Spaces:
Configuration error
Configuration error
| import datetime | |
| import random | |
| from argparse import ArgumentParser | |
| from pathlib import Path | |
| import numpy as np | |
| import torch | |
| import yaml | |
| from tqdm import tqdm | |
| from datasets.video_dataset import AtlasDataset | |
| from models.video_model import VideoModel | |
| from util.atlas_loss import AtlasLoss | |
| from util.util import get_optimizer | |
| from util.video_logger import DataLogger | |
| def train_model(config): | |
| # set seed | |
| seed = config["seed"] | |
| if seed == -1: | |
| seed = np.random.randint(2 ** 32) | |
| random.seed(seed) | |
| np.random.seed(seed) | |
| torch.manual_seed(seed) | |
| print(f"running with seed: {seed}.") | |
| dataset = AtlasDataset(config) | |
| model = VideoModel(config) | |
| criterion = AtlasLoss(config) | |
| optimizer = get_optimizer(config, model.parameters()) | |
| logger = DataLogger(config, dataset) | |
| with tqdm(range(1, config["n_epochs"] + 1)) as tepoch: | |
| for epoch in tepoch: | |
| inputs = dataset[0] | |
| optimizer.zero_grad() | |
| outputs = model(inputs) | |
| losses = criterion(outputs, inputs) | |
| loss = 0. | |
| if config["finetune_foreground"]: | |
| loss += losses["foreground"]["loss"] | |
| elif config["finetune_background"]: | |
| loss += losses["background"]["loss"] | |
| lr = optimizer.param_groups[0]["lr"] | |
| log_data = logger.log_data(epoch, lr, losses, model, dataset) | |
| loss.backward() | |
| optimizer.step() | |
| optimizer.param_groups[0]["lr"] = max(config["min_lr"], config["gamma"] * optimizer.param_groups[0]["lr"]) | |
| if config["use_wandb"]: | |
| wandb.log(log_data) | |
| else: | |
| if epoch % config["log_images_freq"] == 0: | |
| logger.save_locally(log_data) | |
| tepoch.set_description(f"Epoch {epoch}") | |
| tepoch.set_postfix(loss=loss.item()) | |
| if __name__ == "__main__": | |
| parser = ArgumentParser() | |
| parser.add_argument( | |
| "--config", | |
| default="./configs/video_config.yaml", | |
| help="Config path", | |
| ) | |
| parser.add_argument( | |
| "--example_config", | |
| default="car-turn_winter.yaml", | |
| help="Example config name", | |
| ) | |
| args = parser.parse_args() | |
| config_path = args.config | |
| with open(config_path, "r") as f: | |
| config = yaml.safe_load(f) | |
| with open(f"./configs/video_example_configs/{args.example_config}", "r") as f: | |
| example_config = yaml.safe_load(f) | |
| config["example_config"] = args.example_config | |
| config.update(example_config) | |
| run_name = f"-{config['checkpoint_path'].split('/')[-2]}" | |
| if config["use_wandb"]: | |
| import wandb | |
| wandb.init(project=config["wandb_project"], entity=config["wandb_entity"], config=config, name=run_name) | |
| wandb.run.name = str(wandb.run.id) + wandb.run.name | |
| config = dict(wandb.config) | |
| else: | |
| now = datetime.datetime.now() | |
| run_name = f"{now.strftime('%Y-%m-%d_%H-%M-%S')}{run_name}" | |
| path = Path(f"{config['results_folder']}/{run_name}") | |
| path.mkdir(parents=True, exist_ok=True) | |
| with open(path / "config.yaml", "w") as f: | |
| yaml.dump(config, f) | |
| config["results_folder"] = str(path) | |
| train_model(config) | |
| if config["use_wandb"]: | |
| wandb.finish() |