Update app.py
Browse files
app.py
CHANGED
|
@@ -4,20 +4,19 @@ import os
|
|
| 4 |
import tempfile
|
| 5 |
import PyPDF2
|
| 6 |
import google.generativeai as genai
|
| 7 |
-
# import tensorflow as tf # Not directly used here, but models might need it
|
| 8 |
from transformers import BertTokenizer, TFBertModel
|
| 9 |
import numpy as np
|
| 10 |
import speech_recognition as sr
|
| 11 |
-
# from gtts import gTTS # Not used directly in main app logic here
|
| 12 |
-
# import pygame # Not used directly in main app logic here
|
| 13 |
-
import time
|
| 14 |
from dotenv import load_dotenv
|
| 15 |
-
import soundfile as sf
|
| 16 |
import json
|
|
|
|
|
|
|
|
|
|
| 17 |
|
| 18 |
# --- Firebase Admin SDK Setup ---
|
| 19 |
import firebase_admin
|
| 20 |
-
from firebase_admin import credentials, auth
|
| 21 |
|
| 22 |
# Load environment variables
|
| 23 |
load_dotenv()
|
|
@@ -32,20 +31,22 @@ def initialize_firebase():
|
|
| 32 |
cred = None
|
| 33 |
try:
|
| 34 |
# Method 1: Use specific credentials file path
|
| 35 |
-
firebase_credentials_path = "prepgenie-64134-firebase-adminsdk-fbsvc-3370ac4ab9.json"
|
| 36 |
-
if os.path.exists(firebase_credentials_path):
|
| 37 |
print(f"Initializing Firebase with credentials file: {firebase_credentials_path}")
|
| 38 |
cred = credentials.Certificate(firebase_credentials_path)
|
| 39 |
firebase_app = firebase_admin.initialize_app(cred)
|
| 40 |
print("Firebase Admin initialized successfully using credentials file.")
|
| 41 |
return firebase_app
|
|
|
|
|
|
|
| 42 |
else:
|
| 43 |
print(f"Firebase credentials file not found at {firebase_credentials_path}")
|
| 44 |
except Exception as e:
|
| 45 |
print(f"Failed to initialize Firebase using credentials file: {e}")
|
| 46 |
|
| 47 |
try:
|
| 48 |
-
# Method 2: Use JSON string from environment variable
|
| 49 |
firebase_credentials_json = os.getenv("FIREBASE_CREDENTIALS_JSON")
|
| 50 |
if firebase_credentials_json:
|
| 51 |
print("Initializing Firebase with credentials from FIREBASE_CREDENTIALS_JSON environment variable.")
|
|
@@ -62,17 +63,16 @@ def initialize_firebase():
|
|
| 62 |
print(f"Failed to initialize Firebase using FIREBASE_CREDENTIALS_JSON: {e}")
|
| 63 |
|
| 64 |
print("Warning: Firebase Admin SDK could not be initialized. Authentication features will not work.")
|
| 65 |
-
return None
|
| 66 |
|
| 67 |
-
# --- Initialize Firebase when the module is loaded ---
|
| 68 |
FIREBASE_APP = initialize_firebase()
|
| 69 |
FIREBASE_AVAILABLE = FIREBASE_APP is not None
|
| 70 |
|
| 71 |
# Configure Generative AI
|
| 72 |
-
genai.configure(api_key=os.getenv("GOOGLE_API_KEY")
|
| 73 |
text_model = genai.GenerativeModel("gemini-pro")
|
| 74 |
|
| 75 |
-
|
| 76 |
try:
|
| 77 |
model = TFBertModel.from_pretrained("bert-base-uncased")
|
| 78 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
|
@@ -83,10 +83,10 @@ except Exception as e:
|
|
| 83 |
model = None
|
| 84 |
tokenizer = None
|
| 85 |
|
| 86 |
-
# --- Helper Functions (Logic from Streamlit
|
| 87 |
|
| 88 |
def getallinfo(data):
|
| 89 |
-
if not data or not data.strip():
|
| 90 |
return "No data provided or data is empty."
|
| 91 |
text = f"""{data} is given by the user. Make sure you are getting the details like name, experience,
|
| 92 |
education, skills of the user like in a resume. If the details are not provided return: not a resume.
|
|
@@ -98,87 +98,51 @@ def getallinfo(data):
|
|
| 98 |
except Exception as e:
|
| 99 |
print(f"Error in getallinfo: {e}")
|
| 100 |
return "Error processing resume data."
|
| 101 |
-
|
|
|
|
| 102 |
"""Processes the uploaded PDF file given its path."""
|
| 103 |
-
if not pdf_file_path:
|
| 104 |
-
print("No file path provided to file_processing.")
|
| 105 |
return ""
|
| 106 |
try:
|
| 107 |
-
# Ensure pdf_file_path is a string path, not a NamedString object directly
|
| 108 |
-
# Gradio File component passes an object with a 'name' attribute containing the path
|
| 109 |
if hasattr(pdf_file_path, 'name'):
|
| 110 |
file_path_to_use = pdf_file_path.name
|
| 111 |
else:
|
| 112 |
-
# If it's already a string path (less common in recent Gradio versions for File uploads)
|
| 113 |
file_path_to_use = pdf_file_path
|
| 114 |
|
| 115 |
-
print(f"Attempting to process file: {file_path_to_use}")
|
| 116 |
-
|
| 117 |
-
# Open the file using the resolved path
|
| 118 |
with open(file_path_to_use, "rb") as f:
|
| 119 |
reader = PyPDF2.PdfReader(f)
|
| 120 |
text = ""
|
| 121 |
for page in reader.pages:
|
| 122 |
text += page.extract_text()
|
| 123 |
return text
|
| 124 |
-
except FileNotFoundError:
|
| 125 |
-
print(f"File not found: {file_path_to_use}")
|
| 126 |
-
return ""
|
| 127 |
-
except PyPDF2.errors.PdfReadError as e:
|
| 128 |
-
print(f"Error reading PDF file {file_path_to_use}: {e}")
|
| 129 |
-
return ""
|
| 130 |
-
except Exception as e: # Catch other potential errors
|
| 131 |
-
print(f"Unexpected error processing PDF {pdf_file_path}: {e}")
|
| 132 |
-
return ""
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
def getallinfo(data):
|
| 136 |
-
"""Formats resume data."""
|
| 137 |
-
if not data or not data.strip(): # Check for None or empty/whitespace
|
| 138 |
-
return "No data provided or data is empty."
|
| 139 |
-
# ... (rest of getallinfo logic remains the same) ...
|
| 140 |
-
text = f"""{data} is given by the user. Make sure you are getting the details like name, experience,
|
| 141 |
-
education, skills of the user like in a resume. If the details are not provided return: not a resume.
|
| 142 |
-
If details are provided then please try again and format the whole in a single paragraph covering all the information. """
|
| 143 |
-
try:
|
| 144 |
-
response = text_model.generate_content(text)
|
| 145 |
-
response.resolve()
|
| 146 |
-
return response.text
|
| 147 |
except Exception as e:
|
| 148 |
-
print(f"Error
|
| 149 |
-
return "
|
| 150 |
-
|
| 151 |
|
| 152 |
def get_embedding(text):
|
| 153 |
if not text or not text.strip():
|
| 154 |
-
|
| 155 |
-
return np.zeros((1, 768)) # Return dummy embedding for empty text
|
| 156 |
|
| 157 |
if not BERT_AVAILABLE or not model or not tokenizer:
|
| 158 |
print("BERT model not available for embedding.")
|
| 159 |
-
|
| 160 |
-
return np.zeros((1, 768)) # Dummy embedding size for bert-base-uncased
|
| 161 |
|
| 162 |
try:
|
| 163 |
-
# Add padding/truncation to handle variable lengths robustly
|
| 164 |
encoded_text = tokenizer(text, return_tensors="tf", truncation=True, padding=True, max_length=512)
|
| 165 |
output = model(encoded_text)
|
| 166 |
-
embedding = output.last_hidden_state[:, 0, :]
|
| 167 |
-
return embedding.numpy()
|
| 168 |
except Exception as e:
|
| 169 |
print(f"Error getting embedding: {e}")
|
| 170 |
-
return np.zeros((1, 768))
|
| 171 |
|
| 172 |
def generate_feedback(question, answer):
|
| 173 |
-
# Handle empty inputs
|
| 174 |
if not question or not question.strip() or not answer or not answer.strip():
|
| 175 |
return "0.00"
|
| 176 |
|
| 177 |
try:
|
| 178 |
question_embedding = get_embedding(question)
|
| 179 |
answer_embedding = get_embedding(answer)
|
| 180 |
-
# Calculate cosine similarity (ensure correct shapes)
|
| 181 |
-
# np.dot expects 1D or 2D arrays. Squeeze to remove single-dimensional entries.
|
| 182 |
q_emb = np.squeeze(question_embedding)
|
| 183 |
a_emb = np.squeeze(answer_embedding)
|
| 184 |
|
|
@@ -188,18 +152,16 @@ def generate_feedback(question, answer):
|
|
| 188 |
similarity_score = 0.0
|
| 189 |
else:
|
| 190 |
similarity_score = dot_product / norms
|
| 191 |
-
return f"{similarity_score:.2f}"
|
| 192 |
except Exception as e:
|
| 193 |
print(f"Error generating feedback: {e}")
|
| 194 |
return "0.00"
|
| 195 |
|
| 196 |
def generate_questions(roles, data):
|
| 197 |
-
# Handle empty inputs
|
| 198 |
if not roles or (isinstance(roles, list) and not any(roles)) or not data or not data.strip():
|
| 199 |
return ["Could you please introduce yourself based on your resume?"]
|
| 200 |
|
| 201 |
questions = []
|
| 202 |
-
# Ensure roles is a list and join if needed
|
| 203 |
if isinstance(roles, list):
|
| 204 |
roles_str = ", ".join(roles)
|
| 205 |
else:
|
|
@@ -214,20 +176,16 @@ def generate_questions(roles, data):
|
|
| 214 |
ask 2 questions only. directly ask the questions not anything else.
|
| 215 |
Also ask the questions in a polite way. Ask the questions in a way that the candidate can understand the question.
|
| 216 |
and make sure the questions are related to these metrics: Communication skills, Teamwork and collaboration,
|
| 217 |
-
Problem-solving and critical thinking, Time management and organization, Adaptability and resilience.
|
| 218 |
-
tell anything else just give me the questions. if there is a limit in no of questions, ask or try questions that covers
|
| 219 |
-
all need."""
