Spaces:
Runtime error
Runtime error
| from functools import partial | |
| from inspect import isfunction | |
| import numpy as np | |
| import torch | |
| import torch.nn as nn | |
| import torch.nn.functional as F | |
| from tqdm import tqdm | |
| from models.unet_v2_conditioned import UNetModel | |
| def exists(x): | |
| return x is not None | |
| def default(val, d): | |
| if exists(val): | |
| return val | |
| return d() if isfunction(d) else d | |
| def noise_like(shape, device, repeat=False): | |
| repeat_noise = lambda: torch.randn((1, *shape[1:]), device=device).repeat(shape[0], *((1,) * (len(shape) - 1))) | |
| noise = lambda: torch.randn(shape, device=device) | |
| return repeat_noise() if repeat else noise() | |
| def extract(a, t, x_shape): | |
| b, *_ = t.shape | |
| out = a.gather(-1, t) | |
| return out.reshape(b, *((1,) * (len(x_shape) - 1))) | |
| def make_beta_schedule(schedule, n_timestep, linear_start=1e-4, linear_end=2e-2, cosine_s=8e-3): | |
| if schedule == "linear": | |
| betas = ( | |
| torch.linspace(linear_start ** 0.5, linear_end ** 0.5, n_timestep, dtype=torch.float64) ** 2 | |
| ) | |
| elif schedule == "cosine": | |
| timesteps = ( | |
| torch.arange(n_timestep + 1, dtype=torch.float64) / n_timestep + cosine_s | |
| ) | |
| alphas = timesteps / (1 + cosine_s) * np.pi / 2 | |
| alphas = torch.cos(alphas).pow(2) | |
| alphas = alphas / alphas[0] | |
| betas = 1 - alphas[1:] / alphas[:-1] | |
| betas = np.clip(betas, a_min=0, a_max=0.999) | |
| elif schedule == "sqrt_linear": | |
| betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) | |
| elif schedule == "sqrt": | |
| betas = torch.linspace(linear_start, linear_end, n_timestep, dtype=torch.float64) ** 0.5 | |
| else: | |
| raise ValueError(f"schedule '{schedule}' unknown.") | |
| return betas.numpy() | |
| class DDPM(nn.Module): | |
| def __init__( | |
| self, | |
| unet_config, | |
| timesteps: int = 1000, | |
| beta_schedule="linear", | |
| loss_type="l2", | |
| log_every_t=100, | |
| clip_denoised=False, | |
| linear_start=1e-4, | |
| linear_end=2e-2, | |
| cosine_s=8e-3, | |
| original_elbo_weight=0., | |
| v_posterior=0., # weight for choosing posterior variance as sigma = (1-v) * beta_tilde + v * beta | |
| l_simple_weight=1., | |
| parameterization="eps", # all assuming fixed variance schedules | |
| learn_logvar=False, | |
| logvar_init=0., | |
| conditioning_key=None, | |
| ): | |
| super().__init__() | |
| assert parameterization in ["eps", "x0"], 'currently only supporting "eps" and "x0"' | |
| self.parameterization = parameterization | |
| if conditioning_key == "unconditioned": | |
| conditioning_key = None | |
| self.conditioning_key = conditioning_key | |
| self.model = DiffusionWrapper(unet_config, conditioning_key) | |
| self.clip_denoised = clip_denoised | |
| self.log_every_t = log_every_t | |
| self.v_posterior = v_posterior | |
| self.original_elbo_weight = original_elbo_weight | |
| self.l_simple_weight = l_simple_weight | |
| self.loss_type = loss_type | |
| self.register_schedule( | |
| beta_schedule=beta_schedule, | |
| timesteps=timesteps, | |
| linear_start=linear_start, | |
| linear_end=linear_end, | |
| cosine_s=cosine_s, | |
| ) | |
| self.learn_logvar = learn_logvar | |
| self.logvar = torch.full(fill_value=logvar_init, size=(self.num_timesteps,)) | |
| if self.learn_logvar: | |
| self.logvar = nn.Parameter(self.logvar, requires_grad=True) | |
| def register_schedule( | |
| self, | |
| beta_schedule="linear", | |
| timesteps=1000, | |
| linear_start=1e-4, | |
| linear_end=2e-2, | |
| cosine_s=8e-3 | |
| ): | |
| betas = make_beta_schedule(beta_schedule, timesteps, linear_start=linear_start, linear_end=linear_end, | |
