Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
|
@@ -7,10 +7,8 @@ import pandas as pd
|
|
| 7 |
import plotly.express as px
|
| 8 |
import plotly.io as pio
|
| 9 |
import dotenv
|
| 10 |
-
import threading
|
| 11 |
-
import tempfile
|
| 12 |
-
import shutil
|
| 13 |
import numpy as np
|
|
|
|
| 14 |
|
| 15 |
dotenv.load_dotenv()
|
| 16 |
|
|
@@ -22,9 +20,10 @@ def clean_and_standardize(df):
|
|
| 22 |
df = df.copy()
|
| 23 |
df.columns = df.columns.str.replace('_x0020_', '_', regex=False)
|
| 24 |
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_', regex=False)
|
|
|
|
| 25 |
required_columns = [
|
| 26 |
'state', 'district', 'market', 'commodity', 'variety',
|
| 27 |
-
'
|
| 28 |
]
|
| 29 |
existing_columns = [col for col in required_columns if col in df.columns]
|
| 30 |
return df[existing_columns]
|
|
@@ -70,156 +69,142 @@ def load_hierarchy_from_json(path='location_hierarchy.json'):
|
|
| 70 |
print(f"CRITICAL ERROR: Could not load '{path}'. Error: {e}")
|
| 71 |
return {}
|
| 72 |
|
| 73 |
-
def
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
|
|
|
| 78 |
"""
|
| 79 |
-
|
| 80 |
Returns a cleaned DataFrame with duplicate columns consolidated and arrival_date normalized.
|
| 81 |
"""
|
| 82 |
api_key = os.environ.get('DATA_GOV_API_KEY',
|
| 83 |
"579b464db66ec23bdd00000140925613394847c57ae13db180760f06")
|
| 84 |
base_url = "https://api.data.gov.in/resource/35985678-0d79-46b4-9ed6-6f13308a1d24"
|
| 85 |
|
| 86 |
-
#
|
| 87 |
-
|
| 88 |
-
try:
|
| 89 |
-
df_cache = pd.read_csv(cache_path)
|
| 90 |
-
print(f"[fetch_market_data] Loaded cache '{cache_path}' ({len(df_cache)} rows).")
|
| 91 |
-
dataframes_to_combine = [df_cache]
|
| 92 |
-
try:
|
| 93 |
-
df_csv = pd.read_csv("final_price_data.csv")
|
| 94 |
-
dataframes_to_combine.append(df_csv)
|
| 95 |
-
except FileNotFoundError:
|
| 96 |
-
pass
|
| 97 |
-
df_combined = pd.concat(dataframes_to_combine, ignore_index=True, sort=False)
|
| 98 |
-
# first, consolidate duplicate columns (if any)
|
| 99 |
-
df_combined = consolidate_duplicate_columns(df_combined)
|
| 100 |
-
cleaned = clean_and_standardize(df_combined)
|
| 101 |
-
if 'arrival_date' in cleaned.columns:
|
| 102 |
-
cleaned = cleaned.copy()
|
| 103 |
-
cleaned.loc[:, 'arrival_date'] = pd.to_datetime(
|
| 104 |
-
cleaned['arrival_date'].astype(str).str.replace('\\/', '-', regex=True),
|
| 105 |
-
dayfirst=True, errors='coerce'
|
| 106 |
-
)
|
| 107 |
-
return cleaned
|
| 108 |
-
except Exception as e:
|
| 109 |
-
print(f"[fetch_market_data] Failed reading cache: {e}. Will fetch live.")
|
| 110 |
-
|
| 111 |
-
# Background start support
|
| 112 |
-
if not synchronous:
|
| 113 |
-
t = threading.Thread(target=fetch_market_data, kwargs={
|
| 114 |
-
'state': state, 'district': district, 'cache_path': cache_path,
|
| 115 |
-
'use_cache': use_cache, 'force_refresh': force_refresh,
|
| 116 |
-
'sleep_between': sleep_between, 'page_size': page_size, 'synchronous': True
|
| 117 |
-
}, daemon=True)
|
| 118 |
-
t.start()
|
| 119 |
-
print("[fetch_market_data] Started background fetcher thread (single-request mode).")
