add submit button
Browse files
app.py
CHANGED
|
@@ -1,53 +1,249 @@
|
|
| 1 |
import os
|
| 2 |
-
import
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
|
| 4 |
-
|
| 5 |
-
|
| 6 |
|
| 7 |
-
|
|
|
|
| 8 |
|
| 9 |
-
|
| 10 |
-
|
| 11 |
-
|
| 12 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 14 |
|
| 15 |
-
|
| 16 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
-
def load_model(model_name):
|
| 19 |
-
"""Load the model and tokenizer if not already loaded."""
|
| 20 |
-
if model_name not in loaded_models:
|
| 21 |
-
tokenizer = AutoTokenizer.from_pretrained(model_name)
|
| 22 |
-
model = AutoModelForCausalLM.from_pretrained(
|
| 23 |
-
model_name, torch_dtype=torch.float16, device_map="auto"
|
| 24 |
-
)
|
| 25 |
-
loaded_models[model_name] = (tokenizer, model)
|
| 26 |
-
return loaded_models[model_name]
|
| 27 |
|
| 28 |
@spaces.GPU
|
| 29 |
-
def
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
|
| 33 |
-
|
| 34 |
-
|
| 35 |
-
|
| 36 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 37 |
model_choices = [
|
| 38 |
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
| 39 |
"meta-llama/Llama-3.2-3B-Instruct",
|
| 40 |
-
"
|
|
|
|
|
|
|
| 41 |
]
|
| 42 |
|
| 43 |
-
# Gradio interface setup
|
| 44 |
with gr.Blocks() as demo:
|
| 45 |
-
gr.Markdown("## Clinical
|
| 46 |
-
|
| 47 |
-
|
| 48 |
-
|
| 49 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 50 |
|
| 51 |
-
analyze_button.click(fn=generate_text, inputs=[model_selector, input_text], outputs=output_text)
|
| 52 |
|
| 53 |
demo.launch()
|
|
|
|
| 1 |
import os
|
| 2 |
+
import torch
|
| 3 |
+
import time
|
| 4 |
+
import gradio as gr
|
| 5 |
+
import spaces
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 7 |
+
import threading
|
| 8 |
|
| 9 |
+
from transformers import TextIteratorStreamer
|
| 10 |
+
import threading
|
| 11 |
|
| 12 |
+
from transformers import TextIteratorStreamer
|
| 13 |
+
import queue
|
| 14 |
|
| 15 |
+
class RichTextStreamer(TextIteratorStreamer):
|
| 16 |
+
def __init__(self, tokenizer, prompt_len=0, **kwargs):
|
| 17 |
+
super().__init__(tokenizer, **kwargs)
|
| 18 |
+
self.token_queue = queue.Queue()
|
| 19 |
+
self.prompt_len = prompt_len
|
| 20 |
+
self.count = 0
|
| 21 |
+
|
| 22 |
+
def put(self, value):
|
| 23 |
+
if isinstance(value, torch.Tensor):
|
| 24 |
+
token_ids = value.view(-1).tolist()
|
| 25 |
+
elif isinstance(value, list):
|
| 26 |
+
token_ids = value
|
| 27 |
+
else:
|
| 28 |
+
token_ids = [value]
|
| 29 |
|
| 30 |
+
for token_id in token_ids:
|
| 31 |
+
self.count += 1
|
| 32 |
+
if self.count <= self.prompt_len:
|
| 33 |
+
continue # skip prompt tokens
|
| 34 |
+
token_str = self.tokenizer.decode([token_id], **self.decode_kwargs)
|
| 35 |
+
is_special = token_id in self.tokenizer.all_special_ids
|
| 36 |
+
self.token_queue.put({
|
| 37 |
+
"token_id": token_id,
|
| 38 |
+
"token": token_str,
|
| 39 |
+
"is_special": is_special
|
| 40 |
+
})
|
| 41 |
|
| 42 |
+
def __iter__(self):
|
| 43 |
+
while True:
|
| 44 |
+
try:
|
| 45 |
+
token_info = self.token_queue.get(timeout=self.timeout)
|
| 46 |
+
yield token_info
|
| 47 |
+
except queue.Empty:
|
| 48 |
+
if self.end_of_generation.is_set():
|
| 49 |
+
break
|
| 50 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 51 |
|
| 52 |
@spaces.GPU
|
| 53 |
+
def chat_with_model(messages):
|
| 54 |
+
global current_model, current_tokenizer
|
| 55 |
+
if current_model is None or current_tokenizer is None:
|
| 56 |
+
yield messages + [{"role": "assistant", "content": "⚠️ No model loaded."}]
|
| 57 |
+
return
|
| 58 |
+
|
| 59 |
+