| cosine_s=cosine_s) | |
| alphas = 1. - betas | |
| alphas_cumprod = np.cumprod(alphas, axis=0) | |
| alphas_cumprod_prev = np.append(1., alphas_cumprod[:-1]) | |
| timesteps, = betas.shape | |
| self.num_timesteps = int(timesteps) | |
| self.linear_start = linear_start | |
| self.linear_end = linear_end | |
| to_torch = partial(torch.tensor, dtype=torch.float32) | |
| self.register_buffer('betas', to_torch(betas)) | |
| self.register_buffer('alphas_cumprod', to_torch(alphas_cumprod)) | |
| self.register_buffer('alphas_cumprod_prev', to_torch(alphas_cumprod_prev)) | |
| # calculations for diffusion q(x_t | x_{t-1}) and others | |
| self.register_buffer('sqrt_alphas_cumprod', to_torch(np.sqrt(alphas_cumprod))) | |
| self.register_buffer('sqrt_one_minus_alphas_cumprod', to_torch(np.sqrt(1. - alphas_cumprod))) | |
| self.register_buffer('log_one_minus_alphas_cumprod', to_torch(np.log(1. - alphas_cumprod))) | |
| self.register_buffer('sqrt_recip_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod))) | |
| self.register_buffer('sqrt_recipm1_alphas_cumprod', to_torch(np.sqrt(1. / alphas_cumprod - 1))) | |
| # calculations for posterior q(x_{t-1} | x_t, x_0) | |
| posterior_variance = (1 - self.v_posterior) * betas * (1. - alphas_cumprod_prev) / ( | |
| 1. - alphas_cumprod) + self.v_posterior * betas | |
| # above: equal to 1. / (1. / (1. - alpha_cumprod_tm1) + alpha_t / beta_t) | |
| self.register_buffer('posterior_variance', to_torch(posterior_variance)) | |
| # below: log calculation clipped because the posterior variance is 0 at the beginning of the diffusion chain | |
| self.register_buffer('posterior_log_variance_clipped', to_torch(np.log(np.maximum(posterior_variance, 1e-20)))) | |
| self.register_buffer('posterior_mean_coef1', to_torch( | |
| betas * np.sqrt(alphas_cumprod_prev) / (1. - alphas_cumprod))) | |
| self.register_buffer('posterior_mean_coef2', to_torch( | |
| (1. - alphas_cumprod_prev) * np.sqrt(alphas) / (1. - alphas_cumprod))) | |
| if self.parameterization == "eps": | |
| lvlb_weights = self.betas ** 2 / ( | |
| 2 * self.posterior_variance * to_torch(alphas) * (1 - self.alphas_cumprod)) | |
| elif self.parameterization == "x0": | |
| lvlb_weights = 0.5 * np.sqrt(torch.Tensor(alphas_cumprod)) / (2. * 1 - torch.Tensor(alphas_cumprod)) | |
| else: | |
| raise NotImplementedError("mu not supported") | |
| # TODO how to choose this term | |
| lvlb_weights[0] = lvlb_weights[1] | |
| self.register_buffer('lvlb_weights', lvlb_weights, persistent=False) | |
| assert not torch.isnan(self.lvlb_weights).all() | |
| def q_mean_variance(self, x_start, t): | |
| """ | |
| Get the distribution q(x_t | x_0). | |
| :param x_start: the [N x C x ...] tensor of noiseless inputs. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :return: A tuple (mean, variance, log_variance), all of x_start's shape. | |
| """ | |
| mean = extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start | |
| variance = extract(1.0 - self.alphas_cumprod, t, x_start.shape) | |
| log_variance = extract(self.log_one_minus_alphas_cumprod, t, x_start.shape) | |
| return mean, variance, log_variance | |
| def predict_start_from_noise(self, x_t, t, noise): | |
| return ( | |
| extract(self.sqrt_recip_alphas_cumprod, t, x_t.shape) * x_t - | |
| extract(self.sqrt_recipm1_alphas_cumprod, t, x_t.shape) * noise | |
| ) | |
| def q_posterior(self, x_start, x_t, t): | |
| """ | |
| Compute the mean and variance of the diffusion posterior: | |
| q(x_{t-1} | x_t, x_0) | |
| """ | |
| posterior_mean = ( | |
| extract(self.posterior_mean_coef1, t, x_t.shape) * x_start + | |
