# PrepGenie/app.py
"""Main Gradio application file."""
import gradio as gr
import os
import json
import google.generativeai as genai
from dotenv import load_dotenv
import datetime
# --- Environment and Configuration ---
load_dotenv()
# --- Generative AI Setup ---
genai.configure(api_key=os.getenv("GOOGLE_API_KEY") or "YOUR_DEFAULT_API_KEY_HERE")
TEXT_MODEL = genai.GenerativeModel("gemini-1.5-flash") # Global model instance
print("Using Generative AI model: gemini-1.5-flash")
# --- Import Logic Modules ---
import interview_logic
import interview_history
# --- Helper Functions for UI Updates ---
def apply_ui_updates(updates_dict):
"""Converts logic function UI update instructions to Gradio updates."""
gr_updates = {}
for component_name, instruction in updates_dict.items():
if instruction == "gr_hide":
gr_updates[component_name] = gr.update(visible=False)
elif instruction == "gr_show":
gr_updates[component_name] = gr.update(visible=True)
elif instruction == "gr_show_and_update":
gr_updates[component_name] = gr.update(visible=True)
elif instruction == "gr_show_and_update_error":
gr_updates[component_name] = gr.update(visible=True)
elif instruction == "gr_clear":
gr_updates[component_name] = ""
elif instruction == "gr_clear_dict":
gr_updates[component_name] = {}
else:
gr_updates[component_name] = gr.update()
return gr_updates
# --- Navigation Functions ---
def navigate_to_interview():
return (gr.update(visible=True), gr.update(visible=False), gr.update(visible=False))
def navigate_to_chat():
return (gr.update(visible=False), gr.update(visible=True), gr.update(visible=False))
def navigate_to_history():
return (gr.update(visible=False), gr.update(visible=False), gr.update(visible=True))
# --- Event Handler Functions ---
def process_resume_handler(file_obj):
result = interview_logic.process_resume_logic(file_obj)
ui_updates = apply_ui_updates(result["ui_updates"])
return (
result["status"],
ui_updates.get("role_selection", gr.update()),
ui_updates.get("start_interview_btn", gr.update()),
ui_updates.get("question_display", gr.update()),
ui_updates.get("answer_instructions", gr.update()),
ui_updates.get("audio_input", gr.update()),
ui_updates.get("submit_answer_btn", gr.update()),
ui_updates.get("next_question_btn", gr.update()),
ui_updates.get("submit_interview_btn", gr.update()),
ui_updates.get("answer_display", gr.update()),
ui_updates.get("feedback_display", gr.update()),
ui_updates.get("metrics_display", gr.update()),
result["processed_data"]
)
def start_interview_handler(roles, processed_resume_data):
formatted_resume_data = interview_logic.getallinfo(processed_resume_data, TEXT_MODEL)
result = interview_logic.start_interview_logic(roles, formatted_resume_data, TEXT_MODEL)
ui_updates = apply_ui_updates(result["ui_updates"])
return (
result["status"],
result["initial_question"],
ui_updates.get("audio_input", gr.update()),
ui_updates.get("submit_answer_btn", gr.update()),
ui_updates.get("next_question_btn", gr.update()),
ui_updates.get("submit_interview_btn", gr.update()),
ui_updates.get("feedback_display", gr.update()),
ui_updates.get("metrics_display", gr.update()),
ui_updates.get("question_display", gr.update()),
ui_updates.get("answer_instructions", gr.update()),
result["interview_state"]
)
def submit_answer_handler(audio, interview_state):
result = interview_logic.submit_answer_logic(audio, interview_state, TEXT_MODEL)
ui_updates = apply_ui_updates(result["ui_updates"])
feedback_update = ui_updates.get("feedback_display", gr.update())
if "gr_show_and_update" in result["ui_updates"].values():
feedback_update = gr.update(visible=True, value=result["feedback_text"])
metrics_update = ui_updates.get("metrics_display", gr.update())
if "gr_show_and_update" in result["ui_updates"].values():
metrics_update = gr.update(visible=True, value=result["metrics"])
return (
result["status"],
result["answer_text"],
result["interview_state"],
feedback_update,
metrics_update,
ui_updates.get("audio_input", gr.update()),
ui_updates.get("submit_answer_btn", gr.update()),
ui_updates.get("next_question_btn", gr.update()),
ui_updates.get("submit_interview_btn", gr.update()),
ui_updates.get("question_display", gr.update()),
ui_updates.get("answer_instructions", gr.update())
)
def next_question_handler(interview_state):
result = interview_logic.next_question_logic(interview_state)
ui_updates = apply_ui_updates(result["ui_updates"])
return (
result["status"],
result["next_q"],
result["interview_state"],
ui_updates.get("audio_input", gr.update()),
ui_updates.get("submit_answer_btn", gr.update()),
ui_updates.get("next_question_btn", gr.update()),
ui_updates.get("feedback_display", gr.update()),
ui_updates.get("metrics_display", gr.update()),
ui_updates.get("submit_interview_btn", gr.update()),
ui_updates.get("question_display", gr.update()),
ui_updates.get("answer_instructions", gr.update()),
ui_updates.get("answer_display", ""),
ui_updates.get("metrics_display_clear", {})
)
def submit_interview_handler(interview_state):
result = interview_logic.submit_interview_logic(interview_state, TEXT_MODEL)
ui_updates = apply_ui_updates(result["ui_updates"])
report_update = ui_updates.get("evaluation_report_display", gr.update())
if "gr_show_and_update" in result["ui_updates"].values():
report_update = gr.update(visible=True, value=result["report_text"])
elif "gr_show_and_update_error" in result["ui_updates"].values():
report_update = gr.update(visible=True, value=result["report_text"])
chart_update = ui_updates.get("evaluation_chart_display", gr.update())
if "gr_show_and_update" in result["ui_updates"].values():
chart_update = gr.update(visible=True, value=result["chart_buffer"])
elif "gr_show_and_update_error" in result["ui_updates"].values():
chart_update = gr.update(visible=False)
return (
result["status"],
result["interview_state"],
report_update,
chart_update
)
# --- Chat Module Functions ---
try:
from login_module import chat as chat_module
CHAT_MODULE_AVAILABLE = True
print("Chat module imported successfully.")
