Spaces:
Configuration error
Configuration error
Commit
·
8e729e5
1
Parent(s):
4919318
Upload video_dataset.py
Browse files- video_dataset.py +360 -0
video_dataset.py
ADDED
|
@@ -0,0 +1,360 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import random
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import torch.nn.functional as F
|
| 5 |
+
from torch.utils.data import Dataset
|
| 6 |
+
from torchvision import transforms
|
| 7 |
+
from torchvision.transforms.functional import crop
|
| 8 |
+
|
| 9 |
+
from models.video_model import VideoModel
|
| 10 |
+
from util.atlas_utils import (
|
| 11 |
+
load_neural_atlases_models,
|
| 12 |
+
get_frames_data,
|
| 13 |
+
get_high_res_atlas,
|
| 14 |
+
get_atlas_crops,
|
| 15 |
+
reconstruct_video_layer,
|
| 16 |
+
create_uv_mask,
|
| 17 |
+
get_masks_boundaries,
|
| 18 |
+
get_random_crop_params,
|
| 19 |
+
get_atlas_bounding_box,
|
| 20 |
+
)
|
| 21 |
+
from util.util import load_video
|
| 22 |
+
|
| 23 |
+
|
| 24 |
+
class AtlasDataset(Dataset):
|
| 25 |
+
def __init__(self, config):
|
| 26 |
+
self.config = config
|
| 27 |
+
self.device = config["device"]
|
| 28 |
+
|
| 29 |
+
self.min_size = min(self.config["resx"], self.config["resy"])
|
| 30 |
+
self.max_size = max(self.config["resx"], self.config["resy"])
|
| 31 |
+
data_folder = f"data/videos/{self.config['checkpoint_path'].split('/')[2]}"
|
| 32 |
+
self.original_video = load_video(
|
| 33 |
+
data_folder,
|
| 34 |
+
resize=(self.config["resy"], self.config["resx"]),
|
| 35 |
+
num_frames=self.config["maximum_number_of_frames"],
|
| 36 |
+
).to(self.device)
|
| 37 |
+
|
| 38 |
+
(
|
| 39 |
+
foreground_mapping,
|
| 40 |
+
background_mapping,
|
| 41 |
+
foreground_atlas_model,
|
| 42 |
+
background_atlas_model,
|
| 43 |
+
alpha_model,
|
| 44 |
+
) = load_neural_atlases_models(config)
|
| 45 |
+
(
|
| 46 |
+
original_background_all_uvs,
|
| 47 |
+
original_foreground_all_uvs,
|
| 48 |
+
self.all_alpha,
|
| 49 |
+
foreground_atlas_alpha,
|
| 50 |
+
) = get_frames_data(
|
| 51 |
+
config,
|
| 52 |
+
foreground_mapping,
|
| 53 |
+
background_mapping,
|
| 54 |
+
alpha_model,
|
| 55 |
+
)
|
| 56 |
+
|
| 57 |
+
self.background_reconstruction = reconstruct_video_layer(original_background_all_uvs, background_atlas_model)
|
| 58 |
+
# using original video for the foreground layer
|
| 59 |
+
self.foreground_reconstruction = self.original_video * self.all_alpha
|
| 60 |
+
|
| 61 |
+
(
|
| 62 |
+
self.background_all_uvs,
|
| 63 |
+
self.scaled_background_uvs,
|
| 64 |
+
self.background_min_u,
|
| 65 |
+
self.background_min_v,
|
| 66 |
+
self.background_max_u,
|
| 67 |
+
self.background_max_v,
|
| 68 |
+
) = self.preprocess_uv_values(
|
| 69 |
+
original_background_all_uvs, config["grid_atlas_resolution"], device=self.device, layer="background"
|
| 70 |
+
)
|
| 71 |
+
(
|
| 72 |
+
self.foreground_all_uvs,
|
| 73 |
+
self.scaled_foreground_uvs,
|
| 74 |
+
self.foreground_min_u,
|
| 75 |
+
self.foreground_min_v,
|
| 76 |
+
self.foreground_max_u,
|
| 77 |
+
self.foreground_max_v,
|
| 78 |
+
) = self.preprocess_uv_values(
|
| 79 |
+
original_foreground_all_uvs, config["grid_atlas_resolution"], device=self.device, layer="foreground"
