Spaces:
Runtime error
Runtime error
app file is updated
Browse files
app.py
CHANGED
|
@@ -1,81 +1,81 @@
|
|
| 1 |
-
import streamlit as st
|
| 2 |
-
from
|
| 3 |
-
|
|
|
|
| 4 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 5 |
from langchain.vectorstores import FAISS
|
| 6 |
from langchain.llms import CTransformers
|
| 7 |
-
from langchain.chains import
|
| 8 |
-
import chainlit as cl
|
| 9 |
|
| 10 |
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
| 11 |
|
| 12 |
-
|
| 13 |
-
If you don't know the answer, just say that you don't know, don't try to make up an answer.
|
| 14 |
-
|
| 15 |
-
Context: {context}
|
| 16 |
-
Question: {question}
|
| 17 |
-
|
| 18 |
-
Only return the helpful answer below and nothing else.
|
| 19 |
-
Helpful answer:
|
| 20 |
-
"""
|
| 21 |
-
|
| 22 |
-
def set_custom_prompt():
|
| 23 |
-
"""
|
| 24 |
-
Prompt template for QA retrieval for each vectorstore
|
| 25 |
-
"""
|
| 26 |
-
prompt = PromptTemplate(template=custom_prompt_template,
|
| 27 |
-
input_variables=['context', 'question'])
|
| 28 |
-
return prompt
|
| 29 |
-
|
| 30 |
-
# Retrieval QA Chain
|
| 31 |
-
def retrieval_qa_chain(llm, prompt, db):
|
| 32 |
-
qa_chain = RetrievalQA.from_chain_type(llm=llm,
|
| 33 |
-
chain_type='stuff',
|
| 34 |
-
retriever=db.as_retriever(search_kwargs={'k': 2}),
|
| 35 |
-
return_source_documents=True,
|
| 36 |
-
chain_type_kwargs={'prompt': prompt}
|
| 37 |
-
)
|
| 38 |
-
return qa_chain
|
| 39 |
-
|
| 40 |
-
# Loading the model
|
| 41 |
def load_llm():
|
| 42 |
# Load the locally downloaded model here
|
| 43 |
llm = CTransformers(
|
| 44 |
-
model="llama-2-7b-chat.ggmlv3.q8_0.bin",
|
| 45 |
model_type="llama",
|
| 46 |
-
max_new_tokens=512,
|
| 47 |
-
temperature=0.5
|
| 48 |
)
|
| 49 |
return llm
|
| 50 |
|
| 51 |
-
|
| 52 |
-
|
| 53 |
-
|
| 54 |
-
|
| 55 |
-
db = FAISS.load_local(DB_FAISS_PATH, embeddings)
|
| 56 |
-
llm = load_llm()
|
| 57 |
-
qa_prompt = set_custom_prompt()
|
| 58 |
-
qa = retrieval_qa_chain(llm, qa_prompt, db)
|
| 59 |
|
| 60 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 61 |
|
| 62 |
-
|
| 63 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 64 |
|
| 65 |
-
|
|
|
|
|
|
|
|
|
|
| 66 |
|
| 67 |
-
|
|
|
|
|
|
|
|
|
|
| 68 |
|
| 69 |
-
if st.
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
st.