|
| 120 |
-
return None
|
| 121 |
-
|
| 122 |
-
# Build params for single request
|
| 123 |
params = {
|
| 124 |
"api-key": api_key,
|
| 125 |
-
"format": "json"
|
|
|
|
|
|
|
| 126 |
}
|
|
|
|
| 127 |
if state:
|
| 128 |
params["filters[State]"] = state
|
| 129 |
if district:
|
| 130 |
params["filters[District]"] = district
|
| 131 |
|
| 132 |
-
temp_fd, temp_file = tempfile.mkstemp(suffix='.csv')
|
| 133 |
-
os.close(temp_fd)
|
| 134 |
try:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 135 |
try:
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
| 148 |
-
|
| 149 |
-
|
| 150 |
-
try:
|
| 151 |
-
df_csv = pd.read_csv("final_price_data.csv")
|
| 152 |
-
df_csv = consolidate_duplicate_columns(df_csv)
|
| 153 |
-
return clean_and_standardize(df_csv)
|
| 154 |
-
except FileNotFoundError:
|
| 155 |
-
return pd.DataFrame()
|
| 156 |
-
|
| 157 |
try:
|
| 158 |
-
|
| 159 |
-
|
| 160 |
-
|
| 161 |
-
|
| 162 |
-
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
| 169 |
-
if not records and isinstance(data, list):
|
| 170 |
-
records = data
|
| 171 |
-
|
| 172 |
-
if not records:
|
| 173 |
-
print("[fetch_market_data] No records returned by API in single response.")
|
| 174 |
-
try:
|
| 175 |
-
df_csv = pd.read_csv("final_price_data.csv")
|
| 176 |
-
df_csv = consolidate_duplicate_columns(df_csv)
|
| 177 |
-
return clean_and_standardize(df_csv)
|
| 178 |
-
except FileNotFoundError:
|
| 179 |
-
return pd.DataFrame()
|
| 180 |
-
|
| 181 |
-
df_api = pd.DataFrame.from_records(records)
|
| 182 |
-
# Consolidate duplicate columns immediately
|
| 183 |
-
df_api = consolidate_duplicate_columns(df_api)
|
| 184 |
|
| 185 |
-
|
|
|
|
|
|
|
|
|
|
| 186 |
try:
|
| 187 |
-
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 199 |
try:
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 223 |
|
| 224 |
# Utility to flatten/clean numeric-like columns safely
|
| 225 |
def flatten_column(df, col):
|
|
@@ -317,7 +302,7 @@ def get_ai_insights(market_data, state, district, language="English"):
|
|
| 317 |
top_commodities_str = ", ".join([f"{name} (Avg: ₹{price:.2f})" for name, price in top_commodities.items()])
|
| 318 |
prompt = f'Analyze agricultural market data for {district}, {state}. Top commodities: {top_commodities_str}. Provide a JSON object with keys "crop_profitability", "market_analysis", "farmer_recommendations", each with an array of insights in {language}.'
|
| 319 |
try:
|
| 320 |
-
api_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-
|
| 321 |
headers = {"Content-Type": "application/json"}
|
| 322 |
payload = {"contents": [{"parts": [{"text": prompt}]}], "generationConfig": {"responseMimeType": "application/json"}}
|
| 323 |
response = requests.post(f"{api_url}?key={api_key}", headers=headers, json=payload, timeout=25)
|
|
@@ -375,33 +360,6 @@ LOCATION_HIERARCHY = load_hierarchy_from_json()
|
|
| 375 |
print("Location hierarchy loaded.")
