df, ["Market", "market"])
variety_col = find_column(market_df, ["Variety", "variety"])
date_col = find_column(market_df, ["Arrival_Date", "arrival_date", "Date", "date"])
min_price_col = find_column(market_df, ["Min_x0020_Price", "min_price", "Min_Price", "Minimum_Price"])
max_price_col = find_column(market_df, ["Max_x0020_Price", "max_price", "Max_Price", "Maximum_Price"])
modal_price_col = find_column(market_df, ["Modal_x0020_Price", "modal_price", "Modal_Price", "Average_Price"])
if not state_col:
return False, [], "State column not found in market prices data"
# Filter by state (case-insensitive)
filtered_df = market_df[market_df[state_col].astype(str).str.contains(state, case=False, na=False)]
# Filter by district if provided
if district and district_col:
filtered_df = filtered_df[filtered_df[district_col].astype(str).str.contains(district, case=False, na=False)]
# Filter by crop/commodity if provided
if crop_name and commodity_col:
filtered_df = filtered_df[filtered_df[commodity_col].astype(str).str.contains(crop_name, case=False, na=False)]
if filtered_df.empty:
return False, [], f"No market price data found for the specified criteria"
# Convert to list of dictionaries
processed_data = []
for _, record in filtered_df.iterrows():
processed_record = {
"state": record.get(state_col, "") if state_col else "",
"district": record.get(district_col, "") if district_col else "",
"market": record.get(market_col, "") if market_col else "",
"commodity": record.get(commodity_col, "") if commodity_col else "",
"variety": record.get(variety_col, "") if variety_col else "",
"arrival_date": record.get(date_col, "") if date_col else "",
"min_price": record.get(min_price_col, "") if min_price_col else "",
"max_price": record.get(max_price_col, "") if max_price_col else "",
"modal_price": record.get(modal_price_col, "") if modal_price_col else ""
}
processed_data.append(processed_record)
return True, processed_data, f"Found {len(processed_data)} market price records"
except Exception as e:
return False, [], f"Error processing market data: {str(e)}"
def format_market_prices_response(data: List[Dict], state: str, district: Optional[str] = None, crop_name: Optional[str] = None):
"""
Format market price data into a voice-friendly response
"""
if not data:
location_text = f"{district}, {state}" if district else state
return f"No current market price data available for {location_text}. Please contact your local market or agriculture office for current rates."
# Group data by commodity for better presentation
commodity_data = {}
for record in data:
commodity = record.get("commodity", "Unknown")
if commodity not in commodity_data:
commodity_data[commodity] = []
commodity_data[commodity].append(record)
# Build response text
location_text = f"{district}, {state}" if district else state
if crop_name and crop_name.lower() in [c.lower() for c in commodity_data.keys()]:
# Specific crop requested
matching_commodity = next(c for c in commodity_data.keys() if c.lower() == crop_name.lower())
crop_records = commodity_data[matching_commodity]
if len(crop_records) == 1:
record = crop_records[0]
response_text = f"Market price for {matching_commodity} in {record.get('market', location_text)}: "
# Clean and format prices
min_price = extract_number_from_price(record.get('min_price', ''))
max_price = extract_number_from_price(record.get('max_price', ''))
modal_price = extract_number_from_price(record.get('modal_price', ''))
if min_price is not None:
response_text += f"Minimum ₹{min_price:.0f}, "
if max_price is not None:
response_text += f"Maximum ₹{max_price:.0f}, "
if modal_price is not None:
response_text += f"Modal price ₹{modal_price:.0f} per quintal. "
else:
response_text += "per quintal. "
if record.get('arrival_date'):
response_text += f"Data from {record.get('arrival_date')}."