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 79 |
|
| 80 |
-
if
|
| 81 |
-
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import streamlit as st
|
| 2 |
+
from streamlit_chat import message
|
| 3 |
+
import tempfile
|
| 4 |
+
from langchain.document_loaders.csv_loader import CSVLoader
|
| 5 |
from langchain.embeddings import HuggingFaceEmbeddings
|
| 6 |
from langchain.vectorstores import FAISS
|
| 7 |
from langchain.llms import CTransformers
|
| 8 |
+
from langchain.chains import ConversationalRetrievalChain
|
|
|
|
| 9 |
|
| 10 |
DB_FAISS_PATH = 'vectorstore/db_faiss'
|
| 11 |
|
| 12 |
+
#Loading the model
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 13 |
def load_llm():
|
| 14 |
# Load the locally downloaded model here
|
| 15 |
llm = CTransformers(
|
| 16 |
+
model = "llama-2-7b-chat.ggmlv3.q8_0.bin",
|
| 17 |
model_type="llama",
|
| 18 |
+
max_new_tokens = 512,
|
| 19 |
+
temperature = 0.5
|
| 20 |
)
|
| 21 |
return llm
|
| 22 |
|
| 23 |
+
st.title("Chat with CSV using Llama2 🦙🦜")
|
| 24 |
+
st.markdown("<h3 style='text-align: center; color: white;'> A Very Good Bot For CSV</h3>", unsafe_allow_html=True)
|
| 25 |
+
|
| 26 |
+
uploaded_file = st.sidebar.file_uploader("Upload your Data", type="csv")
|
|
|
|
|
|
|
|
|
|
|
|
|
| 27 |
|
| 28 |
+
if uploaded_file :
|
| 29 |
+
#use tempfile because CSVLoader only accepts a file_path
|
| 30 |
+
with tempfile.NamedTemporaryFile(delete=False) as tmp_file:
|
| 31 |
+
tmp_file.write(uploaded_file.getvalue())
|
| 32 |
+
tmp_file_path = tmp_file.name
|
| 33 |
|
| 34 |
+
loader = CSVLoader(file_path=tmp_file_path, encoding="utf-8", csv_args={
|
| 35 |
+
'delimiter': ','})
|
| 36 |
+
data = loader.load()
|
| 37 |
+
#st.json(data)
|
| 38 |
+
embeddings = HuggingFaceEmbeddings(model_name='sentence-transformers/all-MiniLM-L6-v2',
|
| 39 |
+
model_kwargs={'device': 'cpu'})
|
| 40 |
|
| 41 |
+
db = FAISS.from_documents(data, embeddings)
|
| 42 |
+
db.save_local(DB_FAISS_PATH)
|
| 43 |
+
llm = load_llm()
|
| 44 |
+
chain = ConversationalRetrievalChain.from_llm(llm=llm, retriever=db.as_retriever())
|
| 45 |
|
| 46 |
+
def conversational_chat(query):
|
| 47 |
+
result = chain({"question": query, "chat_history": st.session_state['history']})
|
| 48 |
+
st.session_state['history'].append((query, result["answer"]))
|
| 49 |
+
return result["answer"]
|
| 50 |
|
| 51 |
+
if 'history' not in st.session_state:
|
| 52 |
+
st.session_state['history'] = []
|
| 53 |
+
|
| 54 |
+
if 'generated' not in st.session_state:
|
| 55 |
+
st.session_state['generated'] = ["Hello ! Ask me anything about " + uploaded_file.name + " 🤗"]
|
| 56 |
+
|
| 57 |
+
if 'past' not in st.session_state:
|
| 58 |
+
st.session_state['past'] = ["Hey ! 👋"]
|
| 59 |
+
|
| 60 |
+
#container for the chat history
|
| 61 |
+
response_container = st.container()
|
| 62 |
+
#container for the user's text input
|
| 63 |
+
container = st.container()
|
| 64 |
|
| 65 |
+
with container:
|
| 66 |
+
with st.form(key='my_form', clear_on_submit=True):
|
| 67 |
+
|
| 68 |
+
user_input = st.text_input("Query:", placeholder="Talk to your csv data here (:", key='input')
|
| 69 |
+
submit_button = st.form_submit_button(label='Send')
|
| 70 |
+
|
| 71 |
+
if submit_button and user_input:
|
| 72 |
+
output = conversational_chat(user_input)
|
| 73 |
+
|
| 74 |
+
st.session_state['past'].append(user_input)
|
| 75 |
+
st.session_state['generated'].append(output)
|
| 76 |
|
| 77 |
+
if st.session_state['generated']:
|
| 78 |
+
with response_container:
|
| 79 |
+
for i in range(len(st.session_state['generated'])):
|
| 80 |
+
message(st.session_state["past"][i], is_user=True, key=str(i) + '_user', avatar_style="big-smile")
|
| 81 |
+
message(st.session_state["generated"][i], key=str(i), avatar_style="thumbs")
|