|
| 376 |
|
| 377 |
# --- Flask Routes ---
|
| 378 |
-
@app.route('/refresh_cache', methods=['POST'])
|
| 379 |
-
def refresh_cache():
|
| 380 |
-
state = request.form.get('state')
|
| 381 |
-
district = request.form.get('district')
|
| 382 |
-
|
| 383 |
-
def _bg():
|
| 384 |
-
try:
|
| 385 |
-
fetch_market_data(state=state, district=district, cache_path='agmarknet_cache.csv',
|
| 386 |
-
use_cache=False, force_refresh=True, page_size=1000, synchronous=True)
|
| 387 |
-
print("[refresh_cache] Background refresh finished.")
|
| 388 |
-
except Exception as e:
|
| 389 |
-
print(f"[refresh_cache] Background refresh failed: {e}")
|
| 390 |
-
|
| 391 |
-
t = threading.Thread(target=_bg, daemon=True)
|
| 392 |
-
t.start()
|
| 393 |
-
return jsonify({'success': True, 'message': 'Background cache refresh started.'})
|
| 394 |
-
|
| 395 |
-
@app.route('/download_full_sync', methods=['POST'])
|
| 396 |
-
def download_full_sync():
|
| 397 |
-
state = request.form.get('state')
|
| 398 |
-
district = request.form.get('district')
|
| 399 |
-
df = fetch_market_data(state=state, district=district, cache_path='agmarknet_cache.csv',
|
| 400 |
-
use_cache=False, force_refresh=True, page_size=1000, synchronous=True)
|
| 401 |
-
if df is None or df.empty:
|
| 402 |
-
return jsonify({'success': False, 'message': 'Download produced no data.'})
|
| 403 |
-
return jsonify({'success': True, 'message': f'Download complete. Cached {len(df)} rows.'})
|
| 404 |
-
|
| 405 |
@app.route('/')
|
| 406 |
def index():
|
| 407 |
states = sorted(list(LOCATION_HIERARCHY.keys()))
|
|
@@ -439,18 +397,20 @@ def filter_data():
|
|
| 439 |
if not state:
|
| 440 |
return jsonify({'success': False, 'message': 'Please select a state.'})
|
| 441 |
|
| 442 |
-
|
|
|
|
| 443 |
if df_combined is None or df_combined.empty:
|
| 444 |
return jsonify({'success': False, 'message': 'No data found from API or local CSV.'})
|
| 445 |
|
| 446 |
# Defensive copy
|
| 447 |
df_filtered = df_combined.copy()
|
| 448 |
|
|
|
|
| 449 |
if state:
|
| 450 |
df_filtered = df_filtered[df_filtered['state'].str.lower() == state.lower()]
|
| 451 |
if district:
|
| 452 |
df_filtered = df_filtered[df_filtered['district'].str.lower() == district.lower()]
|
| 453 |
-
if market:
|
| 454 |
df_filtered = df_filtered[df_filtered['market'].str.lower() == market.lower()]
|
| 455 |
if commodity:
|
| 456 |
df_filtered = df_filtered[df_filtered['commodity'].str.lower() == commodity.lower()]
|
|
@@ -498,4 +458,4 @@ def filter_data():
|
|
| 498 |
|
| 499 |
if __name__ == '__main__':
|
| 500 |
pio.templates.default = "plotly_white"
|
| 501 |
-
app.run(debug=True, host='0.0.0.0', port=7860)
|
|
|
|
| 7 |
import plotly.express as px
|
| 8 |
import plotly.io as pio
|
| 9 |
import dotenv
|
|
|
|
|
|
|
|
|
|
| 10 |
import numpy as np
|
| 11 |
+
from datetime import datetime, timedelta
|
| 12 |
|
| 13 |
dotenv.load_dotenv()
|
| 14 |
|
|
|
|
| 20 |
df = df.copy()
|
| 21 |
df.columns = df.columns.str.replace('_x0020_', '_', regex=False)
|
| 22 |
df.columns = df.columns.str.strip().str.lower().str.replace(' ', '_', regex=False)
|
| 23 |
+
df = df.drop(columns=['grade'])
|
| 24 |
required_columns = [
|
| 25 |
'state', 'district', 'market', 'commodity', 'variety',
|
| 26 |
+
'arrival_date', 'min_price', 'max_price', 'modal_price'
|
| 27 |
]
|
| 28 |
existing_columns = [col for col in required_columns if col in df.columns]
|
| 29 |
return df[existing_columns]
|
|
|
|
| 69 |
print(f"CRITICAL ERROR: Could not load '{path}'. Error: {e}")
|
| 70 |
return {}
|
| 71 |
|
| 72 |
+
def get_last_year_date():
|
| 73 |
+
"""Get date from one year ago in dd/MM/yyyy format"""
|
| 74 |
+
last_year = datetime.now() - timedelta(days=365)
|
| 75 |
+
return last_year.strftime("%d/%m/%Y")
|
| 76 |
+
|
| 77 |
+
def fetch_market_data(state=None, district=None, market=None):
|
| 78 |
"""
|
| 79 |
+
Fetcher to use new API endpoint with arrival date filter and market filtering.