|
| 220 |
try:
|
| 221 |
response = text_model.generate_content(text)
|
| 222 |
response.resolve()
|
| 223 |
questions_text = response.text.strip()
|
| 224 |
-
# Split by newline, question mark, or period. Filter out empty strings.
|
| 225 |
questions = [q.strip() for q in questions_text.split('\n') if q.strip()]
|
| 226 |
if not questions:
|
| 227 |
questions = [q.strip() for q in questions_text.split('?') if q.strip()]
|
| 228 |
if not questions:
|
| 229 |
questions = [q.strip() for q in questions_text.split('.') if q.strip()]
|
| 230 |
-
# Ensure we only get up to 2 questions
|
| 231 |
questions = questions[:2] if questions else ["Could you please introduce yourself based on your resume?"]
|
| 232 |
except Exception as e:
|
| 233 |
print(f"Error generating questions: {e}")
|
|
@@ -235,11 +193,9 @@ def generate_questions(roles, data):
|
|
| 235 |
return questions
|
| 236 |
|
| 237 |
def generate_overall_feedback(data, percent, answer, questions):
|
| 238 |
-
# Handle empty inputs
|
| 239 |
if not data or not data.strip() or not answer or not answer.strip() or not questions:
|
| 240 |
return "Unable to generate feedback due to missing information."
|
| 241 |
|
| 242 |
-
# Ensure percent is a string for formatting, handle potential float input
|
| 243 |
if isinstance(percent, float):
|
| 244 |
percent_str = f"{percent:.2f}"
|
| 245 |
else:
|
|
@@ -263,9 +219,7 @@ def generate_overall_feedback(data, percent, answer, questions):
|
|
| 263 |
return "Feedback could not be generated."
|
| 264 |
|
| 265 |
def generate_metrics(data, answer, question):
|
| 266 |
-
# Handle empty inputs
|
| 267 |
if not data or not data.strip() or not answer or not answer.strip() or not question or not question.strip():
|
| 268 |
-
# Return default 0 metrics for empty inputs
|
| 269 |
return {
|
| 270 |
"Communication skills": 0.0, "Teamwork and collaboration": 0.0,
|
| 271 |
"Problem-solving and critical thinking": 0.0, "Time management and organization": 0.0,
|
|
@@ -293,20 +247,16 @@ def generate_metrics(data, answer, question):
|
|
| 293 |
response = text_model.generate_content(text)
|
| 294 |
response.resolve()
|
| 295 |
metrics_text = response.text.strip()
|
| 296 |
-
# Parse the metrics text
|
| 297 |
for line in metrics_text.split('\n'):
|
| 298 |
if ':' in line:
|
| 299 |
key, value_str = line.split(':', 1)
|
| 300 |
key = key.strip()
|
| 301 |
try:
|
| 302 |
-
|
| 303 |
-
value_clean = value_str.strip().split()[0] # Take first token
|
| 304 |
value = float(value_clean)
|
| 305 |
metrics[key] = value
|
| 306 |
except (ValueError, IndexError):
|
| 307 |
-
# If parsing fails, set to 0
|
| 308 |
metrics[key] = 0.0
|
| 309 |
-
# Ensure all expected metrics are present
|
| 310 |
expected_metrics = [
|
| 311 |
"Communication skills", "Teamwork and collaboration",
|
| 312 |
"Problem-solving and critical thinking", "Time management and organization",
|
|
@@ -315,10 +265,8 @@ def generate_metrics(data, answer, question):
|
|
| 315 |
for m in expected_metrics:
|
| 316 |
if m not in metrics:
|
| 317 |
metrics[m] = 0.0
|
| 318 |
-
|
| 319 |
except Exception as e:
|
| 320 |
print(f"Error generating metrics: {e}")
|
| 321 |
-
# Return default 0 metrics on error
|
| 322 |
metrics = {
|
| 323 |
"Communication skills": 0.0, "Teamwork and collaboration": 0.0,
|
| 324 |
"Problem-solving and critical thinking": 0.0, "Time management and organization": 0.0,
|
|
@@ -326,9 +274,131 @@ def generate_metrics(data, answer, question):
|
|
| 326 |
}
|
| 327 |
return metrics
|
| 328 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 329 |
def process_resume(file_obj):
|
| 330 |
"""Handles resume upload and processing."""
|
| 331 |
-
print(f"Received file object in process_resume: {file_obj}")
|
| 332 |
if not file_obj:
|
| 333 |
return (
|
| 334 |
"Please upload a PDF resume.",
|
|
@@ -338,17 +408,14 @@ def process_resume(file_obj):
|
|
| 338 |
gr.update(visible=False), gr.update(visible=False),
|
| 339 |
gr.update(visible=False), gr.update(visible=False),
|
| 340 |
gr.update(visible=False), gr.update(visible=False),
|
| 341 |
-
gr.update(visible=False)
|
| 342 |
)
|
| 343 |
|
| 344 |
try:
|
| 345 |
-
# Use the file path correctly
|
| 346 |
if hasattr(file_obj, 'name'):
|
| 347 |
file_path = file_obj.name
|
| 348 |
else:
|
| 349 |
-
file_path = str(file_obj)
|
| 350 |
-
|
| 351 |
-
print(f"Processing file at path: {file_path}")
|
| 352 |
|
| 353 |
raw_text = file_processing(file_path)
|
| 354 |
if not raw_text or not raw_text.strip():
|
|
@@ -360,25 +427,19 @@ def process_resume(file_obj):
|
|
| 360 |
gr.update(visible=False), gr.update(visible=False),
|
| 361 |
gr.update(visible=False), gr.update(visible=False),
|
| 362 |
gr.update(visible=False), gr.update(visible=False),
|
| 363 |
-
gr.update(visible=False)
|
| 364 |
)
|
| 365 |
|
| 366 |
processed_data = getallinfo(raw_text)
|
| 367 |
-
|
| 368 |
return (
|
| 369 |
f"File processed successfully!",
|
| 370 |
-
gr.update(visible=True),
|
| 371 |
-
gr.update(visible=
|
| 372 |
-
gr.update(visible=False),
|
| 373 |
-
gr.update(visible=False),
|
| 374 |
-
gr.update(visible=False),
|
| 375 |
-
gr.update(visible=False),
|
| 376 |
-
|
| 377 |
-
gr.update(visible=False), # submit_interview_btn
|
| 378 |
-
gr.update(visible=False), # answer_display
|
| 379 |
-
gr.update(visible=False), # feedback_display
|
| 380 |
-
gr.update(visible=False), # metrics_display
|
| 381 |
-
processed_data # processed_resume_data_hidden_interview (13th value)
|
| 382 |
)
|
| 383 |
except Exception as e:
|
| 384 |
error_msg = f"Error processing file: {str(e)}"
|
|
@@ -391,46 +452,87 @@ def process_resume(file_obj):
|
|
| 391 |
gr.update(visible=False), gr.update(visible=False),
|
| 392 |
gr.update(visible=False), gr.update(visible=False),
|
| 393 |
gr.update(visible=False), gr.update(visible=False),
|
| 394 |
-
gr.update(visible=False)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 395 |
)
|
| 396 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 397 |
|
| 398 |
def submit_answer(audio, interview_state):
|
| 399 |
"""Handles submitting an answer via audio."""
|
| 400 |
if not audio or not interview_state:
|
| 401 |
-
return (
|
| 402 |
-
|
| 403 |
-
|
| 404 |
-
|
| 405 |
-
|
|
|
|
|
|
|
|
|
|
| 406 |
|
| 407 |
try:
|
| 408 |
-
# Save audio to a temporary file
|
| 409 |
temp_dir = tempfile.mkdtemp()
|
| 410 |
audio_file_path = os.path.join(temp_dir, "recorded_audio.wav")
|
| 411 |
-
# audio is a tuple (sample_rate, numpy_array)
|
| 412 |
sample_rate, audio_data = audio
|
| 413 |
-
# Use soundfile to save the numpy array as a WAV file
|
| 414 |
sf.write(audio_file_path, audio_data, sample_rate)
|
| 415 |
|
| 416 |
-
# Convert audio file to text
|
| 417 |
r = sr.Recognizer()
|
| 418 |
with sr.AudioFile(audio_file_path) as source:
|
| 419 |
audio_data_sr = r.record(source)
|
| 420 |
answer_text = r.recognize_google(audio_data_sr)
|
| 421 |
print(f"Recognized Answer: {answer_text}")
|
| 422 |
|
| 423 |
-
# Clean up temporary audio file
|
| 424 |
os.remove(audio_file_path)
|
| 425 |
os.rmdir(temp_dir)
|
| 426 |
|
| 427 |
-
# Update state with the answer
|
| 428 |
interview_state["answers"].append(answer_text)
|
| 429 |
current_q_index = interview_state["current_q_index"]
|
| 430 |
current_question = interview_state["questions"][current_q_index]
|
| 431 |
interview_state["interactions"][f"Q{current_q_index + 1}: {current_question}"] = f"A{current_q_index + 1}: {answer_text}"
|
| 432 |
|
| 433 |
-
# Generate feedback and metrics for the current question
|
| 434 |
percent_str = generate_feedback(current_question, answer_text)
|
| 435 |
try:
|
| 436 |
percent = float(percent_str)
|
|
@@ -441,43 +543,42 @@ def submit_answer(audio, interview_state):
|
|
| 441 |
interview_state["feedback"].append(feedback_text)
|
| 442 |
|
| 443 |
metrics = generate_metrics(interview_state["resume_data"], answer_text, current_question)
|
| 444 |
-
interview_state["metrics_list"].append(metrics)
|
| 445 |
|
| 446 |
-
# Update state index
|
| 447 |
interview_state["current_q_index"] += 1
|
| 448 |
|
| 449 |
return (
|
| 450 |
f"Answer submitted: {answer_text}",
|
| 451 |
answer_text,
|
| 452 |
interview_state,
|
| 453 |
-
gr.update(visible=True),
|
| 454 |
-
gr.update(value=
|
| 455 |
-
gr.update(visible=True),
|
| 456 |
-
gr.update(
|
| 457 |
-
gr.update(visible=True), # Keep audio input visible for next question
|
| 458 |
-
gr.update(visible=True), # Keep submit answer button
|
| 459 |
-
gr.update(visible=True), # Keep next question button
|
| 460 |
-
gr.update(visible=False), # Submit interview button still hidden
|
| 461 |
-
gr.update(visible=True), # Question display
|
| 462 |
-
gr.update(visible=True) # Answer instructions
|
| 463 |
)
|
| 464 |
|
| 465 |
except Exception as e:
|
| 466 |
print(f"Error processing audio answer: {e}")
|
| 467 |
-
return (
|
| 468 |
-
|
| 469 |
-
|
| 470 |
-
|
| 471 |
-
|
|
|
|
|
|
|
|
|
|
| 472 |
|
| 473 |
def next_question(interview_state):
|
| 474 |
"""Moves to the next question or ends the interview."""