|
| 80 |
+
)
|
| 81 |
+
|
| 82 |
+
self.background_uv_mask = create_uv_mask(
|
| 83 |
+
config,
|
| 84 |
+
background_mapping,
|
| 85 |
+
self.background_min_u,
|
| 86 |
+
self.background_min_v,
|
| 87 |
+
self.background_max_u,
|
| 88 |
+
self.background_max_v,
|
| 89 |
+
uv_shift=-0.5,
|
| 90 |
+
resolution_shift=1,
|
| 91 |
+
)
|
| 92 |
+
self.foreground_uv_mask = create_uv_mask(
|
| 93 |
+
config,
|
| 94 |
+
foreground_mapping,
|
| 95 |
+
self.foreground_min_u,
|
| 96 |
+
self.foreground_min_v,
|
| 97 |
+
self.foreground_max_u,
|
| 98 |
+
self.foreground_max_v,
|
| 99 |
+
uv_shift=0.5,
|
| 100 |
+
resolution_shift=0,
|
| 101 |
+
)
|
| 102 |
+
self.background_grid_atlas = get_high_res_atlas(
|
| 103 |
+
background_atlas_model,
|
| 104 |
+
self.background_min_v,
|
| 105 |
+
self.background_min_u,
|
| 106 |
+
self.background_max_v,
|
| 107 |
+
self.background_max_u,
|
| 108 |
+
config["grid_atlas_resolution"],
|
| 109 |
+
device=config["device"],
|
| 110 |
+
layer="background",
|
| 111 |
+
)
|
| 112 |
+
self.foreground_grid_atlas = get_high_res_atlas(
|
| 113 |
+
foreground_atlas_model,
|
| 114 |
+
self.foreground_min_v,
|
| 115 |
+
self.foreground_min_u,
|
| 116 |
+
self.foreground_max_v,
|
| 117 |
+
self.foreground_max_u,
|
| 118 |
+
config["grid_atlas_resolution"],
|
| 119 |
+
device=config["device"],
|
| 120 |
+
layer="foreground",
|
| 121 |
+
)
|
| 122 |
+
if config["return_atlas_alpha"]:
|
| 123 |
+
self.foreground_atlas_alpha = foreground_atlas_alpha # used for visualizations
|
| 124 |
+
self.cnn_min_crop_size = 2 ** self.config["num_scales"] + 1
|
| 125 |
+
if self.config["finetune_foreground"]:
|
| 126 |
+
self.mask_boundaries = get_masks_boundaries(
|
| 127 |
+
alpha_video=self.all_alpha.cpu(),
|
| 128 |
+
border=self.config["masks_border_expansion"],
|
| 129 |
+
threshold=self.config["mask_alpha_threshold"],
|
| 130 |
+
min_crop_size=self.cnn_min_crop_size,
|
| 131 |
+
)
|
| 132 |
+
self.cropped_foreground_atlas, self.foreground_atlas_bbox = get_atlas_bounding_box(
|
| 133 |
+
self.mask_boundaries, self.foreground_grid_atlas, self.foreground_all_uvs
|
| 134 |
+
)
|
| 135 |
+
|
| 136 |
+
self.step = -1
|
| 137 |
+
|
| 138 |
+
crop_transforms = transforms.Compose(
|
| 139 |
+
[
|
| 140 |
+
transforms.RandomApply(
|
| 141 |
+
[transforms.ColorJitter(brightness=0.1, contrast=0.1, saturation=0.1, hue=0.1)],
|
| 142 |
+
p=0.1,
|
| 143 |
+
),
|
| 144 |
+
]
|
| 145 |
+
)
|
| 146 |
+
self.crop_aug = crop_transforms
|
| 147 |
+
self.dist = self.config["center_frame_distance"]
|
| 148 |
+
|
| 149 |
+
@staticmethod
|
| 150 |
+
def preprocess_uv_values(layer_uv_values, resolution, device="cuda", layer="background"):
|
| 151 |
+
if layer == "background":
|
| 152 |
+
shift = 1
|
| 153 |
+
else:
|
| 154 |
+
shift = 0
|
| 155 |
+
uv_values = (layer_uv_values + shift) * resolution
|
| 156 |
+
min_u, min_v = uv_values.reshape(-1, 2).min(dim=0).values.long()
|
| 157 |
+
uv_values -= torch.tensor([min_u, min_v], device=device)
|
| 158 |
+
max_u, max_v = uv_values.reshape(-1, 2).max(dim=0).values.ceil().long()
|
| 159 |
+
|
| 160 |
+
edge_size = torch.tensor([max_u, max_v], device=device)