else:
# Multiple records for the same commodity
min_prices = []
max_prices = []
modal_prices = []
for r in crop_records:
min_p = extract_number_from_price(r.get('min_price', ''))
max_p = extract_number_from_price(r.get('max_price', ''))
modal_p = extract_number_from_price(r.get('modal_price', ''))
if min_p is not None:
min_prices.append(min_p)
if max_p is not None:
max_prices.append(max_p)
if modal_p is not None:
modal_prices.append(modal_p)
response_text = f"Market prices for {matching_commodity} in {location_text}: "
if min_prices and max_prices:
response_text += f"Price range ₹{min(min_prices):.0f} to ₹{max(max_prices):.0f} per quintal. "
if modal_prices:
avg_modal = sum(modal_prices) / len(modal_prices)
response_text += f"Average modal price ₹{avg_modal:.0f} per quintal. "
response_text += f"Data from {len(crop_records)} markets."
else:
# General market overview or multiple commodities
response_text = f"Current market prices in {location_text}: "
commodity_summaries = []
for commodity, records in list(commodity_data.items())[:5]: # Limit to 5 commodities for voice
if records:
modal_prices = []
for r in records:
modal_p = extract_number_from_price(r.get('modal_price', ''))
if modal_p is not None:
modal_prices.append(modal_p)
if modal_prices:
avg_price = sum(modal_prices) / len(modal_prices)
commodity_summaries.append(f"{commodity} at ₹{avg_price:.0f}")
else:
commodity_summaries.append(f"{commodity} (price varies)")
if commodity_summaries:
response_text += ", ".join(commodity_summaries) + " per quintal. "
if len(commodity_data) > 5:
response_text += f"And {len(commodity_data) - 5} more commodities available."
return response_text
# -------------------------
# Request models (if needed)
# -------------------------
class RetellRequest(BaseModel):
name: str
call: Dict[str, Any]
args: Dict[str, Any]
# -------------------------
# Endpoints
# -------------------------
# Root and health
@app.get("/")
async def root():
return {
"message": "Krishi Mitra API is running!",
"endpoints": [
"/api/market-prices (GET|POST)",
"/api/scheme-eligibility (GET|POST)",
"/api/weather-advisory (GET|POST)",
"/api/crop-advisory (GET|POST)",
"/api/csv-status (GET)",
"/health (GET)"
]
}
@app.get("/health")
async def health_check():
return {
"status": "healthy",
"service": "Krishi Mitra API",
"csv_files_loaded": {key: len(df) for key, df in csv_data.items()}
}
@app.get("/api/csv-status")
async def csv_status():
"""Check status of loaded CSV files"""
status = {}
for key, df in csv_data.items():
status[key] = {
"loaded": not df.empty,
"records": len(df),
"columns": list(df.columns) if not df.empty else []
}
return status
# -------------------------
# Market prices (Updated for CSV)
# -------------------------
@app.post("/api/market-prices")
async def market_prices_post(request: Request):
"""
Get market prices from local CSV data
"""
try:
body = await request.json() if (await request.body()) else {}
# Extract parameters from different possible locations in payload
query_params = body.get("query", {})
args_params = body.get("args", {})
crop_name = (
query_params.get("crop_name", "") or
args_params.get("crop_name", "") or
body.get("crop_name", "")
).strip()
state = (
query_params.get("state", "") or
args_params.get("state", "") or
body.get("state", "")
).strip()
district = (
query_params.get("district", "") or
args_params.get("district", "") or
body.get("district", "")
).strip()
if not state:
return {
"success": False,
"result": "Please provide state name to get market prices.",
"data": []
}
# Fetch market data from CSV
success, data, message = get_market_prices_from_csv(state, district or None, crop_name or None)
if success:
response_text = format_market_prices_response(data, state, district or None, crop_name or None)
return {
"success": True,
"result": response_text,
"data": data[:10], # Limit response data for voice interface
"total_records": len(data)
}
else:
# Fallback message
location_text = f"{district}, {state}" if district else state
fallback_message = f"Current market price data for {location_text} is not available right now. Please contact your local mandi or agriculture market committee for current rates."
