Upload Model.py
Browse files
Model.py
ADDED
|
@@ -0,0 +1,184 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
import torch.nn as nn
|
| 3 |
+
import torch.nn.functional as F
|
| 4 |
+
from torch.utils.data import Dataset, DataLoader
|
| 5 |
+
from pathlib import Path
|
| 6 |
+
import json
|
| 7 |
+
import pandas as pd
|
| 8 |
+
import numpy as np
|
| 9 |
+
from tqdm import tqdm
|
| 10 |
+
from sklearn.preprocessing import LabelEncoder
|
| 11 |
+
import pickle
|
| 12 |
+
from typing import Dict, List, Optional
|
| 13 |
+
import warnings
|
| 14 |
+
import random
|
| 15 |
+
# ========================= 步骤3: Inter-Task Attention模型 =========================
|
| 16 |
+
|
| 17 |
+
class InterTaskAttention(nn.Module):
|
| 18 |
+
"""
|
| 19 |
+
Inter-Task Attention机制
|
| 20 |
+
学习任务间的相互关系和依赖
|
| 21 |
+
"""
|
| 22 |
+
|
| 23 |
+
def __init__(self, hidden_dim: int, num_tasks: int, num_heads: int = 4):
|
| 24 |
+
super().__init__()
|
| 25 |
+
self.hidden_dim = hidden_dim
|
| 26 |
+
self.num_tasks = num_tasks
|
| 27 |
+
self.num_heads = num_heads
|
| 28 |
+
|
| 29 |
+
# Multi-head attention for tasks
|
| 30 |
+
self.task_attention = nn.MultiheadAttention(
|
| 31 |
+
embed_dim=hidden_dim,
|
| 32 |
+
num_heads=num_heads,
|
| 33 |
+
dropout=0.1,
|
| 34 |
+
batch_first=True
|
| 35 |
+
)
|
| 36 |
+
|
| 37 |
+
# Task-specific query, key, value projections
|
| 38 |
+
self.task_query = nn.Linear(hidden_dim, hidden_dim)
|
| 39 |
+
self.task_key = nn.Linear(hidden_dim, hidden_dim)
|
| 40 |
+
self.task_value = nn.Linear(hidden_dim, hidden_dim)
|
| 41 |
+
|
| 42 |
+
# Layer normalization
|
| 43 |
+
self.norm1 = nn.LayerNorm(hidden_dim)
|
| 44 |
+
self.norm2 = nn.LayerNorm(hidden_dim)
|
| 45 |
+
|
| 46 |
+
# Feed-forward network
|
| 47 |
+
self.ffn = nn.Sequential(
|
| 48 |
+
nn.Linear(hidden_dim, hidden_dim * 2),
|
| 49 |
+
nn.ReLU(),
|
| 50 |
+
nn.Dropout(0.1),
|
| 51 |
+
nn.Linear(hidden_dim * 2, hidden_dim)
|
| 52 |
+
)
|
| 53 |
+
|
| 54 |
+
def forward(self, task_features):
|
| 55 |
+
"""
|
| 56 |
+
Args:
|
| 57 |
+
task_features: [batch_size, num_tasks, hidden_dim]
|
| 58 |
+
Returns:
|
| 59 |
+
refined_features: [batch_size, num_tasks, hidden_dim]
|
| 60 |
+
"""
|
| 61 |
+
# Self-attention across tasks
|
| 62 |
+
q = self.task_query(task_features)
|
| 63 |
+
k = self.task_key(task_features)
|
| 64 |
+
v = self.task_value(task_features)
|
| 65 |
+
|
| 66 |
+
attended_features, attention_weights = self.task_attention(q, k, v)
|
| 67 |
+
|
| 68 |
+
# Residual connection + normalization
|
| 69 |
+
task_features = self.norm1(task_features + attended_features)
|
| 70 |
+
|
| 71 |
+
# Feed-forward network
|
| 72 |
+
ffn_output = self.ffn(task_features)
|
| 73 |
+
task_features = self.norm2(task_features + ffn_output)
|
| 74 |
+
|
| 75 |
+
return task_features, attention_weights
|
| 76 |
+
|
| 77 |
+
|
| 78 |
+
class OmniPathWithInterTaskAttention(nn.Module):
|
| 79 |
+
"""
|
| 80 |
+
OmniPath模型 + Inter-Task Attention
|
| 81 |
+
从预提取的特征进行多任务学习
|
| 82 |
+
"""
|
| 83 |
+
|
| 84 |
+
def __init__(self,
|
| 85 |
+
label_mappings: Dict,
|
| 86 |
+
feature_dim: int = 1024,
|
| 87 |
+
hidden_dim: int = 256,
|
| 88 |
+
dropout: float = 0.3,
|
| 89 |
+
use_inter_task_attention: bool = True,
|
| 90 |
+
inter_task_heads: int = 4):
|
| 91 |
+
super().__init__()
|
| 92 |
+
|
| 93 |
+
self.label_mappings = label_mappings
|
| 94 |
+
self.num_tasks = len(label_mappings)
|
| 95 |
+
self.use_inter_task_attention = use_inter_task_attention
|
| 96 |
+
|
| 97 |
+
# Tile-level feature encoder
|