|
| 161 |
+
scaled_uv_values = ((uv_values.reshape(-1, 2) / edge_size) * 2 - 1).unsqueeze(1).unsqueeze(0)
|
| 162 |
+
|
| 163 |
+
return uv_values, scaled_uv_values, min_u, min_v, max_u, max_v
|
| 164 |
+
|
| 165 |
+
def get_random_crop_data(self, crop_size):
|
| 166 |
+
t = random.randint(0, self.config["maximum_number_of_frames"] - 1)
|
| 167 |
+
y_start, x_start, h_crop, w_crop = get_random_crop_params((self.config["resx"], self.config["resy"]), crop_size)
|
| 168 |
+
return y_start, x_start, h_crop, w_crop, t
|
| 169 |
+
|
| 170 |
+
def get_global_crops_multi(self):
|
| 171 |
+
foreground_atlas_crops = []
|
| 172 |
+
background_atlas_crops = []
|
| 173 |
+
foreground_uvs = []
|
| 174 |
+
background_uvs = []
|
| 175 |
+
background_alpha_crops = []
|
| 176 |
+
foreground_alpha_crops = []
|
| 177 |
+
original_background_crops = []
|
| 178 |
+
original_foreground_crops = []
|
| 179 |
+
output_dict = {}
|
| 180 |
+
|
| 181 |
+
t = random.randint(self.dist, self.config["maximum_number_of_frames"] - 1 - self.dist)
|
| 182 |
+
flip = torch.rand(1) < self.config["flip_p"]
|
| 183 |
+
if self.config["finetune_foreground"]:
|
| 184 |
+
for cur_frame in [t - self.dist, t, t + self.dist]:
|
| 185 |
+
y_start, x_start, frame_h, frame_w = self.mask_boundaries[cur_frame].tolist()
|
| 186 |
+
crop_size = (
|
| 187 |
+
max(
|
| 188 |
+
random.randint(round(self.config["crops_min_cover"] * frame_h), frame_h),
|
| 189 |
+
self.cnn_min_crop_size,
|
| 190 |
+
),
|
| 191 |
+
max(
|
| 192 |
+
random.randint(round(self.config["crops_min_cover"] * frame_w), frame_w),
|
| 193 |
+
self.cnn_min_crop_size,
|
| 194 |
+
),
|
| 195 |
+
)
|
| 196 |
+
y_crop, x_crop, h_crop, w_crop = get_random_crop_params((frame_w, frame_h), crop_size)
|
| 197 |
+
|
| 198 |
+
foreground_uv = self.foreground_all_uvs[
|
| 199 |
+
cur_frame,
|
| 200 |
+
y_start + y_crop : y_start + y_crop + h_crop,
|
| 201 |
+
x_start + x_crop : x_start + x_crop + w_crop,
|
| 202 |
+
]
|
| 203 |
+
alpha = self.all_alpha[
|
| 204 |
+
[cur_frame],
|
| 205 |
+
:,
|
| 206 |
+
y_start + y_crop : y_start + y_crop + h_crop,
|
| 207 |
+
x_start + x_crop : x_start + x_crop + w_crop,
|
| 208 |
+
]
|
| 209 |
+
|
| 210 |
+
original_foreground_crop = self.foreground_reconstruction[
|
| 211 |
+
[cur_frame],
|
| 212 |
+
:,
|
| 213 |
+
y_start + y_crop : y_start + y_crop + h_crop,
|
| 214 |
+
x_start + x_crop : x_start + x_crop + w_crop,
|
| 215 |
+
]
|
| 216 |
+
|
| 217 |
+
original_foreground_crop = self.crop_aug(original_foreground_crop)
|
| 218 |
+
foreground_alpha_crops.append(alpha.flip(-1) if flip else alpha)
|
| 219 |
+
foreground_uvs.append(foreground_uv) # not scaled
|
| 220 |
+
original_foreground_crops.append(
|
| 221 |
+
original_foreground_crop.flip(-1) if flip else original_foreground_crop
|
| 222 |
+
)
|
| 223 |
+
|
| 224 |
+
foreground_min_vals = torch.tensor(
|
| 225 |
+
[self.config["grid_atlas_resolution"]] * 2, device=self.device, dtype=torch.long
|
| 226 |
+
)
|
| 227 |
+
foreground_max_vals = torch.tensor([0] * 2, device=self.device, dtype=torch.long)
|
| 228 |
+
for uv_values in foreground_uvs:
|
| 229 |
+
min_uv = uv_values.amin(dim=[0, 1]).long()