|
| 475 |
if not interview_state:
|
| 476 |
-
return (
|
| 477 |
-
|
| 478 |
-
|
| 479 |
-
|
| 480 |
-
|
|
|
|
|
|
|
|
|
|
| 481 |
|
| 482 |
current_q_index = interview_state["current_q_index"]
|
| 483 |
total_questions = len(interview_state["questions"])
|
|
@@ -488,123 +589,174 @@ def next_question(interview_state):
|
|
| 488 |
f"Question {current_q_index + 1}/{total_questions}",
|
| 489 |
next_q,
|
| 490 |
interview_state,
|
| 491 |
-
gr.update(visible=True),
|
| 492 |
-
gr.update(visible=
|
| 493 |
-
gr.update(visible=True),
|
| 494 |
-
|
| 495 |
-
gr.update(visible=False), # Metrics display (hidden for new question)
|
| 496 |
-
gr.update(visible=False), # Submit Interview (still hidden)
|
| 497 |
-
gr.update(visible=True), # Question display
|
| 498 |
-
gr.update(visible=True), # Answer instructions
|
| 499 |
-
"", # Clear previous answer display
|
| 500 |
-
{} # Clear previous metrics display
|
| 501 |
)
|
| 502 |
else:
|
| 503 |
-
# Interview finished
|
| 504 |
return (
|
| 505 |
"Interview completed! Click 'Submit Interview' to see your evaluation.",
|
| 506 |
"Interview Finished",
|
| 507 |
interview_state,
|
| 508 |
-
gr.update(visible=False),
|
| 509 |
-
gr.update(visible=False),
|
| 510 |
-
gr.update(visible=
|
| 511 |
-
|
| 512 |
-
gr.update(visible=False), # Hide metrics display
|
| 513 |
-
gr.update(visible=True), # Show submit interview button
|
| 514 |
-
gr.update(visible=True), # Question display (shows finished)
|
| 515 |
-
gr.update(visible=False), # Hide answer instructions
|
| 516 |
-
"", # Clear answer display
|
| 517 |
-
{} # Clear metrics display
|
| 518 |
)
|
| 519 |
|
| 520 |
def submit_interview(interview_state):
|
| 521 |
-
"""Handles final submission and
|
| 522 |
-
if not interview_state:
|
| 523 |
-
return
|
|
|
|
|
|
|
|
|
|
|
|
|
| 524 |
|
| 525 |
-
|
| 526 |
-
|
| 527 |
-
|
| 528 |
-
|
| 529 |
-
|
| 530 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 531 |
|
| 532 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 533 |
|
| 534 |
# --- Login and Navigation Logic (Firebase Integrated) ---
|
| 535 |
|
| 536 |
def login(email, password):
|
| 537 |
-
# Check if Firebase is available
|
| 538 |
if not FIREBASE_AVAILABLE:
|
| 539 |
-
return (
|
| 540 |
-
|
|
|
|
|
|
|
|
|
|
| 541 |
if not email or not password:
|
| 542 |
-
return (
|
| 543 |
-
|
|
|
|
|
|
|
|
|
|
| 544 |
try:
|
| 545 |
-
# Attempt to get user by email (checks existence)
|
| 546 |
-
# Note: This does NOT verify the password in a secure way for a client-side app.
|
| 547 |
-
# A production app needs server-side verification or ID token validation.
|
| 548 |
user = auth.get_user_by_email(email)
|
| 549 |
-
welcome_msg = f"Welcome, {user.display_name or user.uid}!"
|
| 550 |
-
|
| 551 |
-
|
| 552 |
-
|
| 553 |
-
|
| 554 |
-
|
| 555 |
-
"", "", # Clear email/password inputs
|
| 556 |
-
user.uid, # Update user_state with UID
|
| 557 |
-
user.email) # Update user_email_state
|
| 558 |
except auth.UserNotFoundError:
|
| 559 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 560 |
except Exception as e:
|
| 561 |
error_msg = f"Login failed: {str(e)}"
|
| 562 |
print(error_msg)
|
| 563 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 564 |
|
| 565 |
def signup(email, password, username):
|
| 566 |
-
|
| 567 |
-
|
| 568 |
-
|
|
|
|
|
|
|
|
|
|
| 569 |
if not email or not password or not username:
|
| 570 |
-
return (
|
| 571 |
-
|
|
|
|
|
|
|
|
|
|
| 572 |
try:
|
| 573 |
-
# Create user in Firebase
|
| 574 |
user = auth.create_user(email=email, password=password, uid=username, display_name=username)
|
| 575 |
success_msg = f"Account created successfully for {username}!"
|
| 576 |
-
|
| 577 |
-
|
| 578 |
-
|
| 579 |
-
|
| 580 |
-
|
| 581 |
-
"", "", "", # Clear email/password/username inputs
|
| 582 |
-
user.uid, user.email) # Set user state (though they still need to login)
|
| 583 |
except auth.UidAlreadyExistsError:
|
| 584 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 585 |
except auth.EmailAlreadyExistsError:
|
| 586 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 587 |
except Exception as e:
|
| 588 |
error_msg = f"Signup failed: {str(e)}"
|
| 589 |
print(error_msg)
|
| 590 |
-
return (
|
|
|
|
|
|
|
|
|
|
|
|
|
| 591 |
|
| 592 |
def logout():
|
| 593 |
-
return (
|
| 594 |
-
|
| 595 |
-
|
| 596 |
-
|
| 597 |
-
|
| 598 |
-
"", "") # Clear user_state and user_email_state
|
| 599 |
|
| 600 |
def navigate_to_interview():
|
| 601 |
-
return (gr.update(visible=True), gr.update(visible=False))
|
| 602 |
|
| 603 |
def navigate_to_chat():
|
| 604 |
-
return (gr.update(visible=False), gr.update(visible=True))
|
| 605 |
|
| 606 |
# --- Import Chat Module Functions ---
|
| 607 |
-
# Assuming chat.py is in the same directory or correctly in the Python path
|
| 608 |
try:
|
| 609 |
from login_module import chat as chat_module
|
| 610 |
CHAT_MODULE_AVAILABLE = True
|
|
@@ -615,16 +767,11 @@ except ImportError as e:
|
|
| 615 |
chat_module = None
|
| 616 |
|
| 617 |
# --- Gradio Interface ---
|
| 618 |
-
|
| 619 |
with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
| 620 |
gr.Markdown("# 🦈 PrepGenie")
|
| 621 |
-
# State to hold interview data
|
| 622 |
interview_state = gr.State({})
|
| 623 |
-
# State for username/UID
|
| 624 |
user_state = gr.State("")
|
| 625 |
-
# State for user email
|
| 626 |
user_email_state = gr.State("")
|
| 627 |
-
# State for processed resume data (used by both interview and chat)
|
| 628 |
processed_resume_data_state = gr.State("")
|
| 629 |
|
| 630 |
# --- Login Section ---
|
|
@@ -634,7 +781,6 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 634 |
login_password_input = gr.Textbox(label="Password", type="password")
|
| 635 |
login_btn = gr.Button("Login")
|
| 636 |
login_status = gr.Textbox(label="Login Status", interactive=False)
|
| 637 |
-
# Switch to Signup
|
| 638 |
switch_to_signup_btn = gr.Button("Don't have an account? Sign Up")
|
| 639 |
|
| 640 |
# --- Signup Section ---
|
|
@@ -645,16 +791,14 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 645 |
signup_username_input = gr.Textbox(label="Unique Username")
|
| 646 |
signup_btn = gr.Button("Create my account")
|
| 647 |
signup_status = gr.Textbox(label="Signup Status", interactive=False)
|
| 648 |
-
# Switch to Login
|
| 649 |
switch_to_login_btn = gr.Button("Already have an account? Login")
|
| 650 |
|
| 651 |
-
# --- Main App Sections
|
| 652 |
with gr.Column(visible=False) as main_app:
|
| 653 |
with gr.Row():
|
| 654 |
with gr.Column(scale=1):
|
| 655 |
logout_btn = gr.Button("Logout")
|
| 656 |
with gr.Column(scale=4):
|
| 657 |
-
# Dynamic welcome message (basic approach)
|
| 658 |
welcome_display = gr.Markdown("### Welcome, User!")
|
| 659 |
|
| 660 |
with gr.Row():
|
|
@@ -668,7 +812,6 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 668 |
# --- Interview Section ---
|
| 669 |
with gr.Column(visible=False) as interview_selection:
|
| 670 |
gr.Markdown("## Mock Interview")
|
| 671 |
-
# File Upload Section
|
| 672 |
with gr.Row():
|
| 673 |
with gr.Column():
|
| 674 |
file_upload_interview = gr.File(label="Upload Resume (PDF)", file_types=[".pdf"])
|
|
@@ -676,45 +819,39 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 676 |
with gr.Column():
|
| 677 |
file_status_interview = gr.Textbox(label="Status", interactive=False)
|
| 678 |
|
| 679 |
-
# Role Selection (Initially hidden)
|
| 680 |
role_selection = gr.Dropdown(
|
| 681 |
choices=["Data Scientist", "Software Engineer", "Product Manager", "Data Analyst", "Business Analyst"],
|
| 682 |
-
multiselect=True,
|
| 683 |
-
label="Select Job Role(s)",
|
| 684 |
-
visible=False
|
| 685 |
)
|
| 686 |
start_interview_btn = gr.Button("Start Interview", visible=False)
|
| 687 |
-
|
| 688 |
-
# Interview Section (Initially hidden)
|
| 689 |
question_display = gr.Textbox(label="Question", interactive=False, visible=False)
|
| 690 |
answer_instructions = gr.Markdown("Click 'Record Answer' and speak your response.", visible=False)
|
| 691 |
audio_input = gr.Audio(label="Record Answer", type="numpy", visible=False)
|
| 692 |
submit_answer_btn = gr.Button("Submit Answer", visible=False)
|
| 693 |
next_question_btn = gr.Button("Next Question", visible=False)
|
| 694 |
submit_interview_btn = gr.Button("Submit Interview", visible=False, variant="primary")
|
| 695 |
-
|
| 696 |
-
# Feedback and Metrics (Initially hidden)
|
| 697 |
answer_display = gr.Textbox(label="Your Answer", interactive=False, visible=False)
|
| 698 |
feedback_display = gr.Textbox(label="Feedback", interactive=False, visible=False)
|
| 699 |
metrics_display = gr.JSON(label="Metrics", visible=False)
|
| 700 |
-
|
| 701 |
-
# Hidden textbox to hold processed resume data temporarily for interview
|
| 702 |
processed_resume_data_hidden_interview = gr.Textbox(visible=False)
|
| 703 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 704 |
# --- Chat Section ---
|
| 705 |
if CHAT_MODULE_AVAILABLE:
|
| 706 |
with gr.Column(visible=False) as chat_selection:
|
| 707 |
gr.Markdown("## Chat with Resume")
|
| 708 |
-
# File Upload Section (Chat uses its own upload)
|
| 709 |
with gr.Row():
|
| 710 |
with gr.Column():
|
| 711 |
file_upload_chat = gr.File(label="Upload Resume (PDF)", file_types=[".pdf"])
|
| 712 |
process_chat_btn = gr.Button("Process Resume")
|
| 713 |
with gr.Column():
|
| 714 |
file_status_chat = gr.Textbox(label="Status", interactive=False)
|
| 715 |
-
|
| 716 |
-
# Chat Section (Initially hidden)
|
| 717 |
-
chatbot = gr.Chatbot(label="Chat History", visible=False)
|
| 718 |
query_input = gr.Textbox(label="Ask about your resume", placeholder="Type your question here...", visible=False)
|
| 719 |
send_btn = gr.Button("Send", visible=False)
|
| 720 |
else:
|
|
@@ -722,69 +859,51 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 722 |
gr.Markdown("## Chat with Resume (Unavailable)")
|
| 723 |
gr.Textbox(value="Chat module is not available.", interactive=False)
|
| 724 |
|
| 725 |
-
|
| 726 |
-
# Navigation buttons
|
| 727 |
interview_view = interview_selection
|
| 728 |
chat_view = chat_selection
|
| 729 |
-
|
| 730 |
interview_btn.click(fn=navigate_to_interview, inputs=None, outputs=[interview_view, chat_view])
|
| 731 |
if CHAT_MODULE_AVAILABLE:
|
| 732 |
chat_btn.click(fn=navigate_to_chat, inputs=None, outputs=[interview_view, chat_view])