return {
"success": False,
"result": fallback_message,
"data": [],
"error": message
}
except Exception as e:
return {
"success": False,
"result": "I'm having trouble accessing market price data right now. Please contact your local mandi for current rates.",
"data": [],
"error": str(e)
}
@app.get("/api/market-prices")
async def market_prices_get(
crop_name: Optional[str] = Query("", alias="crop_name"),
state: Optional[str] = Query("", alias="state"),
district: Optional[str] = Query("", alias="district")
):
"""
Get market prices via GET request from local CSV
"""
if not state:
return {
"success": False,
"result": "Please provide state parameter to get market prices.",
"data": []
}
try:
# Fetch market data from CSV
success, data, message = get_market_prices_from_csv(state.strip(), district.strip() if district else None, crop_name.strip() if crop_name else None)
if success:
response_text = format_market_prices_response(data, state.strip(), district.strip() if district else None, crop_name.strip() if crop_name else None)
return {
"success": True,
"result": response_text,
"data": data[:10], # Limit response data
"total_records": len(data)
}
else:
# Fallback message
location_text = f"{district}, {state}" if district else state
fallback_message = f"Current market price data for {location_text} is not available right now. Please contact your local mandi or agriculture market committee for current rates."
return {
"success": False,
"result": fallback_message,
"data": [],
"error": message
}
except Exception as e:
return {
"success": False,
"result": "I'm having trouble accessing market price data right now. Please contact your local mandi for current rates.",
"data": [],
"error": str(e)
}
# -------------------------
# Scheme eligibility (POST for Retell style, GET for easy testing)
# -------------------------
@app.post("/api/scheme-eligibility")
async def scheme_eligibility_endpoint(
request: Request,
x_retell_signature: Optional[str] = Header(None, alias="X-Retell-Signature")
):
request_body = await request.body()
# verify signature if header present
if x_retell_signature and not verify_retell_signature(request_body, x_retell_signature):
raise HTTPException(status_code=401, detail="Invalid Retell signature")
try:
payload = json.loads(request_body.decode('utf-8')) if request_body else {}
except Exception:
payload = {}
farmer_category = payload.get("args", {}).get("farmer_category", "") or payload.get("farmer_category", "")
land_size = payload.get("args", {}).get("land_size", 0) or payload.get("land_size", 0)
state = payload.get("args", {}).get("state", "") or payload.get("state", "")
crop_type = payload.get("args", {}).get("crop_type", "") or payload.get("crop_type", "")
try:
eligible_schemes = []
if not csv_data['government_schemes'].empty:
# ensure land_size numeric
try:
land_size_f = float(land_size) if land_size not in [None, ""] else 0.0
except:
land_size_f = 0.0
eligible_schemes = get_schemes_from_csv(farmer_category or "", land_size_f, state or "", crop_type or "")
# Fallback defaults
if not eligible_schemes:
try:
ls_f = float(land_size) if land_size not in [None, ""] else 0.0
except:
ls_f = 0.0
if ls_f > 0:
eligible_schemes.append({
"scheme": "PM-KISAN",
"benefit": "₹6,000 per year in 3 installments",
"description": "Direct income support to landholding farmer families.",
"eligibility": "All landholding farmer families.",
"process": "Apply via pmkisan.gov.in or your nearest CSC",
"contact": "https://pmkisan.gov.in/"
})
eligible_schemes.append({
"scheme": "Pradhan Mantri Fasal Bima Yojana",
"benefit": "Comprehensive crop insurance coverage",
"description": "Crop insurance against natural calamities, pests, and diseases.",
"eligibility": "All farmers in notified crops/areas",
"process": "Contact your nearest bank, CSC or PMFBY portal",
"contact": "https://pmfby.gov.in/"
})
if state and state.strip().lower() == "punjab":
eligible_schemes.append({
"scheme": "Punjab Crop Diversification Scheme",
"benefit": "₹17,500 per hectare for diversification",
"process": "Contact District Agriculture Officer",
"contact": ""
})
# Build voice-friendly text (limit first 3)
if eligible_schemes:
schemes_text = f"You are eligible for {len(eligible_schemes)} government schemes: "
for i, scheme in enumerate(eligible_schemes[:3]):
contact_info = f" Apply through {scheme.get('process','Contact local agriculture office')}"
if scheme.get('contact'):
contact_info += f" or contact {scheme.get('contact')}"
schemes_text += f"{i+1}. {scheme.get('scheme','N/A')} - {scheme.get('benefit', scheme.get('description','N/A'))}.{contact_info}. "
if len(eligible_schemes) > 3:
schemes_text += f"And {len(eligible_schemes)-3} more schemes available."
