Initialize with patient information
Browse files
app.py
CHANGED
|
@@ -5,10 +5,54 @@ import torch
|
|
| 5 |
import time
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, TextIteratorStreamer
|
| 9 |
import threading
|
| 10 |
import queue
|
| 11 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 12 |
class RichTextStreamer(TextIteratorStreamer):
|
| 13 |
def __init__(self, tokenizer, prompt_len=0, **kwargs):
|
| 14 |
super().__init__(tokenizer, **kwargs)
|
|
@@ -169,6 +213,10 @@ def chat_with_model(messages):
|
|
| 169 |
|
| 170 |
messages[-1]["content"] = output_text
|
| 171 |
|
|
|
|
|
|
|
|
|
|
|
|
|
| 172 |
yield messages
|
| 173 |
|
| 174 |
if in_think:
|
|
@@ -182,11 +230,7 @@ def chat_with_model(messages):
|
|
| 182 |
|
| 183 |
|
| 184 |
|
| 185 |
-
# Globals
|
| 186 |
-
current_model = None
|
| 187 |
-
current_tokenizer = None
|
| 188 |
|
| 189 |
-
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, LlamaTokenizer
|
| 190 |
|
| 191 |
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
| 192 |
global current_model, current_tokenizer
|
|
@@ -198,7 +242,7 @@ def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
|
| 198 |
progress(0.2, desc="Loading tokenizer...")
|
| 199 |
|
| 200 |
# Default
|
| 201 |
-
current_tokenizer = AutoTokenizer.from_pretrained(model_name, use_auth_token=token)
|
| 202 |
|
| 203 |
progress(0.5, desc="Loading model...")
|
| 204 |
current_model = AutoModelForCausalLM.from_pretrained(
|
|
@@ -225,50 +269,39 @@ def format_prompt(messages):
|
|
| 225 |
return prompt
|
| 226 |
|
| 227 |
def add_user_message(user_input, history):
|
| 228 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 229 |
|
| 230 |
-
# Curated models
|
| 231 |
-
model_choices = [
|
| 232 |
-
"meta-llama/Llama-3.2-3B-Instruct",
|
| 233 |
-
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
| 234 |
-
"google/gemma-7b",
|
| 235 |
-
"mistralai/Mistral-Nemo-Instruct-FP8-2407"
|
| 236 |
-
]
|
| 237 |
|
| 238 |
-
# Example patient database
|
| 239 |
-
patient_db = {
|
| 240 |
-
"001 - John Doe": {
|
| 241 |
-
"name": "John Doe",
|
| 242 |
-
"age": "45",
|
| 243 |
-
"id": "001",
|
| 244 |
-
"notes": "History of chest pain and hypertension. No prior surgeries."
|
| 245 |
-
},
|
| 246 |
-
"002 - Maria Sanchez": {
|
| 247 |
-
"name": "Maria Sanchez",
|
| 248 |
-
"age": "62",
|
| 249 |
-
"id": "002",
|
| 250 |
-
"notes": "Suspected pulmonary embolism. Shortness of breath, tachycardia."
|
| 251 |
-
},
|
| 252 |
-
"003 - Ahmed Al-Farsi": {
|
| 253 |
-
"name": "Ahmed Al-Farsi",
|
| 254 |
-
"age": "29",
|
| 255 |
-
"id": "003",
|
| 256 |
-
"notes": "Persistent migraines. MRI scheduled for brain imaging."
|
| 257 |
-
},
|
| 258 |
-
"004 - Lin Wei": {
|
| 259 |
-
"name": "Lin Wei",
|
| 260 |
-
"age": "51",
|
| 261 |
-
"id": "004",
|
| 262 |
-
"notes": "Annual screening. Family history of breast cancer."