|
| 733 |
-
# Update welcome message when user_state changes (basic)
|
| 734 |
-
# Note: Gradio State change listeners might not work as expected for UI updates in all cases.
|
| 735 |
-
# An alternative is to update the welcome message in the login/logout functions directly.
|
| 736 |
-
# user_state.change(fn=lambda user: f"### Welcome, {user}!" if user else "### Welcome, User!", inputs=[user_state], outputs=[welcome_display])
|
| 737 |
|
| 738 |
# --- Event Listeners for Interview ---
|
| 739 |
-
# Process Resume (Interview)
|
| 740 |
process_btn_interview.click(
|
| 741 |
fn=process_resume,
|
| 742 |
inputs=[file_upload_interview],
|
| 743 |
outputs=[
|
| 744 |
-
file_status_interview,
|
| 745 |
-
|
| 746 |
-
|
| 747 |
-
|
| 748 |
-
|
| 749 |
-
|
| 750 |
-
submit_answer_btn, # 7
|
| 751 |
-
next_question_btn, # 8
|
| 752 |
-
submit_interview_btn, # 9
|
| 753 |
-
answer_display, # 10
|
| 754 |
-
feedback_display, # 11
|
| 755 |
-
metrics_display, # 12
|
| 756 |
-
processed_resume_data_hidden_interview # 13 - This is where processed_data goes
|
| 757 |
-
] # Exactly 13 outputs
|
| 758 |
)
|
| 759 |
|
| 760 |
-
# Start Interview
|
| 761 |
start_interview_btn.click(
|
| 762 |
fn=start_interview,
|
| 763 |
inputs=[role_selection, processed_resume_data_hidden_interview],
|
| 764 |
outputs=[
|
| 765 |
file_status_interview, question_display,
|
| 766 |
-
|
|
|
|
| 767 |
audio_input, submit_answer_btn, next_question_btn,
|
| 768 |
submit_interview_btn, feedback_display, metrics_display,
|
| 769 |
-
question_display, answer_instructions,
|
| 770 |
-
interview_state
|
| 771 |
]
|
| 772 |
)
|
| 773 |
|
| 774 |
-
# Submit Answer
|
| 775 |
submit_answer_btn.click(
|
| 776 |
fn=submit_answer,
|
| 777 |
inputs=[audio_input, interview_state],
|
| 778 |
outputs=[
|
| 779 |
file_status_interview, answer_display, interview_state,
|
| 780 |
-
feedback_display, feedback_display,
|
| 781 |
-
metrics_display, metrics_display,
|
| 782 |
audio_input, submit_answer_btn, next_question_btn,
|
| 783 |
submit_interview_btn, question_display, answer_instructions
|
| 784 |
]
|
| 785 |
)
|
| 786 |
|
| 787 |
-
# Next Question
|
| 788 |
next_question_btn.click(
|
| 789 |
fn=next_question,
|
| 790 |
inputs=[interview_state],
|
|
@@ -793,34 +912,34 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 793 |
audio_input, submit_answer_btn, next_question_btn,
|
| 794 |
feedback_display, metrics_display, submit_interview_btn,
|
| 795 |
question_display, answer_instructions,
|
| 796 |
-
answer_display, metrics_display
|
| 797 |
]
|
| 798 |
)
|
| 799 |
|
| 800 |
-
# Submit Interview (Placeholder for evaluation trigger)
|
| 801 |
submit_interview_btn.click(
|
| 802 |
fn=submit_interview,
|
| 803 |
inputs=[interview_state],
|
| 804 |
-
outputs=[
|
| 805 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 806 |
)
|
| 807 |
|
| 808 |
-
# --- Event Listeners for Chat
|
| 809 |
if CHAT_MODULE_AVAILABLE:
|
| 810 |
-
# Process Resume for Chat
|
| 811 |
process_chat_btn.click(
|
| 812 |
fn=chat_module.process_resume_chat,
|
| 813 |
inputs=[file_upload_chat],
|
| 814 |
outputs=[file_status_chat, processed_resume_data_state, query_input, send_btn, chatbot]
|
| 815 |
)
|
| 816 |
-
|
| 817 |
-
# Chat Interaction
|
| 818 |
send_btn.click(
|
| 819 |
fn=chat_module.chat_with_resume,
|
| 820 |
-
inputs=[query_input, processed_resume_data_state, chatbot],
|
| 821 |
-
outputs=[query_input, chatbot]
|
| 822 |
)
|
| 823 |
-
query_input.submit(
|
| 824 |
fn=chat_module.chat_with_resume,
|
| 825 |
inputs=[query_input, processed_resume_data_state, chatbot],
|
| 826 |
outputs=[query_input, chatbot]
|
|
@@ -830,22 +949,26 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 830 |
login_btn.click(
|
| 831 |
fn=login,
|
| 832 |
inputs=[login_email_input, login_password_input],
|
| 833 |
-
outputs=[login_status, login_section, signup_section, main_app,
|
|
|
|
| 834 |
)
|
| 835 |
|
| 836 |
signup_btn.click(
|
| 837 |
fn=signup,
|
| 838 |
inputs=[signup_email_input, signup_password_input, signup_username_input],
|
| 839 |
-
outputs=[signup_status, login_section, signup_section, main_app,
|
|
|
|
|
|
|
| 840 |
)
|
| 841 |
|
| 842 |
logout_btn.click(
|
| 843 |
fn=logout,
|
| 844 |
inputs=None,
|
| 845 |
-
outputs=[login_status, login_section, signup_section, main_app,
|
|
|
|
|
|
|
| 846 |
)
|
| 847 |
|
| 848 |
-
# Switch between Login and Signup
|
| 849 |
switch_to_signup_btn.click(
|
| 850 |
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
|
| 851 |
inputs=None,
|
|
@@ -860,4 +983,4 @@ with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
|
| 860 |
|
| 861 |
# Run the app
|
| 862 |
if __name__ == "__main__":
|
| 863 |
-
demo.launch(
|
|
|
|
| 4 |
import tempfile
|
| 5 |
import PyPDF2
|
| 6 |
import google.generativeai as genai
|
|
|
|
| 7 |
from transformers import BertTokenizer, TFBertModel
|
| 8 |
import numpy as np
|
| 9 |
import speech_recognition as sr
|
|
|
|
|
|
|
|
|
|
| 10 |
from dotenv import load_dotenv
|
| 11 |
+
import soundfile as sf
|
| 12 |
import json
|
| 13 |
+
import matplotlib.pyplot as plt
|
| 14 |
+
import io
|
| 15 |
+
import re
|
| 16 |
|
| 17 |
# --- Firebase Admin SDK Setup ---
|
| 18 |
import firebase_admin
|
| 19 |
+
from firebase_admin import credentials, auth
|
| 20 |
|
| 21 |
# Load environment variables
|
| 22 |
load_dotenv()
|
|
|
|
| 31 |
cred = None
|
| 32 |
try:
|
| 33 |
# Method 1: Use specific credentials file path
|
| 34 |
+
firebase_credentials_path = os.getenv("FIREBASE_CREDENTIALS_PATH", "prepgenie-64134-firebase-adminsdk-fbsvc-3370ac4ab9.json")
|
| 35 |
+
if firebase_credentials_path and os.path.exists(firebase_credentials_path):
|
| 36 |
print(f"Initializing Firebase with credentials file: {firebase_credentials_path}")
|
| 37 |
cred = credentials.Certificate(firebase_credentials_path)
|
| 38 |
firebase_app = firebase_admin.initialize_app(cred)
|
| 39 |
print("Firebase Admin initialized successfully using credentials file.")
|
| 40 |
return firebase_app
|
| 41 |
+
elif not firebase_credentials_path:
|
| 42 |
+
print("FIREBASE_CREDENTIALS_PATH is not set or is None.")
|
| 43 |
else:
|
| 44 |
print(f"Firebase credentials file not found at {firebase_credentials_path}")
|
| 45 |
except Exception as e:
|
| 46 |
print(f"Failed to initialize Firebase using credentials file: {e}")
|
| 47 |
|
| 48 |
try:
|
| 49 |
+
# Method 2: Use JSON string from environment variable
|
| 50 |
firebase_credentials_json = os.getenv("FIREBASE_CREDENTIALS_JSON")
|
| 51 |
if firebase_credentials_json:
|
| 52 |
print("Initializing Firebase with credentials from FIREBASE_CREDENTIALS_JSON environment variable.")
|
|
|
|
| 63 |
print(f"Failed to initialize Firebase using FIREBASE_CREDENTIALS_JSON: {e}")
|
| 64 |
|
| 65 |
print("Warning: Firebase Admin SDK could not be initialized. Authentication features will not work.")
|
| 66 |
+
return None
|
| 67 |
|
|
|
|
| 68 |
FIREBASE_APP = initialize_firebase()
|
| 69 |
FIREBASE_AVAILABLE = FIREBASE_APP is not None
|
| 70 |
|
| 71 |
# Configure Generative AI
|
| 72 |
+
genai.configure(api_key=os.getenv("GOOGLE_API_KEY") or "YOUR_DEFAULT_API_KEY_HERE")
|
| 73 |
text_model = genai.GenerativeModel("gemini-pro")
|
| 74 |
|
| 75 |
+
# Load BERT model and tokenizer
|
| 76 |
try:
|
| 77 |
model = TFBertModel.from_pretrained("bert-base-uncased")
|
| 78 |
tokenizer = BertTokenizer.from_pretrained("bert-base-uncased")
|
|
|
|
| 83 |
model = None
|
| 84 |
tokenizer = None
|
| 85 |
|
| 86 |
+
# --- Helper Functions (Logic adapted from Streamlit) ---
|
| 87 |
|
| 88 |
def getallinfo(data):
|
| 89 |
+
if not data or not data.strip():
|
| 90 |
return "No data provided or data is empty."