else:
schemes_text = "I couldn't find specific schemes for your profile. Please contact your local agriculture department for personalized advice."
return {
"result": schemes_text,
"eligible_schemes": eligible_schemes
}
except Exception as e:
return {
"result": "I'm having trouble accessing scheme information right now. Please contact your local agriculture officer.",
"error": str(e)
}
@app.get("/api/scheme-eligibility")
async def scheme_eligibility_get(
farmer_category: Optional[str] = Query("", alias="farmer_category"),
land_size: Optional[float] = Query(0.0, alias="land_size"),
state: Optional[str] = Query("", alias="state"),
crop_type: Optional[str] = Query("", alias="crop_type")
):
try:
eligible_schemes = []
if not csv_data['government_schemes'].empty:
eligible_schemes = get_schemes_from_csv(farmer_category or "", float(land_size or 0.0), state or "", crop_type or "")
if not eligible_schemes:
if float(land_size or 0.0) > 0:
eligible_schemes.append({
"scheme": "PM-KISAN",
"benefit": "₹6,000 per year in 3 installments",
"description": "Direct income support to landholding farmer families.",
"eligibility": "All landholding farmer families.",
"process": "Apply via pmkisan.gov.in or your nearest CSC",
"contact": "https://pmkisan.gov.in/"
})
eligible_schemes.append({
"scheme": "Pradhan Mantri Fasal Bima Yojana",
"benefit": "Comprehensive crop insurance coverage",
"description": "Crop insurance against natural calamities, pests, and diseases.",
"eligibility": "All farmers in notified crops/areas",
"process": "Contact your nearest bank, CSC or PMFBY portal",
"contact": "https://pmfby.gov.in/"
})
if state and state.strip().lower() == "punjab":
eligible_schemes.append({
"scheme": "Punjab Crop Diversification Scheme",
"benefit": "₹17,500 per hectare for diversification",
"process": "Contact District Agriculture Officer",
"contact": ""
})
# Build text
if eligible_schemes:
schemes_text = f"You are eligible for {len(eligible_schemes)} government schemes: "
for i, scheme in enumerate(eligible_schemes[:3]):
contact_info = f" Apply through {scheme.get('process','Contact local agriculture office')}"
if scheme.get('contact'):
contact_info += f" or contact {scheme.get('contact')}"
schemes_text += f"{i+1}. {scheme.get('scheme','N/A')} - {scheme.get('benefit', scheme.get('description','N/A'))}.{contact_info}. "
if len(eligible_schemes) > 3:
schemes_text += f"And {len(eligible_schemes)-3} more schemes available."
else:
schemes_text = "I couldn't find specific schemes for your profile. Please contact your local agriculture department for personalized advice."
return {
"result": schemes_text,
"eligible_schemes": eligible_schemes
}
except Exception as e:
return {"result": "Error computing schemes", "error": str(e)}
# -------------------------
# Weather advisory (POST and GET)
# -------------------------
@app.post("/api/weather-advisory")
async def weather_advisory_post(request: Request):
body = await request.json() if (await request.body()) else {}
city = body.get("query", {}).get("location", "").strip() if body else ""
temperature, humidity, description, pressure = get_weather(city)
if temperature is None:
temperature, humidity, description, pressure = 32.0, 60, "Not Available", 1012
weather_condition = "NORMAL"
else:
desc_lower = (description or "").lower()
if "clear" in desc_lower:
weather_condition = "SUNNY"
elif "rain" in desc_lower:
weather_condition = "RAINY"
elif "wind" in desc_lower:
weather_condition = "WINDY"
else:
weather_condition = "NORMAL"
result = (
f"Weather in {city or 'your location'}: {description}. "
f"Temperature {temperature}°C, Humidity {humidity}%, Pressure {pressure} hPa. "
f"Condition classified as {weather_condition}."