|
| 263 |
-
}
|
| 264 |
-
}
|
| 265 |
|
| 266 |
def autofill_patient(patient_key):
|
| 267 |
if patient_key in patient_db:
|
| 268 |
info = patient_db[patient_key]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 269 |
return info["name"], info["age"], info["id"], info["notes"]
|
| 270 |
return "", "", "", ""
|
| 271 |
|
|
|
|
| 272 |
with gr.Blocks(css=".gradio-container {height: 100vh; overflow: hidden;}") as demo:
|
| 273 |
gr.Markdown("<h2 style='text-align: center;'>Radiologist's Companion</h2>")
|
| 274 |
|
|
@@ -311,6 +344,25 @@ with gr.Blocks(css=".gradio-container {height: 100vh; overflow: hidden;}") as de
|
|
| 311 |
outputs=[patient_name, patient_age, patient_id, patient_notes]
|
| 312 |
)
|
| 313 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 314 |
# Load on launch
|
| 315 |
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
|
| 316 |
|
|
|
|
| 5 |
import time
|
| 6 |
import gradio as gr
|
| 7 |
import spaces
|
| 8 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM, AutoConfig, LlamaTokenizer, TextIteratorStreamer
|
| 9 |
import threading
|
| 10 |
import queue
|
| 11 |
|
| 12 |
+
# Globals
|
| 13 |
+
current_model = None
|
| 14 |
+
current_tokenizer = None
|
| 15 |
+
|
| 16 |
+
# Curated models
|
| 17 |
+
model_choices = [
|
| 18 |
+
"meta-llama/Llama-3.2-3B-Instruct",
|
| 19 |
+
"deepseek-ai/DeepSeek-R1-Distill-Llama-8B",
|
| 20 |
+
"google/gemma-7b-it",
|
| 21 |
+
"mistralai/Mistral-Nemo-Instruct-FP8-2407"
|
| 22 |
+
]
|
| 23 |
+
|
| 24 |
+
# Example patient database
|
| 25 |
+
patient_db = {
|
| 26 |
+
"001 - John Doe": {
|
| 27 |
+
"name": "John Doe",
|
| 28 |
+
"age": "45",
|
| 29 |
+
"id": "001",
|
| 30 |
+
"notes": "History of chest pain and hypertension. No prior surgeries."
|
| 31 |
+
},
|
| 32 |
+
"002 - Maria Sanchez": {
|
| 33 |
+
"name": "Maria Sanchez",
|
| 34 |
+
"age": "62",
|
| 35 |
+
"id": "002",
|
| 36 |
+
"notes": "Suspected pulmonary embolism. Shortness of breath, tachycardia."
|
| 37 |
+
},
|
| 38 |
+
"003 - Ahmed Al-Farsi": {
|
| 39 |
+
"name": "Ahmed Al-Farsi",
|
| 40 |
+
"age": "29",
|
| 41 |
+
"id": "003",
|
| 42 |
+
"notes": "Persistent migraines. MRI scheduled for brain imaging."
|
| 43 |
+
},
|
| 44 |
+
"004 - Lin Wei": {
|
| 45 |
+
"name": "Lin Wei",
|
| 46 |
+
"age": "51",
|
| 47 |
+
"id": "004",
|
| 48 |
+
"notes": "Annual screening. Family history of breast cancer."
|
| 49 |
+
}
|
| 50 |
+
}
|
| 51 |
+
|
| 52 |
+
# Store conversations per patient
|
| 53 |
+
patient_conversations = {}
|
| 54 |
+
|
| 55 |
+
|
| 56 |
class RichTextStreamer(TextIteratorStreamer):
|
| 57 |
def __init__(self, tokenizer, prompt_len=0, **kwargs):
|
| 58 |
super().__init__(tokenizer, **kwargs)
|
|
|
|
| 213 |
|
| 214 |
messages[-1]["content"] = output_text
|
| 215 |
|
| 216 |
+
current_id = patient_id.value
|
| 217 |
+
if current_id:
|
| 218 |
+
patient_conversations[current_id] = messages
|
| 219 |
+
|
| 220 |
yield messages
|
| 221 |
|
| 222 |
if in_think:
|
|
|
|
| 230 |
|
| 231 |
|
| 232 |
|
|
|
|
|
|
|
|
|
|
| 233 |
|
|
|
|
| 234 |
|
| 235 |
def load_model_on_selection(model_name, progress=gr.Progress(track_tqdm=False)):
|
| 236 |
global current_model, current_tokenizer
|
|
|
|
| 242 |
progress(0.2, desc="Loading tokenizer...")