except ImportError as e:
print(f"Warning: Could not import chat module: {e}")
CHAT_MODULE_AVAILABLE = False
chat_module = None
# --- Gradio Interface ---
with gr.Blocks(title="PrepGenie - Mock Interviewer") as demo:
# --- State Variables ---
interview_state = gr.State({})
interview_history_state = gr.State([])
processed_resume_data_state = gr.State("")
# --- Header ---
with gr.Row():
gr.Markdown(
"""
PrepGenie- Interview Preparation App
""",
elem_id="title"
)
# --- Main App ---
with gr.Column(visible=True) as main_app:
with gr.Row():
# --- Navigation Column (Left) ---
with gr.Column(scale=1):
mock_interview_btn = gr.Button("Mock Interview")
if CHAT_MODULE_AVAILABLE:
chat_btn = gr.Button("Chat with Resume")
else:
chat_btn = gr.Button("Chat with Resume (Unavailable)", interactive=False)
history_btn = gr.Button("My Interview History")
# --- Content Column (Right) ---
with gr.Column(scale=4):
# --- Interview Section ---
with gr.Column(visible=True) as interview_selection:
gr.Markdown("## Mock Interview")
with gr.Row():
with gr.Column():
file_upload_interview = gr.File(label="Upload Resume (PDF)", file_types=[".pdf"])
process_btn_interview = gr.Button("Process Resume")
with gr.Column():
file_status_interview = gr.Textbox(label="Status", interactive=False)
role_selection = gr.Dropdown(
choices=["Data Scientist", "Software Engineer", "Product Manager", "Data Analyst", "Business Analyst"],
multiselect=True, label="Select Job Role(s)", visible=False
)
start_interview_btn = gr.Button("Start Interview", visible=False)
question_display = gr.Textbox(label="Question", interactive=False, visible=False)
answer_instructions = gr.Markdown("Click 'Record Answer' and speak your response.", visible=False)
audio_input = gr.Audio(label="Record Answer", type="numpy", visible=False)
submit_answer_btn = gr.Button("Submit Answer", visible=False)
next_question_btn = gr.Button("Next Question", visible=False)
submit_interview_btn = gr.Button("Submit Interview", visible=False, variant="primary")
answer_display = gr.Textbox(label="Your Answer", interactive=False, visible=False)
feedback_display = gr.Textbox(label="Feedback", interactive=False, visible=False)
metrics_display = gr.JSON(label="Metrics", visible=False)
processed_resume_data_hidden_interview = gr.Textbox(visible=False)
with gr.Column(visible=False) as evaluation_selection:
gr.Markdown("## Interview Evaluation Results")
evaluation_report_display = gr.Markdown(label="Your Evaluation Report", visible=False)
evaluation_chart_display = gr.Image(label="Skills Breakdown", type="pil", visible=False)
# --- Chat Section ---
with gr.Column(visible=False) as chat_selection:
if CHAT_MODULE_AVAILABLE:
gr.Markdown("## Chat with Resume")
with gr.Row():
with gr.Column():
file_upload_chat = gr.File(label="Upload Resume (PDF)", file_types=[".pdf"])
process_chat_btn = gr.Button("Process Resume")
with gr.Column():
file_status_chat = gr.Textbox(label="Status", interactive=False)
chatbot = gr.Chatbot(label="Chat History", visible=False, type="messages")
query_input = gr.Textbox(label="Ask about your resume", placeholder="Type your question here...", visible=False)
send_btn = gr.Button("Send", visible=False)
else:
gr.Markdown("## Chat with Resume (Unavailable)")
gr.Textbox(value="Chat module is not available.", interactive=False)
# --- History Section ---
with gr.Column(visible=False) as history_selection:
gr.Markdown("## Your Interview History")
load_history_btn = gr.Button("Load My Past Interviews")
history_output = gr.Textbox(label="Past Interviews", max_lines=30, interactive=False, visible=True)
# --- Event Listeners for Navigation ---
mock_interview_btn.click(
fn=navigate_to_interview,
inputs=None,
outputs=[interview_selection, chat_selection, history_selection]
)
if CHAT_MODULE_AVAILABLE:
chat_btn.click(
fn=navigate_to_chat,
inputs=None,
outputs=[interview_selection, chat_selection, history_selection]
)
history_btn.click(
fn=navigate_to_history,