|
| 80 |
Returns a cleaned DataFrame with duplicate columns consolidated and arrival_date normalized.
|
| 81 |
"""
|
| 82 |
api_key = os.environ.get('DATA_GOV_API_KEY',
|
| 83 |
"579b464db66ec23bdd00000140925613394847c57ae13db180760f06")
|
| 84 |
base_url = "https://api.data.gov.in/resource/35985678-0d79-46b4-9ed6-6f13308a1d24"
|
| 85 |
|
| 86 |
+
# Build params for API request with arrival date from last year
|
| 87 |
+
arrival_date = get_last_year_date()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 88 |
params = {
|
| 89 |
"api-key": api_key,
|
| 90 |
+
"format": "json",
|
| 91 |
+
"limit": 1000,
|
| 92 |
+
"filters[Arrival_Date]": arrival_date
|
| 93 |
}
|
| 94 |
+
|
| 95 |
if state:
|
| 96 |
params["filters[State]"] = state
|
| 97 |
if district:
|
| 98 |
params["filters[District]"] = district
|
| 99 |
|
|
|
|
|
|
|
| 100 |
try:
|
| 101 |
+
print(f"[fetch_market_data] Sending request to API with arrival date: {arrival_date}. Params: {params}")
|
| 102 |
+
resp = requests.get(base_url, params=params, timeout=180)
|
| 103 |
+
except Exception as e:
|
| 104 |
+
print(f"[fetch_market_data] Network error on request: {e}")
|
| 105 |
+
# fallback to local CSV if present
|
| 106 |
try:
|
| 107 |
+
if os.path.exists("final_price_data.csv") and os.path.getsize("final_price_data.csv") > 0:
|
| 108 |
+
df_csv = pd.read_csv("final_price_data.csv", encoding='utf-8', on_bad_lines='skip')
|
| 109 |
+
if not df_csv.empty:
|
| 110 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 111 |
+
cleaned = clean_and_standardize(df_csv)
|
| 112 |
+
if market and 'market' in cleaned.columns:
|
| 113 |
+
cleaned = cleaned[cleaned['market'].str.lower() == market.lower()]
|
| 114 |
+
return cleaned
|
| 115 |
+
except Exception as csv_err:
|
| 116 |
+
print(f"[fetch_market_data] Could not load final_price_data.csv: {csv_err}")
|
| 117 |
+
return pd.DataFrame()
|
| 118 |
+
|
| 119 |
+
if resp.status_code != 200:
|
| 120 |
+
print(f"[fetch_market_data] API returned {resp.status_code}: {resp.text[:500]}")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 121 |
try:
|
| 122 |
+
if os.path.exists("final_price_data.csv") and os.path.getsize("final_price_data.csv") > 0:
|
| 123 |
+
df_csv = pd.read_csv("final_price_data.csv", encoding='utf-8', on_bad_lines='skip')
|
| 124 |
+
if not df_csv.empty:
|
| 125 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 126 |
+
cleaned = clean_and_standardize(df_csv)
|
| 127 |
+
if market and 'market' in cleaned.columns:
|
| 128 |
+
cleaned = cleaned[cleaned['market'].str.lower() == market.lower()]
|