pad_id = current_tokenizer.pad_token_id
|
| 60 |
+
eos_id = current_tokenizer.eos_token_id
|
| 61 |
+
if pad_id is None:
|
| 62 |
+
pad_id = current_tokenizer.unk_token_id or 0
|
| 63 |
+
|
| 64 |
+
output_text = ""
|
| 65 |
+
in_think = False
|
| 66 |
+
max_new_tokens = 1024
|
| 67 |
+
generated_tokens = 0
|
| 68 |
+
|
| 69 |
+
prompt = format_prompt(messages)
|
| 70 |
+
device = torch.device("cuda")
|
| 71 |
+
current_model.to(device).half()
|
| 72 |
+
|
| 73 |
+
# 1. Tokenize prompt
|
| 74 |
+
inputs = current_tokenizer(prompt, return_tensors="pt").to(device)
|
| 75 |
+
prompt_len = inputs["input_ids"].shape[-1]
|
| 76 |
+
|
| 77 |
+
# 2. Init streamer with prompt_len
|
| 78 |
+
streamer = RichTextStreamer(
|
| 79 |
+
tokenizer=current_tokenizer,
|
| 80 |
+
prompt_len=prompt_len,
|
| 81 |
+
skip_special_tokens=False
|
| 82 |
+
)
|
| 83 |
+
|
| 84 |
+
# 3. Build generation kwargs
|
| 85 |
+
generation_kwargs = dict(
|
| 86 |
+
**inputs,
|
| 87 |
+
max_new_tokens=max_new_tokens,
|
| 88 |
+
do_sample=True,
|
| 89 |
+
streamer=streamer,
|
| 90 |
+
eos_token_id=eos_id,
|
| 91 |
+
pad_token_id=pad_id
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
# 4. Launch generation in a thread
|
| 95 |
+
thread = threading.Thread(target=current_model.generate, kwargs=generation_kwargs)
|
| 96 |
+
thread.start()
|
| 97 |
+
|
| 98 |
+
messages = messages.copy()
|
| 99 |
+
messages.append({"role": "assistant", "content": ""})
|
| 100 |
+
|
| 101 |
+
print(f'Step 1: {messages}')
|
| 102 |
+
|
| 103 |
+
prompt_text = current_tokenizer.decode(inputs["input_ids"][0], skip_special_tokens=False)
|
| 104 |
+
|
| 105 |
+
for token_info in streamer:
|
| 106 |
+
token_str = token_info["token"]
|
| 107 |
+
token_id = token_info["token_id"]
|
| 108 |
+
is_special = token_info["is_special"]
|
| 109 |
+
|
| 110 |
+
# Stop immediately at EOS
|
| 111 |
+
if token_id == eos_id:
|
| 112 |
+
break
|
| 113 |
+
|
| 114 |
+
# Detect reasoning block
|
| 115 |
+
if "<think>" in token_str:
|
| 116 |
+
in_think = True
|
| 117 |
+
token_str = token_str.replace("<think>", "")
|
| 118 |
+
output_text += "*"
|
| 119 |
+
|
| 120 |
+
if "</think>" in token_str:
|
| 121 |
+
in_think = False
|
| 122 |
+
token_str = token_str.replace("</think>", "")
|
| 123 |
+
output_text += token_str + "*"
|
| 124 |
+
else:
|
| 125 |
+
output_text += token_str
|
| 126 |
+
|
| 127 |
+
# Early stopping if user reappears
|
| 128 |
+
if "\nUser" in output_text:
|
| 129 |
+
output_text = output_text.split("\nUser")[0].rstrip()
|
| 130 |
+
messages[-1]["content"] = output_text
|
| 131 |
+
break
|
| 132 |
+
|
| 133 |
+
generated_tokens += 1
|
| 134 |
+
if generated_tokens >= max_new_tokens:
|
| 135 |
+
break
|
| 136 |
+
|
| 137 |
+
messages[-1]["content"] = output_text
|
| 138 |
+
|
| 139 |
+
print(f'Step 2: {messages}')
|
| 140 |
+
|
| 141 |
+
yield messages
|
| 142 |
+
|
| 143 |
+
if in_think:
|
| 144 |
+
output_text += "*"
|
| 145 |
+
messages[-1]["content"] = output_text
|
| 146 |
+
|
| 147 |
+
# Wait for thread to finish
|
| 148 |
+
# current_model.to("cpu")
|
| 149 |
+
torch.cuda.empty_cache()
|
| 150 |
+
|
| 151 |
+
messages[-1]["content"] = output_text
|
| 152 |
+
print(f'Step 3: {messages}')
|
| 153 |
+
|
| 154 |
+
return messages
|
| 155 |
+
|
| 156 |
+
|
| 157 |
+
|
| 158 |
+
# Globals
|
| 159 |
+
current_model = None
|
| 160 |
+
current_tokenizer = None
|
| 161 |
+
|
| 162 |
+
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
| 163 |
+
global current_model, current_tokenizer
|
| 164 |
+
token = os.getenv("HF_TOKEN")
|
| 165 |
+
|
| 166 |
+
progress(0, desc="Loading tokenizer...")