inputs=None,
outputs=[interview_selection, chat_selection, history_selection]
)
# --- Event Listeners for Interview ---
process_btn_interview.click(
fn=process_resume_handler,
inputs=[file_upload_interview],
outputs=[
file_status_interview, role_selection, start_interview_btn,
question_display, answer_instructions, audio_input,
submit_answer_btn, next_question_btn, submit_interview_btn,
answer_display, feedback_display, metrics_display,
processed_resume_data_hidden_interview
]
)
start_interview_btn.click(
fn=start_interview_handler,
inputs=[role_selection, processed_resume_data_hidden_interview],
outputs=[
file_status_interview, question_display,
audio_input, submit_answer_btn, next_question_btn,
submit_interview_btn, feedback_display, metrics_display,
question_display, answer_instructions,
interview_state
]
)
submit_answer_btn.click(
fn=submit_answer_handler,
inputs=[audio_input, interview_state],
outputs=[
file_status_interview, answer_display, interview_state,
feedback_display, metrics_display,
audio_input, submit_answer_btn, next_question_btn,
submit_interview_btn, question_display, answer_instructions
]
)
next_question_btn.click(
fn=next_question_handler,
inputs=[interview_state],
outputs=[
file_status_interview, question_display, interview_state,
audio_input, submit_answer_btn, next_question_btn,
feedback_display, metrics_display, submit_interview_btn,
question_display, answer_instructions,
answer_display, metrics_display
]
)
submit_interview_btn.click(
fn=submit_interview_handler,
inputs=[interview_state],
outputs=[
file_status_interview,
interview_state,
evaluation_report_display,
evaluation_chart_display
]
)
# --- Event Listeners for Chat ---
if CHAT_MODULE_AVAILABLE:
process_chat_btn.click(
fn=chat_module.process_resume_chat,
inputs=[file_upload_chat],
outputs=[file_status_chat, processed_resume_data_state, query_input, send_btn, chatbot]
)
send_btn.click(
fn=chat_module.chat_with_resume,
inputs=[query_input, processed_resume_data_state, chatbot],
outputs=[query_input, chatbot]
)
query_input.submit(
fn=chat_module.chat_with_resume,
inputs=[query_input, processed_resume_data_state, chatbot],
outputs=[query_input, chatbot]
)
# --- Event Listener for History ---
def load_user_history_local(interview_history_state):
if not interview_history_state:
return "No interview history found for this session."
output_text = "**Your Recent Mock Interviews:**\n\n"
for idx, record in enumerate(interview_history_state):
timestamp = record.get('timestamp', 'Unknown Time')
try:
dt = datetime.datetime.fromisoformat(timestamp.replace('Z', '+00:00'))
formatted_time = dt.strftime("%Y-%m-%d %H:%M:%S")
except Exception as e:
print(f"Error parsing timestamp {timestamp}: {e}")
formatted_time = timestamp
roles = ", ".join(record.get('selected_roles', ['N/A']))
avg_rating = record.get('average_rating', 'N/A')
output_text += f"--- **Interview #{len(interview_history_state) - idx} ({formatted_time})** ---\n"
output_text += f"**Roles Applied:** {roles}\n"
output_text += f"**Average Rating:** {avg_rating:.2f}\n\n"
interactions = record.get('interactions', {})
if interactions:
output_text += "**Interview Snippets:**\n"
count = 0
for q_key, a_val in list(interactions.items())[:3]:
q_display = q_key.split(':', 1)[1].strip() if ':' in q_key else q_key
a_display = a_val.split(':', 1)[1].strip() if ':' in a_val else a_val
output_text += f"- **Q:** {q_display[:100]}{'...' if len(q_display) > 100 else ''}\n"
output_text += f" **A:** {a_display[:100]}{'...' if len(a_display) > 100 else ''}\n"
count += 1
if count >= 3:
break
if len(interactions) > 3:
output_text += f"... (and {len(interactions) - 3} more questions)\n"
else:
output_text += "**Details:** Not available.\n"
output_text += "\n---\n\n"
return output_text
load_history_btn.click(fn=load_user_history_local, inputs=[interview_history_state], outputs=[history_output])
if __name__ == "__main__":
demo.launch(server_name="0.0.0.0")