| 129 |
+
return cleaned
|
| 130 |
+
except Exception as csv_err:
|
| 131 |
+
print(f"[fetch_market_data] Could not load final_price_data.csv: {csv_err}")
|
| 132 |
+
return pd.DataFrame()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 133 |
|
| 134 |
+
try:
|
| 135 |
+
data = resp.json()
|
| 136 |
+
except Exception as e:
|
| 137 |
+
print(f"[fetch_market_data] JSON decode error: {e}")
|
| 138 |
try:
|
| 139 |
+
if os.path.exists("final_price_data.csv") and os.path.getsize("final_price_data.csv") > 0:
|
| 140 |
+
df_csv = pd.read_csv("final_price_data.csv", encoding='utf-8', on_bad_lines='skip')
|
| 141 |
+
if not df_csv.empty:
|
| 142 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 143 |
+
cleaned = clean_and_standardize(df_csv)
|
| 144 |
+
if market and 'market' in cleaned.columns:
|
| 145 |
+
cleaned = cleaned[cleaned['market'].str.lower() == market.lower()]
|
| 146 |
+
return cleaned
|
| 147 |
+
except Exception as csv_err:
|
| 148 |
+
print(f"[fetch_market_data] Could not load final_price_data.csv: {csv_err}")
|
| 149 |
+
return pd.DataFrame()
|
| 150 |
+
|
| 151 |
+
# Parse the new API response format
|
| 152 |
+
records = data.get("records", [])
|
| 153 |
+
if not records and isinstance(data, list):
|
| 154 |
+
records = data
|
| 155 |
+
|
| 156 |
+
if not records:
|
| 157 |
+
print("[fetch_market_data] No records returned by API in response.")
|
| 158 |
try:
|
| 159 |
+
if os.path.exists("final_price_data.csv") and os.path.getsize("final_price_data.csv") > 0:
|
| 160 |
+
df_csv = pd.read_csv("final_price_data.csv", encoding='utf-8', on_bad_lines='skip')
|
| 161 |
+
if not df_csv.empty:
|
| 162 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 163 |
+
cleaned = clean_and_standardize(df_csv)
|
| 164 |
+
if market and 'market' in cleaned.columns:
|
| 165 |
+
cleaned = cleaned[cleaned['market'].str.lower() == market.lower()]
|
| 166 |
+
return cleaned
|
| 167 |
+
except Exception as csv_err:
|
| 168 |
+
print(f"[fetch_market_data] Could not load final_price_data.csv: {csv_err}")
|
| 169 |
+
return pd.DataFrame()
|
| 170 |
+
|
| 171 |
+
df_api = pd.DataFrame.from_records(records)
|
| 172 |
+
|
| 173 |
+
# Filter by market if specified (from the API response)
|
| 174 |
+
if market and 'Market' in df_api.columns:
|
| 175 |
+
df_api = df_api[df_api['Market'].str.lower() == market.lower()]
|
| 176 |
+
|
| 177 |
+
# Consolidate duplicate columns immediately
|
| 178 |
+
df_api = consolidate_duplicate_columns(df_api)
|
| 179 |
+
|
| 180 |
+
print(f"[fetch_market_data] Retrieved {len(df_api)} rows from API.")