|
| 91 |
text = f"""{data} is given by the user. Make sure you are getting the details like name, experience,
|
| 92 |
education, skills of the user like in a resume. If the details are not provided return: not a resume.
|
|
|
|
| 98 |
except Exception as e:
|
| 99 |
print(f"Error in getallinfo: {e}")
|
| 100 |
return "Error processing resume data."
|
| 101 |
+
|
| 102 |
+
def file_processing(pdf_file_path):
|
| 103 |
"""Processes the uploaded PDF file given its path."""
|
| 104 |
+
if not pdf_file_path:
|
|
|
|
| 105 |
return ""
|
| 106 |
try:
|
|
|
|
|
|
|
| 107 |
if hasattr(pdf_file_path, 'name'):
|
| 108 |
file_path_to_use = pdf_file_path.name
|
| 109 |
else:
|
|
|
|
| 110 |
file_path_to_use = pdf_file_path
|
| 111 |
|
|
|
|
|
|
|
|
|
|
| 112 |
with open(file_path_to_use, "rb") as f:
|
| 113 |
reader = PyPDF2.PdfReader(f)
|
| 114 |
text = ""
|
| 115 |
for page in reader.pages:
|
| 116 |
text += page.extract_text()
|
| 117 |
return text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 118 |
except Exception as e:
|
| 119 |
+
print(f"Error processing PDF {pdf_file_path}: {e}")
|
| 120 |
+
return ""
|
|
|
|
| 121 |
|
| 122 |
def get_embedding(text):
|
| 123 |
if not text or not text.strip():
|
| 124 |
+
return np.zeros((1, 768))
|
|
|
|
| 125 |
|
| 126 |
if not BERT_AVAILABLE or not model or not tokenizer:
|
| 127 |
print("BERT model not available for embedding.")
|
| 128 |
+
return np.zeros((1, 768))
|
|
|
|
| 129 |
|
| 130 |
try:
|
|
|
|
| 131 |
encoded_text = tokenizer(text, return_tensors="tf", truncation=True, padding=True, max_length=512)
|
| 132 |
output = model(encoded_text)
|
| 133 |
+
embedding = output.last_hidden_state[:, 0, :]
|
| 134 |
+
return embedding.numpy()
|
| 135 |
except Exception as e:
|
| 136 |
print(f"Error getting embedding: {e}")
|
| 137 |
+
return np.zeros((1, 768))
|
| 138 |
|
| 139 |
def generate_feedback(question, answer):
|
|
|
|
| 140 |
if not question or not question.strip() or not answer or not answer.strip():
|
| 141 |
return "0.00"
|
| 142 |
|
| 143 |
try:
|
| 144 |
question_embedding = get_embedding(question)
|
| 145 |
answer_embedding = get_embedding(answer)
|
|
|
|
|
|
|
| 146 |
q_emb = np.squeeze(question_embedding)
|
| 147 |
a_emb = np.squeeze(answer_embedding)
|
| 148 |
|
|
|
|
| 152 |
similarity_score = 0.0
|
| 153 |
else:
|
| 154 |
similarity_score = dot_product / norms
|
| 155 |
+
return f"{similarity_score:.2f}"
|
| 156 |
except Exception as e:
|
| 157 |
print(f"Error generating feedback: {e}")
|
| 158 |
return "0.00"
|
| 159 |
|
| 160 |
def generate_questions(roles, data):
|
|
|
|
| 161 |
if not roles or (isinstance(roles, list) and not any(roles)) or not data or not data.strip():
|
| 162 |
return ["Could you please introduce yourself based on your resume?"]
|
| 163 |
|
| 164 |
questions = []
|
|
|
|
| 165 |
if isinstance(roles, list):
|
| 166 |
roles_str = ", ".join(roles)
|
| 167 |
else:
|
|
|
|
| 176 |
ask 2 questions only. directly ask the questions not anything else.
|
| 177 |
Also ask the questions in a polite way. Ask the questions in a way that the candidate can understand the question.
|
| 178 |
and make sure the questions are related to these metrics: Communication skills, Teamwork and collaboration,
|
| 179 |
+
Problem-solving and critical thinking, Time management and organization, Adaptability and resilience."""
|
|
|
|
|
|
|
| 180 |
try:
|
| 181 |
response = text_model.generate_content(text)
|
| 182 |
response.resolve()
|
| 183 |
questions_text = response.text.strip()
|
|
|
|
| 184 |
questions = [q.strip() for q in questions_text.split('\n') if q.strip()]
|
| 185 |
if not questions:
|
| 186 |
questions = [q.strip() for q in questions_text.split('?') if q.strip()]
|
| 187 |
if not questions:
|
| 188 |
questions = [q.strip() for q in questions_text.split('.') if q.strip()]
|
|
|
|
| 189 |
questions = questions[:2] if questions else ["Could you please introduce yourself based on your resume?"]
|
| 190 |
except Exception as e:
|
| 191 |
print(f"Error generating questions: {e}")
|
|
|
|
| 193 |
return questions
|
| 194 |
|
| 195 |
def generate_overall_feedback(data, percent, answer, questions):
|
|
|
|
| 196 |
if not data or not data.strip() or not answer or not answer.strip() or not questions:
|
| 197 |
return "Unable to generate feedback due to missing information."
|
| 198 |
|
|
|
|
| 199 |
if isinstance(percent, float):
|
| 200 |
percent_str = f"{percent:.2f}"
|
| 201 |
else:
|
|
|
|
| 219 |
return "Feedback could not be generated."
|
| 220 |
|
| 221 |
def generate_metrics(data, answer, question):
|
|
|
|
| 222 |
if not data or not data.strip() or not answer or not answer.strip() or not question or not question.strip():
|
|
|
|
| 223 |
return {
|
| 224 |
"Communication skills": 0.0, "Teamwork and collaboration": 0.0,
|
| 225 |
"Problem-solving and critical thinking": 0.0, "Time management and organization": 0.0,
|
|
|
|
| 247 |
response = text_model.generate_content(text)
|
| 248 |
response.resolve()
|
| 249 |
metrics_text = response.text.strip()
|
|
|
|
| 250 |
for line in metrics_text.split('\n'):
|
| 251 |
if ':' in line:
|
| 252 |
key, value_str = line.split(':', 1)
|
| 253 |
key = key.strip()
|
| 254 |
try:
|
| 255 |
+
value_clean = value_str.strip().split()[0]
|
|
|
|
| 256 |
value = float(value_clean)
|
| 257 |
metrics[key] = value
|
| 258 |
except (ValueError, IndexError):
|
|
|
|
| 259 |
metrics[key] = 0.0
|
|
|
|
| 260 |
expected_metrics = [
|
| 261 |
"Communication skills", "Teamwork and collaboration",
|
| 262 |
"Problem-solving and critical thinking", "Time management and organization",
|
|
|
|
| 265 |
for m in expected_metrics:
|
| 266 |
if m not in metrics:
|
| 267 |
metrics[m] = 0.0
|
|
|
|
| 268 |
except Exception as e:
|
| 269 |
print(f"Error generating metrics: {e}")
|
|
|
|
| 270 |
metrics = {
|
| 271 |
"Communication skills": 0.0, "Teamwork and collaboration": 0.0,
|
| 272 |
"Problem-solving and critical thinking": 0.0, "Time management and organization": 0.0,
|
|
|
|
| 274 |
}
|
| 275 |
return metrics
|
| 276 |
|
| 277 |
+
# --- Evaluation Logic (Adapted from login_module/evaluate.py) ---
|
| 278 |
+
|
| 279 |
+
def getmetrics(interaction, resume):
|
| 280 |
+
interaction_text = "\n".join([f"{q}: {a}" for q, a in interaction.items()])
|
| 281 |
+
text = f"""This is the user's resume: {resume}.
|
| 282 |
+
And here is the interaction of the interview: {interaction_text}.
|
| 283 |
+
Please evaluate the interview based on the interaction and the resume.
|
| 284 |
+
Rate me the following metrics on a scale of 1 to 10. 1 being the lowest and 10 being the highest.
|
| 285 |
+
Communication skills, Teamwork and collaboration, Problem-solving and critical thinking,
|
| 286 |
+
Time management and organization, Adaptability and resilience. Just give the ratings for the metrics.
|
| 287 |
+
I do not need the feedback. Just the ratings in the format:
|
| 288 |
+
Communication skills: X
|
| 289 |
+
Teamwork and collaboration: Y
|
| 290 |
+
Problem-solving and critical thinking: Z
|
| 291 |
+
Time management and organization: A
|
| 292 |
+
Adaptability and resilience: B
|
| 293 |
+
"""
|
| 294 |
+
try:
|
| 295 |
+
response = text_model.generate_content(text)
|
| 296 |
+
response.resolve()
|
| 297 |
+
return response.text
|
| 298 |
+
except Exception as e:
|
| 299 |
+
print(f"Error fetching metrics from AI: {e}")
|
| 300 |
+
return ""
|
| 301 |
+
|
| 302 |
+
def parse_metrics(metric_text):
|
| 303 |
+
metrics = {
|
| 304 |
+
"Communication skills": 0,
|
| 305 |
+
"Teamwork and collaboration": 0,
|
| 306 |
+
"Problem-solving and critical thinking": 0,
|
| 307 |
+
"Time management and organization": 0,
|
| 308 |
+
"Adaptability and resilience": 0
|
| 309 |
+
}
|
| 310 |
+
if not metric_text:
|
| 311 |
+
return metrics
|
| 312 |
+
for line in metric_text.split("\n"):
|
| 313 |
+
if ":" in line:
|
| 314 |
+
key, value = line.split(":", 1)
|
| 315 |
+
key = key.strip()
|
| 316 |
+
value = value.strip()
|
| 317 |
+
if value and value not in ['N/A', 'nan'] and not value.isspace():
|
| 318 |
+
try:
|
| 319 |
+
numbers = re.findall(r'\d+\.?\d*', value)
|
| 320 |
+
if numbers:
|
| 321 |
+
metrics[key] = int(float(numbers[0]))
|
| 322 |
+
else:
|
| 323 |
+
metrics[key] = 0
|
| 324 |
+
except (ValueError, IndexError, TypeError):
|
| 325 |
+
print(f"Warning: Could not parse metric value '{value}' for '{key}'. Setting to 0.")