| extract(self.posterior_mean_coef2, t, x_t.shape) * x_t | |
| ) | |
| posterior_variance = extract(self.posterior_variance, t, x_t.shape) | |
| posterior_log_variance_clipped = extract(self.posterior_log_variance_clipped, t, x_t.shape) | |
| return posterior_mean, posterior_variance, posterior_log_variance_clipped | |
| def p_mean_variance(self, x, c, t, clip_denoised: bool, return_x0=False): | |
| """ | |
| Apply the model to get p(x_{t-1} | x_t) | |
| :param model: the model, which takes a signal and a batch of timesteps | |
| as input. | |
| :param x: the [N x C x ...] tensor at time t. | |
| :param t: a 1-D Tensor of timesteps. | |
| :param clip_denoised: if True, clip the denoised signal into [-1, 1]. | |
| """ | |
| t_in = t | |
| model_out = self.apply_model(x, t_in, c) | |
| if self.parameterization == "eps": | |
| x_recon = self.predict_start_from_noise(x, t=t, noise=model_out) | |
| elif self.parameterization == "x0": | |
| x_recon = model_out | |
| if clip_denoised: | |
| x_recon.clamp_(-1., 1.) | |
| model_mean, posterior_variance, posterior_log_variance = self.q_posterior(x_start=x_recon, x_t=x, t=t) | |
| if return_x0: | |
| return model_mean, posterior_variance, posterior_log_variance, x_recon | |
| else: | |
| return model_mean, posterior_variance, posterior_log_variance | |
| def p_sample( | |
| self, | |
| x, | |
| c, | |
| t, | |
| clip_denoised=True, | |
| repeat_noise=False, | |
| return_x0=False, | |
| temperature=1., | |
| noise_dropout=0., | |
| ): | |
| """ | |
| Sample x_{t-1} from the model at the given timestep. | |
| :param x: the current tensor at x_{t-1}. | |
| :param t: the value of t, starting at 0 for the first diffusion step. | |
| :param clip_denoised: if True, clip the x_start prediction to [-1, 1]. | |
| """ | |
| b, *_, device = *x.shape, x.device | |
| outputs = self.p_mean_variance( | |
| x=x, | |
| c=c, | |
| t=t, | |
| clip_denoised=clip_denoised, | |
| return_x0=return_x0, | |
| ) | |
| if return_x0: | |
| model_mean, _, model_log_variance, x0 = outputs | |
| else: | |
| model_mean, _, model_log_variance = outputs | |
| noise = noise_like(x.shape, device, repeat_noise) * temperature | |
| if noise_dropout > 0.: | |
| noise = torch.nn.functional.dropout(noise, p=noise_dropout) | |
| # no noise when t == 0 | |
| nonzero_mask = (1 - (t == 0).float()).reshape(b, *((1,) * (len(x.shape) - 1))) | |
| if return_x0: | |
| return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise, x0 | |
| else: | |
| return model_mean + nonzero_mask * (0.5 * model_log_variance).exp() * noise | |
| def p_sample_loop(self, cond, shape, return_intermediates=False): | |
| device = self.betas.device | |
| b = shape[0] | |
| img = torch.randn(shape, device=device) | |
| intermediates = [img] | |
| for i in tqdm(reversed(range(0, self.num_timesteps)), desc='sampling loop time step', total=self.num_timesteps): | |
| img = self.p_sample(img, cond, torch.full((b,), i, device=device, dtype=torch.long), | |
| clip_denoised=self.clip_denoised) | |
| if i % self.log_every_t == 0 or i == self.num_timesteps - 1: | |
| intermediates.append(img) | |
| if return_intermediates: | |
| return img, intermediates | |
| return img | |
| def sample(self, batch_size=16, return_intermediates=False): | |
| image_size = self.image_size | |
| channels = self.channels | |
| return self.p_sample_loop((batch_size, channels, image_size, image_size), | |
| return_intermediates=return_intermediates) | |
| def q_sample(self, x_start, t, noise=None): | |
| """ | |
| Diffuse the data for a given number of diffusion steps. | |
| In other words, sample from q(x_t | x_0). | |
| :param x_start: the initial data batch. | |