|
| 243 |
|
| 244 |
# Default
|
| 245 |
+
current_tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code= True, use_auth_token=token)
|
| 246 |
|
| 247 |
progress(0.5, desc="Loading model...")
|
| 248 |
current_model = AutoModelForCausalLM.from_pretrained(
|
|
|
|
| 269 |
return prompt
|
| 270 |
|
| 271 |
def add_user_message(user_input, history):
|
| 272 |
+
current_id = patient_id.value
|
| 273 |
+
if current_id:
|
| 274 |
+
conversation = patient_conversations.get(current_id, [])
|
| 275 |
+
conversation.append({"role": "user", "content": user_input})
|
| 276 |
+
patient_conversations[current_id] = conversation
|
| 277 |
+
return "", patient_conversations[current_id]
|
| 278 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 279 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 280 |
|
| 281 |
def autofill_patient(patient_key):
|
| 282 |
if patient_key in patient_db:
|
| 283 |
info = patient_db[patient_key]
|
| 284 |
+
|
| 285 |
+
# Init conversation if not existing
|
| 286 |
+
if info["id"] not in patient_conversations:
|
| 287 |
+
welcome_message = (
|
| 288 |
+
"**Welcome to the Radiologist's Companion!**\n\n"
|
| 289 |
+
"You can ask me about the patient's medical history or available imaging data.\n"
|
| 290 |
+
"- I can summarize key details from the EHR.\n"
|
| 291 |
+
"- I can tell you which medical images are available.\n"
|
| 292 |
+
"- If you'd like an organ segmentation (e.g. spleen, liver, kidney_left, colon, femur_right) on an abdominal CT scan, just ask!\n\n"
|
| 293 |
+
"**Example Requests:**\n"
|
| 294 |
+
"- \"What do we know about this patient?\"\n"
|
| 295 |
+
"- \"Which images are available for this patient?\"\n"
|
| 296 |
+
"- \"Can you segment the spleen from the CT scan?\"\n"
|
| 297 |
+
)
|
| 298 |
+
|
| 299 |
+
patient_conversations[info["id"]] = [{"role": "assistant", "content": welcome_message}]
|
| 300 |
+
|
| 301 |
return info["name"], info["age"], info["id"], info["notes"]
|
| 302 |
return "", "", "", ""
|
| 303 |
|
| 304 |
+
|
| 305 |
with gr.Blocks(css=".gradio-container {height: 100vh; overflow: hidden;}") as demo:
|
| 306 |
gr.Markdown("<h2 style='text-align: center;'>Radiologist's Companion</h2>")
|
| 307 |
|
|
|
|
| 344 |
outputs=[patient_name, patient_age, patient_id, patient_notes]
|
| 345 |
)
|
| 346 |
|
| 347 |
+
# After patient selected, load their conversation into chatbot
|
| 348 |
+
def load_patient_conversation(patient_key):
|
| 349 |
+
if patient_key in patient_db:
|
| 350 |
+
patient_id = patient_db[patient_key]["id"]
|
| 351 |
+
history = patient_conversations.get(patient_id, [])
|
| 352 |
+
return history
|
| 353 |
+
return []
|
| 354 |
+
|
| 355 |
+
patient_selector.change(
|
| 356 |
+
autofill_patient,
|
| 357 |
+
inputs=[patient_selector],
|
| 358 |
+
outputs=[patient_name, patient_age, patient_id, patient_notes]
|
| 359 |
+
).then(
|
| 360 |
+
load_patient_conversation,
|
| 361 |
+
inputs=[patient_selector],
|
| 362 |
+
outputs=[chatbot]
|
| 363 |
+
)
|
| 364 |
+
|
| 365 |
+
|
| 366 |
# Load on launch
|
| 367 |
demo.load(fn=load_model_on_selection, inputs=default_model, outputs=model_status)
|
| 368 |
|