|
| 326 |
+
metrics[key] = 0
|
| 327 |
+
else:
|
| 328 |
+
metrics[key] = 0
|
| 329 |
+
return metrics
|
| 330 |
+
|
| 331 |
+
def create_metrics_chart(metrics_dict):
|
| 332 |
+
try:
|
| 333 |
+
labels = list(metrics_dict.keys())
|
| 334 |
+
sizes = list(metrics_dict.values())
|
| 335 |
+
if not any(sizes):
|
| 336 |
+
fig, ax = plt.subplots(figsize=(4, 4))
|
| 337 |
+
ax.text(0.5, 0.5, 'No Data Available', ha='center', va='center', transform=ax.transAxes)
|
| 338 |
+
ax.axis('off')
|
| 339 |
+
else:
|
| 340 |
+
fig, ax = plt.subplots(figsize=(6, 6))
|
| 341 |
+
wedges, texts, autotexts = ax.pie(sizes, labels=labels, autopct='%1.1f%%', startangle=90)
|
| 342 |
+
ax.axis('equal')
|
| 343 |
+
for autotext in autotexts:
|
| 344 |
+
autotext.set_color('white')
|
| 345 |
+
autotext.set_fontsize(8)
|
| 346 |
+
buf = io.BytesIO()
|
| 347 |
+
plt.savefig(buf, format='png', bbox_inches='tight')
|
| 348 |
+
buf.seek(0)
|
| 349 |
+
plt.close(fig)
|
| 350 |
+
return buf
|
| 351 |
+
except Exception as e:
|
| 352 |
+
print(f"Error creating chart: {e}")
|
| 353 |
+
fig, ax = plt.subplots(figsize=(4, 4))
|
| 354 |
+
ax.text(0.5, 0.5, 'Chart Error', ha='center', va='center', transform=ax.transAxes)
|
| 355 |
+
ax.axis('off')
|
| 356 |
+
buf = io.BytesIO()
|
| 357 |
+
plt.savefig(buf, format='png')
|
| 358 |
+
buf.seek(0)
|
| 359 |
+
plt.close(fig)
|
| 360 |
+
return buf
|
| 361 |
+
|
| 362 |
+
def generate_evaluation_report(metrics_data, average_rating, feedback_list, interaction_dict):
|
| 363 |
+
try:
|
| 364 |
+
report_lines = [f"## Hey Candidate, here is your interview evaluation:\n"]
|
| 365 |
+
report_lines.append("### Skill Ratings:\n")
|
| 366 |
+
for metric, rating in metrics_data.items():
|
| 367 |
+
report_lines.append(f"* **{metric}:** {rating}/10\n")
|
| 368 |
+
report_lines.append(f"\n### Overall Average Rating: {average_rating:.2f}/10\n")
|
| 369 |
+
report_lines.append("### Feedback Summary:\n")
|
| 370 |
+
if feedback_list:
|
| 371 |
+
last_feedback = feedback_list[-1] if feedback_list else "No feedback available."
|
| 372 |
+
report_lines.append(last_feedback)
|
| 373 |
+
else:
|
| 374 |
+
report_lines.append("No detailed feedback was generated.")
|
| 375 |
+
report_lines.append("\n### Interview Interaction:\n")
|
| 376 |
+
if interaction_dict:
|
| 377 |
+
for q, a in interaction_dict.items():
|
| 378 |
+
report_lines.append(f"* **{q}**\n {a}\n")
|
| 379 |
+
else:
|
| 380 |
+
report_lines.append("Interaction data not available.")
|
| 381 |
+
improvement_content = """
|
| 382 |
+
### Areas for Improvement:
|
| 383 |
+
* **Communication:** Focus on clarity, conciseness, and tailoring your responses to the audience. Use examples and evidence to support your points.
|
| 384 |
+
* **Teamwork and collaboration:** Highlight your teamwork skills through specific examples and demonstrate your ability to work effectively with others.
|
| 385 |
+
* **Problem-solving and critical thinking:** Clearly explain your problem-solving approach and thought process. Show your ability to analyze information and arrive at logical solutions.
|
| 386 |
+
* **Time management and organization:** Emphasize your ability to manage time effectively and stay organized during challenging situations.
|
| 387 |
+
* **Adaptability and resilience:** Demonstrate your ability to adapt to new situations and overcome challenges. Share examples of how you have handled unexpected situations or setbacks in the past.
|
| 388 |
+
**Remember:** This is just a starting point. Customize the feedback based on the specific strengths and weaknesses identified in your interview.
|
| 389 |
+
"""
|
| 390 |
+
report_lines.append(improvement_content)
|
| 391 |
+
report_text = "".join(report_lines)
|
| 392 |
+
return report_text
|
| 393 |
+
except Exception as e:
|
| 394 |
+
error_msg = f"Error generating evaluation report: {e}"
|
| 395 |
+
print(error_msg)
|
| 396 |
+
return error_msg
|
| 397 |
+
|
| 398 |
+
# --- Gradio UI Components and Logic (Interview) ---
|
| 399 |
+
|
| 400 |
def process_resume(file_obj):
|
| 401 |
"""Handles resume upload and processing."""
|
|
|
|
| 402 |
if not file_obj:
|
| 403 |
return (
|
| 404 |
"Please upload a PDF resume.",
|
|
|
|
| 408 |
gr.update(visible=False), gr.update(visible=False),
|
| 409 |
gr.update(visible=False), gr.update(visible=False),
|
| 410 |
gr.update(visible=False), gr.update(visible=False),
|
| 411 |
+
gr.update(visible=False)
|
| 412 |
)
|
| 413 |
|
| 414 |
try:
|
|
|
|
| 415 |
if hasattr(file_obj, 'name'):
|
| 416 |
file_path = file_obj.name
|
| 417 |
else:
|
| 418 |
+
file_path = str(file_obj)
|
|
|
|
|
|
|
| 419 |
|
| 420 |
raw_text = file_processing(file_path)
|
| 421 |
if not raw_text or not raw_text.strip():
|
|
|
|
| 427 |
gr.update(visible=False), gr.update(visible=False),
|
| 428 |
gr.update(visible=False), gr.update(visible=False),
|
| 429 |
gr.update(visible=False), gr.update(visible=False),
|
| 430 |
+
gr.update(visible=False)
|
| 431 |
)
|
| 432 |
|
| 433 |
processed_data = getallinfo(raw_text)
|
|
|
|
| 434 |
return (
|
| 435 |
f"File processed successfully!",
|
| 436 |
+
gr.update(visible=True), gr.update(visible=True),
|
| 437 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 438 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 439 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 440 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 441 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 442 |
+
processed_data
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 443 |
)
|
| 444 |
except Exception as e:
|
| 445 |
error_msg = f"Error processing file: {str(e)}"
|
|
|
|
| 452 |
gr.update(visible=False), gr.update(visible=False),
|
| 453 |
gr.update(visible=False), gr.update(visible=False),
|
| 454 |
gr.update(visible=False), gr.update(visible=False),
|
| 455 |
+
gr.update(visible=False)
|
| 456 |
+
)
|
| 457 |
+
|
| 458 |
+
def start_interview(roles, processed_resume_data):
|
| 459 |
+
"""Starts the interview process."""
|
| 460 |
+
if not roles or (isinstance(roles, list) and not any(roles)) or not processed_resume_data or not processed_resume_data.strip():
|
| 461 |
+
return (
|
| 462 |
+
"Please select a role and ensure resume is processed.",
|
| 463 |
+
"", [], [], {}, {},
|
| 464 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 465 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 466 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 467 |
+
gr.update(visible=False), {}
|
| 468 |
)
|
| 469 |
|
| 470 |
+
try:
|
| 471 |
+
questions = generate_questions(roles, processed_resume_data)
|
| 472 |
+
initial_question = questions[0] if questions else "Could you please introduce yourself?"
|
| 473 |
+
interview_state = {
|
| 474 |
+
"questions": questions,
|
| 475 |
+
"current_q_index": 0,
|
| 476 |
+
"answers": [],
|
| 477 |
+
"feedback": [],
|
| 478 |
+
"interactions": {},
|
| 479 |
+
"metrics_list": [],
|
| 480 |
+
"resume_data": processed_resume_data
|
| 481 |
+
}
|
| 482 |
+
return (
|
| 483 |
+
"Interview started. Please answer the first question.",
|
| 484 |
+
initial_question,
|
| 485 |
+
questions,
|
| 486 |
+
[], {}, {},
|
| 487 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
| 488 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 489 |
+
gr.update(visible=True), gr.update(visible=True),
|
| 490 |
+
interview_state
|
| 491 |
+
)
|
| 492 |
+
except Exception as e:
|
| 493 |
+
error_msg = f"Error starting interview: {str(e)}"
|
| 494 |
+
print(error_msg)
|
| 495 |
+
return (
|
| 496 |
+
error_msg,
|
| 497 |
+
"", [], [], {}, {},
|
| 498 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 499 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 500 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 501 |
+
gr.update(visible=False), {}
|
| 502 |
+
)
|
| 503 |
|
| 504 |
def submit_answer(audio, interview_state):
|
| 505 |
"""Handles submitting an answer via audio."""
|
| 506 |
if not audio or not interview_state:
|
| 507 |
+
return (
|
| 508 |
+
"No audio recorded or interview not started.",
|
| 509 |
+
"", interview_state,
|
| 510 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 511 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 512 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
| 513 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 514 |
+
)
|
| 515 |
|
| 516 |
try:
|
|
|
|
| 517 |
temp_dir = tempfile.mkdtemp()
|
| 518 |
audio_file_path = os.path.join(temp_dir, "recorded_audio.wav")
|
|
|
|
| 519 |
sample_rate, audio_data = audio
|
|
|
|
| 520 |
sf.write(audio_file_path, audio_data, sample_rate)
|
| 521 |
|
|
|
|
| 522 |
r = sr.Recognizer()
|
| 523 |
with sr.AudioFile(audio_file_path) as source:
|
| 524 |
audio_data_sr = r.record(source)
|
| 525 |
answer_text = r.recognize_google(audio_data_sr)
|
| 526 |
print(f"Recognized Answer: {answer_text}")
|
| 527 |
|
|
|
|
| 528 |
os.remove(audio_file_path)
|
| 529 |
os.rmdir(temp_dir)
|
| 530 |
|
|
|
|
| 531 |
interview_state["answers"].append(answer_text)
|
| 532 |
current_q_index = interview_state["current_q_index"]
|
| 533 |
current_question = interview_state["questions"][current_q_index]
|
| 534 |
interview_state["interactions"][f"Q{current_q_index + 1}: {current_question}"] = f"A{current_q_index + 1}: {answer_text}"
|
| 535 |
|
|
|
|
| 536 |
percent_str = generate_feedback(current_question, answer_text)
|
| 537 |
try:
|
| 538 |
percent = float(percent_str)
|
|
|
|
| 543 |
interview_state["feedback"].append(feedback_text)
|
| 544 |
|
| 545 |
metrics = generate_metrics(interview_state["resume_data"], answer_text, current_question)
|
| 546 |
+
interview_state["metrics_list"].append(metrics)
|
| 547 |
|
|
|
|
| 548 |
interview_state["current_q_index"] += 1
|
| 549 |
|
| 550 |
return (
|
| 551 |
f"Answer submitted: {answer_text}",
|
| 552 |
answer_text,
|
| 553 |
interview_state,
|
| 554 |
+
gr.update(visible=True), gr.update(value=feedback_text, visible=True),
|
| 555 |
+
gr.update(visible=True), gr.update(value=metrics, visible=True),
|
| 556 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
| 557 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 558 |
)
|
| 559 |
|
| 560 |
except Exception as e:
|
| 561 |
print(f"Error processing audio answer: {e}")
|
| 562 |
+
return (
|
| 563 |
+
"Error processing audio. Please try again.",
|
| 564 |
+
"", interview_state,
|
| 565 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 566 |
+
gr.update(visible=False), gr.update(visible=False),
|
| 567 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
| 568 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True)
|
| 569 |
+
)
|
| 570 |
|
| 571 |
def next_question(interview_state):
|
| 572 |
"""Moves to the next question or ends the interview."""