|
| 167 |
+
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
|
| 168 |
+
|
| 169 |
+
progress(0.5, desc="Loading model...")
|
| 170 |
+
current_model = AutoModelForCausalLM.from_pretrained(
|
| 171 |
+
model_name,
|
| 172 |
+
torch_dtype=torch.float16,
|
| 173 |
+
device_map="cpu", # loaded to CPU initially
|
| 174 |
+
use_auth_token=token
|
| 175 |
+
)
|
| 176 |
+
|
| 177 |
+
progress(1, desc="Model ready.")
|
| 178 |
+
return f"{model_name} loaded and ready!"
|
| 179 |
+
|
| 180 |
+
# Format conversation as plain text
|
| 181 |
+
def format_prompt(messages):
|
| 182 |
+
prompt = ""
|
| 183 |
+
for msg in messages:
|
| 184 |
+
role = msg["role"]
|
| 185 |
+
if role == "user":
|
| 186 |
+
prompt += f"User: {msg['content'].strip()}\n"
|
| 187 |
+
elif role == "assistant":
|
| 188 |
+
prompt += f"Assistant: {msg['content'].strip()}\n"
|
| 189 |
+
prompt += "Assistant:"
|
| 190 |
+
return prompt
|
| 191 |
+
|
| 192 |
+
def add_user_message(user_input, history):
|
| 193 |
+
return "", history + [{"role": "user", "content": user_input}]
|
| 194 |
+
|
| 195 |
+
# Curated models
|
| 196 |
model_choices = [
|
|
|
|
| 197 |
"meta-llama/Llama-3.2-3B-Instruct",
|
| 198 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
| 199 |
+
"google/gemma-7b",
|
| 200 |
+
"mistralai/Mistral-Small-3.1-24B-Instruct-2503"
|
| 201 |
]
|
| 202 |
|
|
|
|
| 203 |
with gr.Blocks() as demo:
|
| 204 |
+
gr.Markdown("## Clinical Chatbot (Streaming)")
|
| 205 |
+
|
| 206 |
+
default_model = gr.State(model_choices[0])
|
| 207 |
+
|
| 208 |
+
with gr.Row():
|
| 209 |
+
mode = gr.Radio(["Choose from list", "Enter custom model"], value="Choose from list", label="Model Input Mode")
|
| 210 |
+
model_selector = gr.Dropdown(choices=model_choices, label="Select Predefined Model")
|
| 211 |
+
model_textbox = gr.Textbox(label="Or Enter HF Model Name")
|
| 212 |
+
|
| 213 |
+
model_status = gr.Textbox(label="Model Status", interactive=False)
|
| 214 |
+
chatbot = gr.Chatbot(label="Chat", type="messages")
|
| 215 |
+
msg = gr.Textbox(label="Your message", placeholder="Enter clinical input...", show_label=False)
|
| 216 |
+
with gr.Row():
|
| 217 |
+
submit_btn = gr.Button("Submit")
|
| 218 |
+
clear = gr.Button("Clear")
|
| 219 |
+
|
| 220 |
+
def resolve_model_choice(mode, dropdown_value, textbox_value):
|
| 221 |
+
return textbox_value.strip() if mode == "Enter custom model" else dropdown_value
|
| 222 |
+
|
| 223 |
+
# Load on launch
|
| 224 |
+
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
|
| 225 |
+
|
| 226 |
+
# Model selection logic
|
| 227 |
+
mode.select(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
|
| 228 |
+
load_model_on_selection, inputs=default_model, outputs=model_status
|
| 229 |
+
)
|
| 230 |
+
model_selector.change(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
|
| 231 |
+
load_model_on_selection, inputs=default_model, outputs=model_status
|
| 232 |
+
)
|
| 233 |
+
model_textbox.submit(fn=resolve_model_choice, inputs=[mode, model_selector, model_textbox], outputs=default_model).then(
|
| 234 |
+
load_model_on_selection, inputs=default_model, outputs=model_status
|
| 235 |
+
)
|
| 236 |
+
|
| 237 |
+
# Submit via enter key or button
|
| 238 |
+
msg.submit(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 239 |
+
chat_with_model, chatbot, chatbot
|
| 240 |
+
)
|
| 241 |
+
submit_btn.click(add_user_message, [msg, chatbot], [msg, chatbot], queue=False).then(
|
| 242 |
+
chat_with_model, chatbot, chatbot
|
| 243 |
+
)
|
| 244 |
+
|
| 245 |
+
clear.click(lambda: [], None, chatbot, queue=False)
|
| 246 |
+
|
| 247 |
|
|
|
|
| 248 |
|
| 249 |
demo.launch()
|