Spaces:
Build error
Build error
Add application and requirements file
Browse files- app.py +70 -0
- requirements.txt +3 -0
app.py
ADDED
|
@@ -0,0 +1,70 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import transformers
|
| 2 |
+
import streamlit as st
|
| 3 |
+
|
| 4 |
+
from transformers import AutoTokenizer, AutoModelWithLMHead
|
| 5 |
+
|
| 6 |
+
tokenizer = AutoTokenizer.from_pretrained("gpt2-large")
|
| 7 |
+
@st.cache
|
| 8 |
+
def load_model(model_name):
|
| 9 |
+
model = AutoModelWithLMHead.from_pretrained("gpt2-large")
|
| 10 |
+
return model
|
| 11 |
+
|
| 12 |
+
model = load_model("gpt2-large")
|
| 13 |
+
|
| 14 |
+
def infer(input_ids, max_length, temperature, top_k, top_p):
|
| 15 |
+
|
| 16 |
+
output_sequences = model.generate(
|
| 17 |
+
input_ids=input_ids,
|
| 18 |
+
max_length=max_length,
|
| 19 |
+
temperature=temperature,
|
| 20 |
+
top_k=top_k,
|
| 21 |
+
top_p=top_p,
|
| 22 |
+
do_sample=True,
|
| 23 |
+
num_return_sequences=1
|
| 24 |
+
)
|
| 25 |
+
|
| 26 |
+
return output_sequences
|
| 27 |
+
default_value = "See how a modern neural network auto-completes your text 🤗 This site, built by the Hugging Face team, lets you write a whole document directly from your browser, and you can trigger the Transformer anywhere using the Tab key. Its like having a smart machine that completes your thoughts 😀 Get started by typing a custom snippet, check out the repository, or try one of the examples. Have fun!"
|
| 28 |
+
|
| 29 |
+
#prompts
|
| 30 |
+
st.title("Write with Transformers 🦄")
|
| 31 |
+
st.write("The almighty king of text generation, GPT-2 comes in four available sizes, only three of which have been publicly made available. Feared for its fake news generation capabilities, it currently stands as the most syntactically coherent model. A direct successor to the original GPT, it reinforces the already established pre-training/fine-tuning killer duo. From the paper: Language Models are Unsupervised Multitask Learners by Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei and Ilya Sutskever.")
|
| 32 |
+
|
| 33 |
+
sent = st.text_area("Text", default_value, height = 275)
|
| 34 |
+
max_length = st.sidebar.slider("Max Length", min_value = 10, max_value=30)
|
| 35 |
+
temperature = st.sidebar.slider("Temperature", value = 1.0, min_value = 0.0, max_value=1.0, step=0.05)
|
| 36 |
+
top_k = st.sidebar.slider("Top-k", min_value = 0, max_value=5, value = 0)
|
| 37 |
+
top_p = st.sidebar.slider("Top-p", min_value = 0.0, max_value=1.0, step = 0.05, value = 0.9)
|
| 38 |
+
|
| 39 |
+
encoded_prompt = tokenizer.encode(sent, add_special_tokens=False, return_tensors="pt")
|
| 40 |
+
if encoded_prompt.size()[-1] == 0:
|
| 41 |
+
input_ids = None
|
| 42 |
+
else:
|
| 43 |
+
input_ids = encoded_prompt
|
| 44 |
+
|
| 45 |
+
|
| 46 |
+
output_sequences = infer(input_ids, max_length, temperature, top_k, top_p)
|
| 47 |
+
|
| 48 |
+
|
| 49 |
+
|
| 50 |
+
for generated_sequence_idx, generated_sequence in enumerate(output_sequences):
|
| 51 |
+
print(f"=== GENERATED SEQUENCE {generated_sequence_idx + 1} ===")
|
| 52 |
+
generated_sequences = generated_sequence.tolist()
|
| 53 |
+
|
| 54 |
+
# Decode text
|
| 55 |
+
text = tokenizer.decode(generated_sequence, clean_up_tokenization_spaces=True)
|
| 56 |
+
|
| 57 |
+
# Remove all text after the stop token
|
| 58 |
+
#text = text[: text.find(args.stop_token) if args.stop_token else None]
|
| 59 |
+
|
| 60 |
+
# Add the prompt at the beginning of the sequence. Remove the excess text that was used for pre-processing
|
| 61 |
+
total_sequence = (
|
| 62 |
+
sent + text[len(tokenizer.decode(encoded_prompt[0], clean_up_tokenization_spaces=True)) :]
|
| 63 |
+
)
|
| 64 |
+
|
| 65 |
+
generated_sequences.append(total_sequence)
|
| 66 |
+
print(total_sequence)
|
| 67 |
+
|
| 68 |
+
|
| 69 |
+
st.write(generated_sequences[-1])
|
| 70 |
+
|
requirements.txt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
transformers
|
| 2 |
+
streamlit
|
| 3 |
+
torch
|