)
return {
"success": True,
"result": result,
"data": {
"city": city,
"temperature": temperature,
"humidity": humidity,
"pressure": pressure,
"description": description,
"condition": weather_condition
}
}
@app.get("/api/weather-advisory")
async def weather_advisory_get(location: Optional[str] = Query("", alias="location")):
# delegate to same logic above
temperature, humidity, description, pressure = get_weather(location)
if temperature is None:
temperature, humidity, description, pressure = 32.0, 60, "Not Available", 1012
weather_condition = "NORMAL"
else:
desc_lower = (description or "").lower()
if "clear" in desc_lower:
weather_condition = "SUNNY"
elif "rain" in desc_lower:
weather_condition = "RAINY"
elif "wind" in desc_lower:
weather_condition = "WINDY"
else:
weather_condition = "NORMAL"
result = (
f"Weather in {location or 'your location'}: {description}. "
f"Temperature {temperature}°C, Humidity {humidity}%, Pressure {pressure} hPa. "
f"Condition classified as {weather_condition}."
)
return {
"success": True,
"result": result,
"data": {
"city": location,
"temperature": temperature,
"humidity": humidity,
"pressure": pressure,
"description": description,
"condition": weather_condition
}
}
# -------------------------
# Crop advisory (POST - Retell style; GET - query params)
# -------------------------
@app.post("/api/crop-advisory")
async def crop_advisory_endpoint(
request: Request,
x_retell_signature: Optional[str] = Header(None, alias="X-Retell-Signature")
):
request_body = await request.body()
if x_retell_signature and not verify_retell_signature(request_body, x_retell_signature):
raise HTTPException(status_code=401, detail="Invalid Retell signature")
try:
payload = json.loads(request_body.decode('utf-8')) if request_body else {}
except Exception:
payload = {}
crop_name = (payload.get("args", {}).get("crop_name", "") or payload.get("crop_name", "") or "").strip()
growth_stage = (payload.get("args", {}).get("growth_stage", "") or payload.get("growth_stage", "") or "").strip()
issue_type = (payload.get("args", {}).get("issue_type", "general") or payload.get("issue_type", "general") or "general").strip().lower()
state = (payload.get("args", {}).get("state", "") or payload.get("state", "") or "").strip()
try:
advisory = None
contact_info = ""
# Search crop_advisory CSV robustly (support various column names)
df = csv_data.get('crop_advisory', pd.DataFrame())
if not df.empty:
# find likely columns
crop_col = find_column(df, ["crop", "Crop", "Crop Name", "crop_name"])
sowing_col = find_column(df, ["sowing_time", "Sowing_Time", "Sowing Time", "Sowing"])
fertilizer_col = find_column(df, ["fertilizer", "Fertilizer"])
season_col = find_column(df, ["season", "Season"])
issues_col = find_column(df, ["common_issues", "Common_Issues", "Common Issues", "Common_Issues"])
solution_col = find_column(df, ["solution", "Solution", "Solution"])
if crop_col and crop_name:
matches = df[df[crop_col].astype(str).str.contains(crop_name, case=False, na=False)]
elif crop_col:
matches = df.copy()
else:
matches = pd.DataFrame()
if not matches.empty:
crop_info = matches.iloc[0]
parts = []
if issue_type == "general":
if sowing_col and pd.notna(crop_info.get(sowing_col)):
parts.append(f"Sowing time: {crop_info[sowing_col]}")
if fertilizer_col and pd.notna(crop_info.get(fertilizer_col)):
parts.append(f"Recommended fertilizer: {crop_info[fertilizer_col]}")
if season_col and pd.notna(crop_info.get(season_col)):
parts.append(f"Best season: {crop_info[season_col]}")
if issues_col and solution_col and pd.notna(crop_info.get(issues_col)) and pd.notna(crop_info.get(solution_col)):
if issue_type in ['pest', 'disease'] or issue_type == 'general':
parts.append(f"For {crop_info[issues_col]}: {crop_info[solution_col]}")
if parts:
advisory = f"For {crop_name or crop_info.get(crop_col,'the crop')}: " + ". ".join(parts)
# contact info from contact_info CSV
df_contact = csv_data.get('contact_info', pd.DataFrame())
if not df_contact.empty and state:
state_col = find_column(df_contact, ["state", "State", "state_name"])
if state_col:
contact_matches = df_contact[df_contact[state_col].astype(str).str.contains(state, case=False, na=False)]
if not contact_matches.empty:
contact_match = contact_matches.iloc[0]
contact_parts = []
if 'agriculture_officer' in contact_match and pd.notna(contact_match.get('agriculture_officer')):
contact_parts.append(f"Agriculture Officer at {contact_match['agriculture_officer']}")
if 'kvk_contact' in contact_match and pd.notna(contact_match.get('kvk_contact')):
contact_parts.append(f"KVK at {contact_match['kvk_contact']}")
if 'kisan_call_center' in contact_match and pd.notna(contact_match.get('kisan_call_center')):
contact_parts.append(f"Kisan Call Center at {contact_match['kisan_call_center']}")
if contact_parts:
contact_info = f"For detailed advice in {state}, contact: " + " or ".join(contact_parts) + "."
# fallback advisory if none found
if not advisory:
if crop_name and crop_name.lower() == "wheat" and issue_type == "pest":
advisory = "For wheat pest control: If you see aphids, spray Imidacloprid 200 SL at 0.3ml per liter of water. Spray during evening hours. Avoid over-irrigation."
elif crop_name and crop_name.lower() == "rice" and issue_type == "disease":
advisory = "For rice disease management: If you see brown spots on leaves, it might be blast disease. Apply Tricyclazole 75% WP at 0.6g per liter. Ensure proper drainage."
else:
advisory = f"For {crop_name or 'the crop'} at {growth_stage or 'current'} stage: Monitor crop regularly, maintain proper spacing, apply fertilizers as per soil test recommendations."
if not contact_info:
contact_info = f"For detailed advice, contact your local Krishi Vigyan Kendra or Agriculture Officer in {state or 'your state'}. You can also call the Kisan Call Centre at 1800-1801-551."