|
| 573 |
if not interview_state:
|
| 574 |
+
return (
|
| 575 |
+
"Interview not started.",
|
| 576 |
+
"", interview_state,
|
| 577 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
| 578 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 579 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True),
|
| 580 |
+
gr.update(visible=False), gr.update(visible=False)
|
| 581 |
+
)
|
| 582 |
|
| 583 |
current_q_index = interview_state["current_q_index"]
|
| 584 |
total_questions = len(interview_state["questions"])
|
|
|
|
| 589 |
f"Question {current_q_index + 1}/{total_questions}",
|
| 590 |
next_q,
|
| 591 |
interview_state,
|
| 592 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=True),
|
| 593 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 594 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=True),
|
| 595 |
+
"", {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 596 |
)
|
| 597 |
else:
|
|
|
|
| 598 |
return (
|
| 599 |
"Interview completed! Click 'Submit Interview' to see your evaluation.",
|
| 600 |
"Interview Finished",
|
| 601 |
interview_state,
|
| 602 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 603 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=False),
|
| 604 |
+
gr.update(visible=True), gr.update(visible=True), gr.update(visible=False),
|
| 605 |
+
"", {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 606 |
)
|
| 607 |
|
| 608 |
def submit_interview(interview_state):
|
| 609 |
+
"""Handles final submission, triggers evaluation, and prepares results."""
|
| 610 |
+
if not interview_state or not isinstance(interview_state, dict):
|
| 611 |
+
return (
|
| 612 |
+
"Interview state is missing or invalid.",
|
| 613 |
+
interview_state,
|
| 614 |
+
gr.update(visible=False), gr.update(visible=False), "", None
|
| 615 |
+
)
|
| 616 |
|
| 617 |
+
try:
|
| 618 |
+
print("Interview submitted for evaluation.")
|
| 619 |
+
interactions = interview_state.get("interactions", {})
|
| 620 |
+
resume_data = interview_state.get("resume_data", "")
|
| 621 |
+
feedback_list = interview_state.get("feedback", [])
|
| 622 |
+
metrics_history = interview_state.get("metrics_list", [])
|
| 623 |
+
|
| 624 |
+
if not interactions:
|
| 625 |
+
error_msg = "No interview interactions found to evaluate."
|
| 626 |
+
print(error_msg)
|
| 627 |
+
return (
|
| 628 |
+
error_msg,
|
| 629 |
+
interview_state,
|
| 630 |
+
gr.update(visible=False), gr.update(visible=False), "", None
|
| 631 |
+
)
|
| 632 |
+
|
| 633 |
+
raw_metrics_text = getmetrics(interactions, resume_data)
|
| 634 |
+
print(f"Raw Metrics Text:\n{raw_metrics_text}")
|
| 635 |
+
final_metrics = parse_metrics(raw_metrics_text)
|
| 636 |
+
print(f"Parsed Metrics: {final_metrics}")
|
| 637 |
+
|
| 638 |
+
if final_metrics:
|
| 639 |
+
average_rating = sum(final_metrics.values()) / len(final_metrics)
|
| 640 |
+
else:
|
| 641 |
+
average_rating = 0.0
|
| 642 |
|
| 643 |
+
report_text = generate_evaluation_report(final_metrics, average_rating, feedback_list, interactions)
|
| 644 |
+
print("Evaluation report generated.")
|
| 645 |
+
chart_buffer = create_metrics_chart(final_metrics)
|
| 646 |
+
print("Evaluation chart generated.")
|
| 647 |
+
|
| 648 |
+
return (
|
| 649 |
+
"Evaluation Complete! See your results below.",
|
| 650 |
+
interview_state,
|
| 651 |
+
gr.update(visible=True, value=report_text),
|
| 652 |
+
gr.update(visible=True, value=chart_buffer)
|
| 653 |
+
)
|
| 654 |
+
except Exception as e:
|
| 655 |
+
error_msg = f"Error during evaluation submission: {str(e)}"
|
| 656 |
+
print(error_msg)
|
| 657 |
+
import traceback
|
| 658 |
+
traceback.print_exc()
|
| 659 |
+
return (
|
| 660 |
+
error_msg,
|
| 661 |
+
interview_state,
|
| 662 |
+
gr.update(visible=True, value=error_msg),
|
| 663 |
+
gr.update(visible=False)
|
| 664 |
+
)
|
| 665 |
|
| 666 |
# --- Login and Navigation Logic (Firebase Integrated) ---
|
| 667 |
|
| 668 |
def login(email, password):
|
|
|
|
| 669 |
if not FIREBASE_AVAILABLE:
|
| 670 |
+
return (
|
| 671 |
+
"Firebase not initialized. Login unavailable.",
|
| 672 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
|
| 673 |
+
"", "", "", ""
|
| 674 |
+
)
|
| 675 |
if not email or not password:
|
| 676 |
+
return (
|
| 677 |
+
"Please enter email and password.",
|
| 678 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
|
| 679 |
+
email, password, "", ""
|
| 680 |
+
)
|
| 681 |
try:
|
|
|
|
|
|
|
|
|
|
| 682 |
user = auth.get_user_by_email(email)
|
| 683 |
+
welcome_msg = f"Welcome, {user.display_name or user.uid}!"
|
| 684 |
+
return (
|
| 685 |
+
welcome_msg,
|
| 686 |
+
gr.update(visible=False), gr.update(visible=False), gr.update(visible=True),
|
| 687 |
+
"", "", user.uid, user.email
|
| 688 |
+
)
|
|
|
|
|
|
|
|
|
|
| 689 |
except auth.UserNotFoundError:
|
| 690 |
+
return (
|
| 691 |
+
"User not found. Please check your email or sign up.",
|
| 692 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
|
| 693 |
+
email, password, "", ""
|
| 694 |
+
)
|
| 695 |
except Exception as e:
|
| 696 |
error_msg = f"Login failed: {str(e)}"
|
| 697 |
print(error_msg)
|
| 698 |
+
return (
|
| 699 |
+
error_msg,
|
| 700 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
|
| 701 |
+
email, password, "", ""
|
| 702 |
+
)
|
| 703 |
|
| 704 |
def signup(email, password, username):
|
| 705 |
+
if not FIREBASE_AVAILABLE:
|
| 706 |
+
return (
|
| 707 |
+
"Firebase not initialized. Signup unavailable.",
|
| 708 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
|
| 709 |
+
gr.update(visible=False), "", "", "", "", ""
|
| 710 |
+
)
|
| 711 |
if not email or not password or not username:
|
| 712 |
+
return (
|
| 713 |
+
"Please fill all fields.",
|
| 714 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),
|
| 715 |
+
gr.update(visible=False), email, password, username, "", ""
|
| 716 |
+
)
|
| 717 |
try:
|
|
|
|
| 718 |
user = auth.create_user(email=email, password=password, uid=username, display_name=username)
|
| 719 |
success_msg = f"Account created successfully for {username}!"
|
| 720 |
+
return (
|
| 721 |
+
success_msg,
|
| 722 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
|
| 723 |
+
gr.update(visible=False), "", "", "", user.uid, user.email
|
| 724 |
+
)
|
|
|
|
|
|
|
| 725 |
except auth.UidAlreadyExistsError:
|
| 726 |
+
return (
|
| 727 |
+
"Username already exists. Please choose another.",
|
| 728 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),
|
| 729 |
+
gr.update(visible=False), email, password, username, "", ""
|
| 730 |
+
)
|
| 731 |
except auth.EmailAlreadyExistsError:
|
| 732 |
+
return (
|
| 733 |
+
"Email already exists. Please use another email.",
|
| 734 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),
|
| 735 |
+
gr.update(visible=False), email, password, username, "", ""
|
| 736 |
+
)
|
| 737 |
except Exception as e:
|
| 738 |
error_msg = f"Signup failed: {str(e)}"
|
| 739 |
print(error_msg)
|
| 740 |
+
return (
|
| 741 |
+
error_msg,
|
| 742 |
+
gr.update(visible=False), gr.update(visible=True), gr.update(visible=False),
|
| 743 |
+
gr.update(visible=False), email, password, username, "", ""
|
| 744 |
+
)
|
| 745 |
|
| 746 |
def logout():
|
| 747 |
+
return (
|
| 748 |
+
"",
|
| 749 |
+
gr.update(visible=True), gr.update(visible=False), gr.update(visible=False),
|
| 750 |
+
gr.update(visible=False), "", "", "", "", ""
|
| 751 |
+
)
|
|
|
|
| 752 |
|
| 753 |
def navigate_to_interview():
|
| 754 |
+
return (gr.update(visible=True), gr.update(visible=False))
|
| 755 |
|
| 756 |
def navigate_to_chat():
|
| 757 |
+
return (gr.update(visible=False), gr.update(visible=True))
|
| 758 |
|
| 759 |
# --- Import Chat Module Functions ---
|
|
|
|
| 760 |
try:
|
| 761 |
from login_module import chat as chat_module
|
| 762 |
CHAT_MODULE_AVAILABLE = True
|
|
|
|
| 767 |
chat_module = None
|
| 768 |
|
| 769 |
# --- Gradio Interface ---
|
|
|
|
| 770 |
with gr.Blocks(title="PrepGenie - Mock Interview") as demo:
|
| 771 |
gr.Markdown("# 🦈 PrepGenie")
|
|
|
|
| 772 |
interview_state = gr.State({})
|
|
|
|
| 773 |
user_state = gr.State("")
|
|
|
|
| 774 |
user_email_state = gr.State("")
|
|
|
|
| 775 |
processed_resume_data_state = gr.State("")
|
| 776 |
|
| 777 |
# --- Login Section ---
|
|
|
|
| 781 |
login_password_input = gr.Textbox(label="Password", type="password")
|
| 782 |
login_btn = gr.Button("Login")
|
| 783 |
login_status = gr.Textbox(label="Login Status", interactive=False)
|
|
|
|
| 784 |
switch_to_signup_btn = gr.Button("Don't have an account? Sign Up")
|
| 785 |
|
| 786 |
# --- Signup Section ---
|
|
|
|
| 791 |
signup_username_input = gr.Textbox(label="Unique Username")
|
| 792 |
signup_btn = gr.Button("Create my account")
|
| 793 |
signup_status = gr.Textbox(label="Signup Status", interactive=False)
|
|
|
|
| 794 |
switch_to_login_btn = gr.Button("Already have an account? Login")
|
| 795 |
|
| 796 |
+
# --- Main App Sections ---
|
| 797 |
with gr.Column(visible=False) as main_app:
|
| 798 |
with gr.Row():
|
| 799 |
with gr.Column(scale=1):
|
| 800 |
logout_btn = gr.Button("Logout")
|
| 801 |
with gr.Column(scale=4):
|
|
|
|
| 802 |
welcome_display = gr.Markdown("### Welcome, User!")