| 98 |
+
self.tile_encoder = nn.Sequential(
|
| 99 |
+
nn.Linear(feature_dim, hidden_dim),
|
| 100 |
+
nn.LayerNorm(hidden_dim),
|
| 101 |
+
nn.ReLU(),
|
| 102 |
+
nn.Dropout(dropout)
|
| 103 |
+
)
|
| 104 |
+
|
| 105 |
+
# Tile attention (for aggregating tiles to patient-level)
|
| 106 |
+
self.tile_attention = nn.Sequential(
|
| 107 |
+
nn.Linear(hidden_dim, hidden_dim // 2),
|
| 108 |
+
nn.Tanh(),
|
| 109 |
+
nn.Linear(hidden_dim // 2, 1)
|
| 110 |
+
)
|
| 111 |
+
|
| 112 |
+
# Task-specific encoders (before inter-task attention)
|
| 113 |
+
self.task_encoders = nn.ModuleDict()
|
| 114 |
+
for task_name in label_mappings.keys():
|
| 115 |
+
self.task_encoders[task_name] = nn.Sequential(
|
| 116 |
+
nn.Linear(hidden_dim, hidden_dim),
|
| 117 |
+
nn.LayerNorm(hidden_dim),
|
| 118 |
+
nn.ReLU(),
|
| 119 |
+
nn.Dropout(dropout)
|
| 120 |
+
)
|
| 121 |
+
|
| 122 |
+
# Inter-Task Attention
|
| 123 |
+
if use_inter_task_attention:
|
| 124 |
+
self.inter_task_attention = InterTaskAttention(
|
| 125 |
+
hidden_dim=hidden_dim,
|
| 126 |
+
num_tasks=self.num_tasks,
|
| 127 |
+
num_heads=inter_task_heads
|
| 128 |
+
)
|
| 129 |
+
|
| 130 |
+
# Task-specific prediction heads (after inter-task attention)
|
| 131 |
+
self.task_heads = nn.ModuleDict()
|
| 132 |
+
for task_name, mapping in label_mappings.items():
|
| 133 |
+
self.task_heads[task_name] = nn.Sequential(
|
| 134 |
+
nn.Linear(hidden_dim, hidden_dim // 2),
|
| 135 |
+
nn.ReLU(),
|
| 136 |
+
nn.Dropout(dropout),
|
| 137 |
+
nn.Linear(hidden_dim // 2, mapping['num_classes'])
|
| 138 |
+
)
|
| 139 |
+
|
| 140 |
+
def forward(self, features, return_attention=False):
|
| 141 |
+
"""
|
| 142 |
+
Args:
|
| 143 |
+
features: [batch_size, num_tiles, feature_dim]
|
| 144 |
+
Returns:
|
| 145 |
+
outputs: dict of task predictions
|
| 146 |
+
"""
|
| 147 |
+
batch_size, num_tiles, _ = features.shape
|
| 148 |
+
|
| 149 |
+
# Encode tile features
|
| 150 |
+
tile_features = self.tile_encoder(features) # [B, N, H]
|
| 151 |
+
|
| 152 |
+
# Compute tile attention weights
|
| 153 |
+
attention_logits = self.tile_attention(tile_features) # [B, N, 1]
|
| 154 |
+
attention_weights = F.softmax(attention_logits, dim=1) # [B, N, 1]
|
| 155 |
+
|
| 156 |
+
# Aggregate tiles to patient-level
|
| 157 |
+
patient_features = torch.sum(tile_features * attention_weights, dim=1) # [B, H]
|
| 158 |
+
|
| 159 |
+
# Task-specific encoding
|
| 160 |
+
task_features_list = []
|
| 161 |
+
task_names = list(self.label_mappings.keys())
|
| 162 |
+
|
| 163 |
+
for task_name in task_names:
|
| 164 |
+
task_feat = self.task_encoders[task_name](patient_features) # [B, H]
|
| 165 |
+
task_features_list.append(task_feat.unsqueeze(1)) # [B, 1, H]
|
| 166 |
+
|
| 167 |
+
task_features = torch.cat(task_features_list, dim=1) # [B, num_tasks, H]
|
| 168 |
+
|
| 169 |
+
# Inter-Task Attention
|
| 170 |
+
inter_task_attn_weights = None
|
| 171 |
+
if self.use_inter_task_attention:
|
| 172 |
+
task_features, inter_task_attn_weights = self.inter_task_attention(task_features)
|
| 173 |
+
|
| 174 |
+
# Task-specific predictions
|
| 175 |
+
outputs = {}
|
| 176 |
+
for i, task_name in enumerate(task_names):
|
| 177 |
+
task_feat = task_features[:, i, :] # [B, H]
|
| 178 |
+
outputs[task_name] = self.task_heads[task_name](task_feat) # [B, num_classes]
|
| 179 |
+
|
| 180 |
+
if return_attention:
|
| 181 |
+
outputs['tile_attention'] = attention_weights
|
| 182 |
+
outputs['inter_task_attention'] = inter_task_attn_weights
|
| 183 |
+
|
| 184 |
+
return outputs
|