|
| 230 |
+
max_uv = uv_values.amax(dim=[0, 1]).ceil().long()
|
| 231 |
+
foreground_min_vals = torch.minimum(foreground_min_vals, min_uv)
|
| 232 |
+
foreground_max_vals = torch.maximum(foreground_max_vals, max_uv)
|
| 233 |
+
|
| 234 |
+
h_v = foreground_max_vals[1] - foreground_min_vals[1]
|
| 235 |
+
w_u = foreground_max_vals[0] - foreground_min_vals[0]
|
| 236 |
+
foreground_atlas_crop = crop(
|
| 237 |
+
self.foreground_grid_atlas,
|
| 238 |
+
foreground_min_vals[1],
|
| 239 |
+
foreground_min_vals[0],
|
| 240 |
+
h_v,
|
| 241 |
+
w_u,
|
| 242 |
+
)
|
| 243 |
+
foreground_atlas_crop = self.crop_aug(foreground_atlas_crop)
|
| 244 |
+
|
| 245 |
+
for i, uv_values in enumerate(foreground_uvs):
|
| 246 |
+
foreground_uvs[i] = (
|
| 247 |
+
2 * (uv_values - foreground_min_vals) / (foreground_max_vals - foreground_min_vals) - 1
|
| 248 |
+
).unsqueeze(0)
|
| 249 |
+
if flip:
|
| 250 |
+
foreground_uvs[i][:, :, :, 0] = -foreground_uvs[i][:, :, :, 0]
|
| 251 |
+
foreground_uvs[i] = foreground_uvs[i].flip(-2)
|
| 252 |
+
foreground_atlas_crops.append(foreground_atlas_crop.flip(-1) if flip else foreground_atlas_crop)
|
| 253 |
+
|
| 254 |
+
elif self.config["finetune_background"]:
|
| 255 |
+
crop_size = (
|
| 256 |
+
random.randint(round(self.config["crops_min_cover"] * self.min_size), self.min_size),
|
| 257 |
+
random.randint(round(self.config["crops_min_cover"] * self.max_size), self.max_size),
|
| 258 |
+
)
|
| 259 |
+
crop_data = self.get_random_crop_data(crop_size)
|
| 260 |
+
y, x, h, w, _ = crop_data
|
| 261 |
+
background_uv = self.background_all_uvs[[t - self.dist, t, t + self.dist], y : y + h, x : x + w]
|
| 262 |
+
original_background_crop = self.background_reconstruction[
|
| 263 |
+
[t - self.dist, t, t + self.dist], :, y : y + h, x : x + w
|
| 264 |
+
]
|
| 265 |
+
alpha = self.all_alpha[[t - self.dist, t, t + self.dist], :, y : y + h, x : x + w]
|
| 266 |
+
|
| 267 |
+
original_background_crop = self.crop_aug(original_background_crop)
|
| 268 |
+
|
| 269 |
+
original_background_crops = [
|
| 270 |
+
el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in original_background_crop
|
| 271 |
+
]
|
| 272 |
+
background_alpha_crops = [el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in alpha]
|
| 273 |
+
|
| 274 |
+
background_atlas_crop, background_min_vals, background_max_vals = get_atlas_crops(
|
| 275 |
+
background_uv,
|
| 276 |
+
self.background_grid_atlas,
|
| 277 |
+
self.crop_aug,
|
| 278 |
+
)
|
| 279 |
+
background_uv = 2 * (background_uv - background_min_vals) / (background_max_vals - background_min_vals) - 1
|
| 280 |
+
if flip:
|
| 281 |
+
background_uv[:, :, :, 0] = -background_uv[:, :, :, 0]
|
| 282 |
+
background_uv = background_uv.flip(-2)
|
| 283 |
+
background_atlas_crops = [
|
| 284 |
+
el.unsqueeze(0).flip(-1) if flip else el.unsqueeze(0) for el in background_atlas_crop
|
| 285 |
+
]
|
| 286 |
+
background_uvs = [el.unsqueeze(0) for el in background_uv]
|
| 287 |
+
|
| 288 |
+
if self.config["finetune_foreground"]:
|
| 289 |
+
output_dict["foreground_alpha"] = foreground_alpha_crops
|
| 290 |
+
output_dict["foreground_uvs"] = foreground_uvs
|
| 291 |
+
