Upload cosmopedia_datamodule.py
Browse files- cosmopedia_datamodule.py +120 -0
cosmopedia_datamodule.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
#!/usr/bin/env python
|
| 2 |
+
"""
|
| 3 |
+
Data module for Cosmopedia dataset
|
| 4 |
+
Author: Shilpaj Bhalerao
|
| 5 |
+
Date: 2025-01-20
|
| 6 |
+
"""
|
| 7 |
+
# Standard Library Imports
|
| 8 |
+
from typing import Optional
|
| 9 |
+
|
| 10 |
+
# Third-Party Imports
|
| 11 |
+
import pytorch_lightning as pl
|
| 12 |
+
from torch.utils.data import DataLoader
|
| 13 |
+
from datasets import load_dataset
|
| 14 |
+
from transformers import GPT2Tokenizer
|
| 15 |
+
|
| 16 |
+
# Local Imports
|
| 17 |
+
from config import DataConfig
|
| 18 |
+
|
| 19 |
+
|
| 20 |
+
class CosmopediaDataModule(pl.LightningDataModule):
|
| 21 |
+
"""
|
| 22 |
+
Data module for Cosmopedia dataset
|
| 23 |
+
"""
|
| 24 |
+
def __init__(
|
| 25 |
+
self,
|
| 26 |
+
batch_size: int = DataConfig.batch_size,
|
| 27 |
+
num_workers: int = DataConfig.num_workers,
|
| 28 |
+
shuffle_buffer_size: int = DataConfig.shuffle_buffer_size,
|
| 29 |
+
max_length: int = DataConfig.max_length,
|
| 30 |
+
):
|
| 31 |
+
"""
|
| 32 |
+
Constructor
|
| 33 |
+
:param batch_size: Batch size for dataloaders
|
| 34 |
+
:param num_workers: Number of workers for dataloaders
|
| 35 |
+
:param shuffle_buffer_size: Size of buffer for shuffling streaming data
|
| 36 |
+
:param max_length: Maximum sequence length for tokenized text
|
| 37 |
+
"""
|
| 38 |
+
super().__init__()
|
| 39 |
+
self.batch_size = batch_size
|
| 40 |
+
self.num_workers = num_workers
|
| 41 |
+
self.shuffle_buffer_size = shuffle_buffer_size
|
| 42 |
+
self.max_length = max_length
|
| 43 |
+
|
| 44 |
+
# Dataset path on HuggingFace
|
| 45 |
+
self.dataset_path = DataConfig.dataset_path
|
| 46 |
+
self.dataset_name = DataConfig.dataset_name
|
| 47 |
+
|
| 48 |
+
# Initialize tokenizer
|
| 49 |
+
self.tokenizer = GPT2Tokenizer.from_pretrained(DataConfig.tokenizer_path)
|
| 50 |
+
self.tokenizer.pad_token = self.tokenizer.eos_token
|
| 51 |
+
|
| 52 |
+
def setup(self, stage: Optional[str] = None):
|
| 53 |
+
"""
|
| 54 |
+
Setup datasets for training and validation
|
| 55 |
+
"""
|
| 56 |
+
# Load dataset in streaming mode
|
| 57 |
+
self.dataset = load_dataset(
|
| 58 |
+
self.dataset_path,
|
| 59 |
+
self.dataset_name,
|
| 60 |
+
split="train", # Only train split is available
|
| 61 |
+
streaming=DataConfig.streaming
|
| 62 |
+
)
|
| 63 |
+
|
| 64 |
+
# Shuffle the streaming dataset
|
| 65 |
+
self.dataset = self.dataset.shuffle(buffer_size=self.shuffle_buffer_size)
|
| 66 |
+
|
| 67 |
+
# Create train/val split using configured validation split
|
| 68 |
+
val_size = int(DataConfig.validation_split * self.shuffle_buffer_size)
|
| 69 |
+
self.train_dataset = self.dataset.skip(val_size)
|
| 70 |
+
self.val_dataset = self.dataset.take(val_size)
|
| 71 |
+
|
| 72 |
+
def collate_fn(self, batch):
|
| 73 |
+
"""
|
| 74 |
+
Tokenize and pad the texts in the batch
|
| 75 |
+
"""
|
| 76 |
+
texts = [item['text'] for item in batch]
|
| 77 |
+
|
| 78 |
+
# Tokenize all texts in the batch
|
| 79 |
+
encodings = self.tokenizer(
|
| 80 |
+
texts,
|
| 81 |
+
padding=True,
|
| 82 |
+
truncation=True,
|
| 83 |
+
max_length=self.max_length,
|
| 84 |
+
return_tensors='pt'
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
# Prepare inputs and labels for language modeling
|
| 88 |
+
input_ids = encodings['input_ids'][:, :-1]
|
| 89 |
+
labels = encodings['input_ids'][:, 1:]
|
| 90 |
+
attention_mask = encodings['attention_mask'][:, :-1]
|
| 91 |
+
|
| 92 |
+
return {
|
| 93 |
+
'input_ids': input_ids,
|
| 94 |
+
'labels': labels,
|
| 95 |
+
'attention_mask': attention_mask
|
| 96 |
+
}
|
| 97 |
+
|
| 98 |
+
def train_dataloader(self):
|
| 99 |
+
"""
|
| 100 |
+
Return train dataloader
|
| 101 |
+
"""
|
| 102 |
+
return DataLoader(
|
| 103 |
+
self.train_dataset,
|
| 104 |
+
batch_size=self.batch_size,
|
| 105 |
+
num_workers=self.num_workers,
|
| 106 |
+
pin_memory=DataConfig.pin_memory,
|
| 107 |
+
collate_fn=self.collate_fn
|
| 108 |
+
)
|
| 109 |
+
|
| 110 |
+
def val_dataloader(self):
|
| 111 |
+
"""
|
| 112 |
+
Return validation dataloader
|
| 113 |
+
"""
|
| 114 |
+
return DataLoader(
|
| 115 |
+
self.val_dataset,
|
| 116 |
+
batch_size=self.batch_size,
|
| 117 |
+
num_workers=self.num_workers,
|
| 118 |
+
pin_memory=DataConfig.pin_memory,
|
| 119 |
+
collate_fn=self.collate_fn
|
| 120 |
+
)
|