| :param t: the number of diffusion steps (minus 1). Here, 0 means one step. | |
| :param noise: if specified, the split-out normal noise. | |
| :return: A noisy version of x_start. | |
| """ | |
| noise = default(noise, lambda: torch.randn_like(x_start)) | |
| return ( | |
| extract(self.sqrt_alphas_cumprod, t, x_start.shape) * x_start + | |
| extract(self.sqrt_one_minus_alphas_cumprod, t, x_start.shape) * noise | |
| ) | |
| def get_loss(self, pred, target, mean=True): | |
| if self.loss_type == 'l1': | |
| loss = (target - pred).abs() | |
| if mean: | |
| loss = loss.mean() | |
| elif self.loss_type == 'l2': | |
| if mean: | |
| loss = torch.nn.functional.mse_loss(target, pred) | |
| else: | |
| loss = torch.nn.functional.mse_loss(target, pred, reduction='none') | |
| else: | |
| raise NotImplementedError("unknown loss type '{loss_type}'") | |
| return loss | |
| def p_losses(self, x_start, cond, t, noise=None): | |
| noise = default(noise, lambda: torch.randn_like(x_start)) | |
| x_noisy = self.q_sample(x_start=x_start, t=t, noise=noise) | |
| model_output = self.apply_model(x_noisy, t, cond) | |
| loss_dict = {} | |
| if self.parameterization == "eps": | |
| target = noise | |
| elif self.parameterization == "x0": | |
| target = x_start | |
| else: | |
| raise NotImplementedError(f"Paramterization {self.parameterization} not yet supported") | |
| loss_simple = self.get_loss(model_output, target, mean=False).mean(dim=[1, 2, 3, 4]) | |
| loss_dict.update({f'loss_simple': loss_simple.mean()}) | |
| logvar_t = self.logvar[t].to(x_start.device) | |
| loss = loss_simple / torch.exp(logvar_t) + logvar_t | |
| # loss = loss_simple / torch.exp(self.logvar) + self.logvar | |
| if self.learn_logvar: | |
| loss_dict.update({f'loss_gamma': loss.mean()}) | |
| loss_dict.update({'logvar': self.logvar.data.mean()}) | |
| loss = self.l_simple_weight * loss.mean() | |
| loss_vlb = self.get_loss(model_output, target, mean=False).mean(dim=(1, 2, 3, 4)) | |
| loss_vlb = (self.lvlb_weights[t] * loss_vlb).mean() | |
| loss_dict.update({f'loss_vlb': loss_vlb}) | |
| loss += (self.original_elbo_weight * loss_vlb) | |
| loss_dict.update({f'loss': loss}) | |
| return loss, loss_dict | |
| def forward(self, x, c, *args, **kwargs): | |
| t = torch.randint(0, self.num_timesteps, (x.shape[0],), device=x.device).long() | |
| return self.p_losses(x, c, t, *args, **kwargs) | |
| def configure_optimizers(self): | |
| lr = self.learning_rate | |
| params = list(self.model.parameters()) | |
| if self.learn_logvar: | |
| print('Diffusion model optimizing logvar') | |
| params.append(self.logvar) | |
| opt = torch.optim.AdamW(params, lr=lr) | |
| return opt | |
| def apply_model(self, x_noisy, t, cond, return_ids=False): | |
| if isinstance(cond, dict): | |
| # hybrid case, cond is exptected to be a dict | |
| pass | |
| else: | |
| if not isinstance(cond, list): | |
| cond = [cond] | |
| key = 'c_concat' if self.model.conditioning_key == 'concat' else 'c_crossattn' | |
| cond = {key: cond} | |
| x_recon = self.model(x_noisy, t, **cond) | |
| if isinstance(x_recon, tuple) and not return_ids: | |
| return x_recon[0] | |
| else: | |
| return x_recon | |
| class DiffusionWrapper(nn.Module): | |
| def __init__(self, unet_config, conditioning_key): | |
| super().__init__() | |
| self.diffusion_model = UNetModel( | |
| **unet_config.get("params", dict()) | |
| ) | |
| self.conditioning_key = conditioning_key | |
| def forward(self, x, t, c_concat: list = None, c_crossattn: list = None): | |
| xc = torch.cat([x] + c_concat, dim=1) | |
| cc = torch.cat(c_crossattn, 1) | |
| out = self.diffusion_model(xc, t, context=cc) | |
| return out | |