output_dict["original_foreground_crops"] = original_foreground_crops
|
| 292 |
+
output_dict["foreground_atlas_crops"] = foreground_atlas_crops
|
| 293 |
+
elif self.config["finetune_background"]:
|
| 294 |
+
output_dict["background_alpha"] = background_alpha_crops
|
| 295 |
+
output_dict["background_uvs"] = background_uvs
|
| 296 |
+
output_dict["original_background_crops"] = original_background_crops
|
| 297 |
+
output_dict["background_atlas_crops"] = background_atlas_crops
|
| 298 |
+
|
| 299 |
+
return output_dict
|
| 300 |
+
|
| 301 |
+
@torch.no_grad()
|
| 302 |
+
def render_video_from_atlas(self, model, layer="background", foreground_padding_mode="replicate"):
|
| 303 |
+
if layer == "background":
|
| 304 |
+
grid_atlas = self.background_grid_atlas
|
| 305 |
+
all_uvs = self.scaled_background_uvs
|
| 306 |
+
uv_mask = self.background_uv_mask
|
| 307 |
+
else:
|
| 308 |
+
grid_atlas = self.cropped_foreground_atlas
|
| 309 |
+
full_grid_atlas = self.foreground_grid_atlas
|
| 310 |
+
all_uvs = self.scaled_foreground_uvs
|
| 311 |
+
uv_mask = crop(self.foreground_uv_mask, *self.foreground_atlas_bbox)
|
| 312 |
+
atlas_edit_only = model.netG(grid_atlas)
|
| 313 |
+
edited_atlas_dict = model.render(atlas_edit_only, bg_image=grid_atlas)
|
| 314 |
+
|
| 315 |
+
if layer == "foreground":
|
| 316 |
+
atlas_edit_only = torch.nn.functional.pad(
|
| 317 |
+
atlas_edit_only,
|
| 318 |
+
pad=(
|
| 319 |
+
self.foreground_atlas_bbox[1],
|
| 320 |
+
full_grid_atlas.shape[-1] - (self.foreground_atlas_bbox[1] + self.foreground_atlas_bbox[3]),
|
| 321 |
+
self.foreground_atlas_bbox[0],
|
| 322 |
+
full_grid_atlas.shape[-2] - (self.foreground_atlas_bbox[0] + self.foreground_atlas_bbox[2]),
|
| 323 |
+
),
|
| 324 |
+
mode=foreground_padding_mode,
|
| 325 |
+
)
|
| 326 |
+
|
| 327 |
+
edit = F.grid_sample(
|
| 328 |
+
atlas_edit_only, all_uvs, mode="bilinear", align_corners=self.config["align_corners"]
|
| 329 |
+
).clamp(min=0.0, max=1.0)
|
| 330 |
+
edit = edit.squeeze().t() # shape (batch, 3)
|
| 331 |
+
edit = (
|
| 332 |
+
edit.reshape(self.config["maximum_number_of_frames"], self.config["resy"], self.config["resx"], 4)
|
| 333 |
+
.permute(0, 3, 1, 2)
|
| 334 |
+
.clamp(min=0.0, max=1.0)
|
| 335 |
+
)
|
| 336 |
+
edit_dict = model.render(edit, bg_image=self.original_video)
|
| 337 |
+
|
| 338 |
+
return edited_atlas_dict, edit_dict, uv_mask
|
| 339 |
+
|
| 340 |
+
def get_whole_atlas(self):
|
| 341 |
+
if self.config["finetune_foreground"]:
|
| 342 |
+
atlas = self.cropped_foreground_atlas
|
| 343 |
+
else:
|
| 344 |
+
atlas = self.background_grid_atlas
|
| 345 |
+
atlas = VideoModel.resize_crops(atlas, 3)
|
| 346 |
+
|
| 347 |
+
return atlas
|
| 348 |
+
|
| 349 |
+
def __getitem__(self, index):
|
| 350 |
+
self.step += 1
|
| 351 |
+
sample = {"step": self.step}
|
| 352 |
+
sample["global_crops"] = self.get_global_crops_multi()
|
| 353 |
+
|
| 354 |
+
if self.config["input_entire_atlas"] and ((self.step + 1) % self.config["entire_atlas_every"] == 0):
|
| 355 |
+
sample["input_image"] = self.get_whole_atlas()
|
| 356 |
+
|
| 357 |
+
return sample
|
| 358 |
+
|
| 359 |
+
def __len__(self):
|
| 360 |
+
return 1
|