result_text = f"{advisory} {contact_info}"
return {
"result": result_text,
"recommendations": advisory,
"contact_info": contact_info
}
except Exception as e:
return {
"result": f"I couldn't provide specific advice for {crop_name} right now. Please contact your local agriculture extension officer for crop-specific guidance.",
"error": str(e)
}
@app.get("/api/crop-advisory")
async def crop_advisory_get(
crop_name: Optional[str] = Query("", alias="crop_name"),
growth_stage: Optional[str] = Query("", alias="growth_stage"),
issue_type: Optional[str] = Query("general", alias="issue_type"),
state: Optional[str] = Query("", alias="state")
):
try:
crop_name = (crop_name or "").strip()
growth_stage = (growth_stage or "").strip()
issue_type = (issue_type or "general").strip().lower()
state = (state or "").strip()
advisory = None
contact_info = ""
df = csv_data.get('crop_advisory', pd.DataFrame())
if not df.empty:
crop_col = find_column(df, ["crop", "Crop", "Crop Name", "crop_name"])
sowing_col = find_column(df, ["sowing_time", "Sowing_Time", "Sowing Time", "Sowing"])
fertilizer_col = find_column(df, ["fertilizer", "Fertilizer"])
season_col = find_column(df, ["season", "Season"])
issues_col = find_column(df, ["common_issues", "Common_Issues", "Common Issues"])
solution_col = find_column(df, ["solution", "Solution", "Solution"])
if crop_col and crop_name:
matches = df[df[crop_col].astype(str).str.contains(crop_name, case=False, na=False)]
elif crop_col:
matches = df.copy()
else:
matches = pd.DataFrame()
if not matches.empty:
crop_info = matches.iloc[0]
parts = []
if issue_type == "general":
if sowing_col and pd.notna(crop_info.get(sowing_col)):
parts.append(f"Sowing time: {crop_info[sowing_col]}")
if fertilizer_col and pd.notna(crop_info.get(fertilizer_col)):
parts.append(f"Recommended fertilizer: {crop_info[fertilizer_col]}")
if season_col and pd.notna(crop_info.get(season_col)):
parts.append(f"Best season: {crop_info[season_col]}")
if issues_col and solution_col and pd.notna(crop_info.get(issues_col)) and pd.notna(crop_info.get(solution_col)):
if issue_type in ['pest', 'disease'] or issue_type == 'general':
parts.append(f"For {crop_info[issues_col]}: {crop_info[solution_col]}")
if parts:
advisory = f"For {crop_name or crop_info.get(crop_col,'the crop')}: " + ". ".join(parts)
# contact info
df_contact = csv_data.get('contact_info', pd.DataFrame())
if not df_contact.empty and state:
state_col = find_column(df_contact, ["state", "State", "state_name"])
if state_col:
contact_matches = df_contact[df_contact[state_col].astype(str).str.contains(state, case=False, na=False)]
if not contact_matches.empty:
contact_match = contact_matches.iloc[0]
contact_parts = []
if 'agriculture_officer' in contact_match and pd.notna(contact_match.get('agriculture_officer')):
contact_parts.append(f"Agriculture Officer at {contact_match['agriculture_officer']}")
if 'kvk_contact' in contact_match and pd.notna(contact_match.get('kvk_contact')):
contact_parts.append(f"KVK at {contact_match['kvk_contact']}")
if 'kisan_call_center' in contact_match and pd.notna(contact_match.get('kisan_call_center')):
contact_parts.append(f"Kisan Call Center at {contact_match['kisan_call_center']}")
if contact_parts:
contact_info = f"For detailed advice in {state}, contact: " + " or ".join(contact_parts) + "."
if not advisory:
if crop_name and crop_name.lower() == "wheat" and issue_type == "pest":
advisory = "For wheat pest control: If you see aphids, spray Imidacloprid 200 SL at 0.3ml per liter of water. Spray during evening hours. Avoid over-irrigation."
elif crop_name and crop_name.lower() == "rice" and issue_type == "disease":
advisory = "For rice disease management: If you see brown spots on leaves, it might be blast disease. Apply Tricyclazole 75% WP at 0.6g per liter. Ensure proper drainage."
else:
advisory = f"For {crop_name or 'the crop'} at {growth_stage or 'current'} stage: Monitor crop regularly, maintain proper spacing, apply fertilizers as per soil test recommendations."
if not contact_info:
contact_info = f"For detailed advice, contact your local Krishi Vigyan Kendra or Agriculture Officer in {state or 'your state'}. You can also call the Kisan Call Centre at 1800-1801-551."
result_text = f"{advisory} {contact_info}"
return {
"result": result_text,
"recommendations": advisory,
"contact_info": contact_info
}
except Exception as e:
return {
"result": "I couldn't provide specific advice right now. Please contact your local agriculture extension officer.",
"error": str(e)
}
# -------------------------
# Run server (for local dev)
# -------------------------
if __name__ == "__main__":
import uvicorn
uvicorn.run(app, host="0.0.0.0", port=int(os.getenv("PORT", 7860))) |