|
| 803 |
|
| 804 |
with gr.Row():
|
|
|
|
| 812 |
# --- Interview Section ---
|
| 813 |
with gr.Column(visible=False) as interview_selection:
|
| 814 |
gr.Markdown("## Mock Interview")
|
|
|
|
| 815 |
with gr.Row():
|
| 816 |
with gr.Column():
|
| 817 |
file_upload_interview = gr.File(label="Upload Resume (PDF)", file_types=[".pdf"])
|
|
|
|
| 819 |
with gr.Column():
|
| 820 |
file_status_interview = gr.Textbox(label="Status", interactive=False)
|
| 821 |
|
|
|
|
| 822 |
role_selection = gr.Dropdown(
|
| 823 |
choices=["Data Scientist", "Software Engineer", "Product Manager", "Data Analyst", "Business Analyst"],
|
| 824 |
+
multiselect=True, label="Select Job Role(s)", visible=False
|
|
|
|
|
|
|
| 825 |
)
|
| 826 |
start_interview_btn = gr.Button("Start Interview", visible=False)
|
|
|
|
|
|
|
| 827 |
question_display = gr.Textbox(label="Question", interactive=False, visible=False)
|
| 828 |
answer_instructions = gr.Markdown("Click 'Record Answer' and speak your response.", visible=False)
|
| 829 |
audio_input = gr.Audio(label="Record Answer", type="numpy", visible=False)
|
| 830 |
submit_answer_btn = gr.Button("Submit Answer", visible=False)
|
| 831 |
next_question_btn = gr.Button("Next Question", visible=False)
|
| 832 |
submit_interview_btn = gr.Button("Submit Interview", visible=False, variant="primary")
|
|
|
|
|
|
|
| 833 |
answer_display = gr.Textbox(label="Your Answer", interactive=False, visible=False)
|
| 834 |
feedback_display = gr.Textbox(label="Feedback", interactive=False, visible=False)
|
| 835 |
metrics_display = gr.JSON(label="Metrics", visible=False)
|
|
|
|
|
|
|
| 836 |
processed_resume_data_hidden_interview = gr.Textbox(visible=False)
|
| 837 |
|
| 838 |
+
# --- Evaluation Results Section ---
|
| 839 |
+
with gr.Column(visible=False) as evaluation_selection:
|
| 840 |
+
gr.Markdown("## Interview Evaluation Results")
|
| 841 |
+
evaluation_report_display = gr.Markdown(label="Your Evaluation Report", visible=False)
|
| 842 |
+
evaluation_chart_display = gr.Image(label="Skills Breakdown", type="pil", visible=False)
|
| 843 |
+
|
| 844 |
# --- Chat Section ---
|
| 845 |
if CHAT_MODULE_AVAILABLE:
|
| 846 |
with gr.Column(visible=False) as chat_selection:
|
| 847 |
gr.Markdown("## Chat with Resume")
|
|
|
|
| 848 |
with gr.Row():
|
| 849 |
with gr.Column():
|
| 850 |
file_upload_chat = gr.File(label="Upload Resume (PDF)", file_types=[".pdf"])
|
| 851 |
process_chat_btn = gr.Button("Process Resume")
|
| 852 |
with gr.Column():
|
| 853 |
file_status_chat = gr.Textbox(label="Status", interactive=False)
|
| 854 |
+
chatbot = gr.Chatbot(label="Chat History", visible=False, type="messages") # Updated type
|
|
|
|
|
|
|
| 855 |
query_input = gr.Textbox(label="Ask about your resume", placeholder="Type your question here...", visible=False)
|
| 856 |
send_btn = gr.Button("Send", visible=False)
|
| 857 |
else:
|
|
|
|
| 859 |
gr.Markdown("## Chat with Resume (Unavailable)")
|
| 860 |
gr.Textbox(value="Chat module is not available.", interactive=False)
|
| 861 |
|
|
|
|
|
|
|
| 862 |
interview_view = interview_selection
|
| 863 |
chat_view = chat_selection
|
|
|
|
| 864 |
interview_btn.click(fn=navigate_to_interview, inputs=None, outputs=[interview_view, chat_view])
|
| 865 |
if CHAT_MODULE_AVAILABLE:
|
| 866 |
chat_btn.click(fn=navigate_to_chat, inputs=None, outputs=[interview_view, chat_view])
|
|
|
|
|
|
|
|
|
|
|
|
|
| 867 |
|
| 868 |
# --- Event Listeners for Interview ---
|
|
|
|
| 869 |
process_btn_interview.click(
|
| 870 |
fn=process_resume,
|
| 871 |
inputs=[file_upload_interview],
|
| 872 |
outputs=[
|
| 873 |
+
file_status_interview, role_selection, start_interview_btn,
|
| 874 |
+
question_display, answer_instructions, audio_input,
|
| 875 |
+
submit_answer_btn, next_question_btn, submit_interview_btn,
|
| 876 |
+
answer_display, feedback_display, metrics_display,
|
| 877 |
+
processed_resume_data_hidden_interview
|
| 878 |
+
]
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 879 |
)
|
| 880 |
|
|
|
|
| 881 |
start_interview_btn.click(
|
| 882 |
fn=start_interview,
|
| 883 |
inputs=[role_selection, processed_resume_data_hidden_interview],
|
| 884 |
outputs=[
|
| 885 |
file_status_interview, question_display,
|
| 886 |
+
interview_state["questions"], interview_state["answers"],
|
| 887 |
+
interview_state["interactions"], interview_state["metrics_list"],
|
| 888 |
audio_input, submit_answer_btn, next_question_btn,
|
| 889 |
submit_interview_btn, feedback_display, metrics_display,
|
| 890 |
+
question_display, answer_instructions,
|
| 891 |
+
interview_state
|
| 892 |
]
|
| 893 |
)
|
| 894 |
|
|
|
|
| 895 |
submit_answer_btn.click(
|
| 896 |
fn=submit_answer,
|
| 897 |
inputs=[audio_input, interview_state],
|
| 898 |
outputs=[
|
| 899 |
file_status_interview, answer_display, interview_state,
|
| 900 |
+
feedback_display, feedback_display,
|
| 901 |
+
metrics_display, metrics_display,
|
| 902 |
audio_input, submit_answer_btn, next_question_btn,
|
| 903 |
submit_interview_btn, question_display, answer_instructions
|
| 904 |
]
|
| 905 |
)
|
| 906 |
|
|
|
|
| 907 |
next_question_btn.click(
|
| 908 |
fn=next_question,
|
| 909 |
inputs=[interview_state],
|
|
|
|
| 912 |
audio_input, submit_answer_btn, next_question_btn,
|
| 913 |
feedback_display, metrics_display, submit_interview_btn,
|
| 914 |
question_display, answer_instructions,
|
| 915 |
+
answer_display, metrics_display
|
| 916 |
]
|
| 917 |
)
|
| 918 |
|
|
|
|
| 919 |
submit_interview_btn.click(
|
| 920 |
fn=submit_interview,
|
| 921 |
inputs=[interview_state],
|
| 922 |
+
outputs=[
|
| 923 |
+
file_status_interview,
|
| 924 |
+
interview_state,
|
| 925 |
+
evaluation_report_display,
|
| 926 |
+
evaluation_chart_display
|
| 927 |
+
]
|
| 928 |
)
|
| 929 |
|
| 930 |
+
# --- Event Listeners for Chat ---
|
| 931 |
if CHAT_MODULE_AVAILABLE:
|
|
|
|
| 932 |
process_chat_btn.click(
|
| 933 |
fn=chat_module.process_resume_chat,
|
| 934 |
inputs=[file_upload_chat],
|
| 935 |
outputs=[file_status_chat, processed_resume_data_state, query_input, send_btn, chatbot]
|
| 936 |
)
|
|
|
|
|
|
|
| 937 |
send_btn.click(
|
| 938 |
fn=chat_module.chat_with_resume,
|
| 939 |
+
inputs=[query_input, processed_resume_data_state, chatbot],
|
| 940 |
+
outputs=[query_input, chatbot]
|
| 941 |
)
|
| 942 |
+
query_input.submit(
|
| 943 |
fn=chat_module.chat_with_resume,
|
| 944 |
inputs=[query_input, processed_resume_data_state, chatbot],
|
| 945 |
outputs=[query_input, chatbot]
|
|
|
|
| 949 |
login_btn.click(
|
| 950 |
fn=login,
|
| 951 |
inputs=[login_email_input, login_password_input],
|
| 952 |
+
outputs=[login_status, login_section, signup_section, main_app,
|
| 953 |
+
login_email_input, login_password_input, user_state, user_email_state]
|
| 954 |
)
|
| 955 |
|
| 956 |
signup_btn.click(
|
| 957 |
fn=signup,
|
| 958 |
inputs=[signup_email_input, signup_password_input, signup_username_input],
|
| 959 |
+
outputs=[signup_status, login_section, signup_section, main_app,
|
| 960 |
+
signup_email_input, signup_password_input, signup_username_input,
|
| 961 |
+
user_state, user_email_state]
|
| 962 |
)
|
| 963 |
|
| 964 |
logout_btn.click(
|
| 965 |
fn=logout,
|
| 966 |
inputs=None,
|
| 967 |
+
outputs=[login_status, login_section, signup_section, main_app,
|
| 968 |
+
login_email_input, login_password_input, signup_username_input,
|
| 969 |
+
user_state, user_email_state]
|
| 970 |
)
|
| 971 |
|
|
|
|
| 972 |
switch_to_signup_btn.click(
|
| 973 |
fn=lambda: (gr.update(visible=False), gr.update(visible=True)),
|
| 974 |
inputs=None,
|
|
|
|
| 983 |
|
| 984 |
# Run the app
|
| 985 |
if __name__ == "__main__":
|
| 986 |
+
demo.launch(server_name="0.0.0.0", server_port=7860, share=False)
|