|
| 181 |
+
|
| 182 |
+
# Merge with final_price_data.csv if exists
|
| 183 |
+
dataframes_to_combine = [df_api]
|
| 184 |
+
try:
|
| 185 |
+
if os.path.exists("final_price_data.csv") and os.path.getsize("final_price_data.csv") > 0:
|
| 186 |
+
df_csv = pd.read_csv("final_price_data.csv", encoding='utf-8', on_bad_lines='skip')
|
| 187 |
+
if not df_csv.empty:
|
| 188 |
+
df_csv = consolidate_duplicate_columns(df_csv)
|
| 189 |
+
dataframes_to_combine.append(df_csv)
|
| 190 |
+
except Exception as csv_err:
|
| 191 |
+
print(f"[fetch_market_data] Could not load final_price_data.csv for merging: {csv_err}")
|
| 192 |
+
|
| 193 |
+
df_combined = pd.concat(dataframes_to_combine, ignore_index=True, sort=False)
|
| 194 |
+
df_combined = consolidate_duplicate_columns(df_combined)
|
| 195 |
+
cleaned = clean_and_standardize(df_combined)
|
| 196 |
+
if 'arrival_date' in cleaned.columns:
|
| 197 |
+
cleaned = cleaned.copy()
|
| 198 |
+
cleaned.loc[:, 'arrival_date'] = pd.to_datetime(
|
| 199 |
+
cleaned['arrival_date'].astype(str).str.replace('\\/', '-', regex=True),
|
| 200 |
+
dayfirst=True, errors='coerce'
|
| 201 |
+
)
|
| 202 |
+
|
| 203 |
+
# Additional market filtering after standardization
|
| 204 |
+
if market and 'market' in cleaned.columns:
|
| 205 |
+
cleaned = cleaned[cleaned['market'].str.lower() == market.lower()]
|
| 206 |
+
|
| 207 |
+
return cleaned
|
| 208 |
|
| 209 |
# Utility to flatten/clean numeric-like columns safely
|
| 210 |
def flatten_column(df, col):
|
|
|
|
| 302 |
top_commodities_str = ", ".join([f"{name} (Avg: ₹{price:.2f})" for name, price in top_commodities.items()])
|
| 303 |
prompt = f'Analyze agricultural market data for {district}, {state}. Top commodities: {top_commodities_str}. Provide a JSON object with keys "crop_profitability", "market_analysis", "farmer_recommendations", each with an array of insights in {language}.'
|
| 304 |
try:
|
| 305 |
+
api_url = "https://generativelanguage.googleapis.com/v1beta/models/gemini-2.5-flash:generateContent"
|
| 306 |
headers = {"Content-Type": "application/json"}
|
| 307 |
payload = {"contents": [{"parts": [{"text": prompt}]}], "generationConfig": {"responseMimeType": "application/json"}}
|
| 308 |
response = requests.post(f"{api_url}?key={api_key}", headers=headers, json=payload, timeout=25)
|
|
|
|
| 360 |
print("Location hierarchy loaded.")
|
| 361 |
|
| 362 |
# --- Flask Routes ---
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 363 |
@app.route('/')
|
| 364 |
def index():
|
| 365 |
states = sorted(list(LOCATION_HIERARCHY.keys()))
|
|
|
|
| 397 |
if not state:
|
| 398 |
return jsonify({'success': False, 'message': 'Please select a state.'})
|
| 399 |
|
| 400 |
+
# Pass market parameter to fetch_market_data for API filtering
|
| 401 |
+
df_combined = fetch_market_data(state, district, market)
|
| 402 |
if df_combined is None or df_combined.empty:
|
| 403 |
return jsonify({'success': False, 'message': 'No data found from API or local CSV.'})
|
| 404 |
|
| 405 |
# Defensive copy
|
| 406 |
df_filtered = df_combined.copy()
|
| 407 |
|
| 408 |
+
# Additional frontend filtering (in case not filtered by API)
|
| 409 |
if state:
|
| 410 |
df_filtered = df_filtered[df_filtered['state'].str.lower() == state.lower()]
|
| 411 |
if district:
|
| 412 |
df_filtered = df_filtered[df_filtered['district'].str.lower() == district.lower()]
|
| 413 |
+
if market and 'market' in df_filtered.columns:
|
| 414 |
df_filtered = df_filtered[df_filtered['market'].str.lower() == market.lower()]
|
| 415 |
if commodity:
|
| 416 |
df_filtered = df_filtered[df_filtered['commodity'].str.lower() == commodity.lower()]
|
|
|
|
| 458 |
|
| 459 |
if __name__ == '__main__':
|
| 460 |
pio.templates.default = "plotly_white"
|
| 461 |
+
app.run(debug=True, host='0.0.0.0', port=7860)
|