Spaces:
Runtime error
Runtime error
| import gradio as gr | |
| from PIL import Image, ImageDraw, ImageFont | |
| import numpy as np | |
| import scipy.io.wavfile as wavfile | |
| from transformers import pipeline | |
| # Load pipelines | |
| narrator = pipeline("text-to-speech", model="kakao-enterprise/vits-ljs") | |
| object_detector = pipeline("object-detection", model="facebook/detr-resnet-50") | |
| # Function to apply Non-Maximum Suppression (NMS) | |
| def compute_iou(box1, boxes): | |
| x1 = np.maximum(box1['xmin'], boxes[:, 0]) | |
| y1 = np.maximum(box1['ymin'], boxes[:, 1]) | |
| x2 = np.minimum(box1['xmax'], boxes[:, 2]) | |
| y2 = np.minimum(box1['ymax'], boxes[:, 3]) | |
| intersection = np.maximum(0, x2 - x1) * np.maximum(0, y2 - y1) | |
| box1_area = (box1['xmax'] - box1['xmin']) * (box1['ymax'] - box1['ymin']) | |
| boxes_area = (boxes[:, 2] - boxes[:, 0]) * (boxes[:, 3] - boxes[:, 1]) | |
| union = box1_area + boxes_area - intersection | |
| return intersection / union | |
| def nms(detections, iou_threshold=0.5): | |
| if len(detections) == 0: | |
| return [] | |
| boxes = np.array([[d['box']['xmin'], d['box']['ymin'], d['box']['xmax'], d['box']['ymax']] for d in detections]) | |
| scores = np.array([d['score'] for d in detections]) | |
| indices = np.argsort(scores)[::-1] | |
| keep = [] | |
| while len(indices) > 0: | |
| current = indices[0] | |
| keep.append(current) | |
| rest = indices[1:] | |
| ious = compute_iou({ | |
| 'xmin': boxes[current, 0], | |
| 'ymin': boxes[current, 1], | |
| 'xmax': boxes[current, 2], | |
| 'ymax': boxes[current, 3] | |
| }, boxes[rest]) | |
| indices = rest[np.where(ious < iou_threshold)[0]] | |
| return [detections[i] for i in keep] | |
| # Function to generate audio from text | |
| def generate_audio(text): | |
| narrated_text = narrator(text) | |
| wavfile.write("output.wav", rate=narrated_text["sampling_rate"], data=narrated_text["audio"][0]) | |
| return "output.wav" | |
| # Function to read and summarize detected objects | |
| def read_objects(detection_objects): | |
| object_counts = {} | |
| for detection in detection_objects: | |
| label = detection['label'] | |
| object_counts[label] = object_counts.get(label, 0) + 1 | |
| response = "This picture contains" | |
| labels = list(object_counts.keys()) | |
| for i, label in enumerate(labels): | |
| response += f" {object_counts[label]} {label}" | |
| if object_counts[label] > 1: | |
| response += "s" | |
| if i < len(labels) - 2: | |
| response += "," | |
| elif i == len(labels) - 2: | |
| response += " and" | |
| response += "." | |
| return response | |
| # Function to draw bounding boxes on the image | |
| def draw_bounding_boxes(image, detections): | |
| draw_image = image.copy() | |
| draw = ImageDraw.Draw(draw_image) | |
| font = ImageFont.load_default() | |
| for detection in detections: | |
| box = detection['box'] | |
| xmin, ymin, xmax, ymax = box['xmin'], box['ymin'], box['xmax'], box['ymax'] | |
| draw.rectangle([(xmin, ymin), (xmax, ymax)], outline="red", width=3) | |
| label = detection['label'] | |
| score = detection['score'] | |
| text = f"{label}: {score:.2f}" | |
| text_size = draw.textbbox((xmin, ymin), text, font=font) | |
| draw.rectangle([(text_size[0], text_size[1]), (text_size[2], text_size[3])], fill="red") | |
| draw.text((xmin, ymin), text, fill="white", font=font) | |
| return draw_image | |
| # Main function to process the image | |
| def detect_object(image): | |
| detections = object_detector(image) | |
| # Apply confidence threshold and NMS | |
| confidence_threshold = 0.5 | |
| filtered_detections = [d for d in detections if d['score'] > confidence_threshold] | |
| filtered_detections = nms(filtered_detections) | |
| processed_image = draw_bounding_boxes(image, filtered_detections) | |
| description_text = read_objects(filtered_detections) | |
| processed_audio = generate_audio(description_text) | |
| return processed_image, processed_audio | |
| description_text = """ | |
| Upload an image to detect objects and hear a natural language description. | |
| ### Credits: | |
| Developed by Taizun S | |
| """ | |
| # Google Analytics script | |
| ga_script = """ | |
| <script async src="https://www.googletagmanager.com/gtag/js?id=G-WEYXHDZ3GQ"></script> | |
| <script> | |
| window.dataLayer = window.dataLayer || []; | |
| function gtag(){dataLayer.push(arguments);} | |
| gtag('js', new Date()); | |
| gtag('config', 'G-WEYXHDZ3GQ'); | |
| </script> | |
| """ | |
| # Use Gradio Blocks to organize the layout | |
| with gr.Blocks() as demo: | |
| gr.HTML(ga_script) # Injecting Google Analytics script | |
| gr.Markdown(description_text) # Adding the description as Markdown | |
| # Define the Interface components within Blocks | |
| gr.Interface( | |
| fn=detect_object, | |
| inputs=gr.Image(label="Upload an Image", type="pil"), | |
| outputs=[ | |
| gr.Image(label="Processed Image", type="pil"), | |
| gr.Audio(label="Generated Audio") | |
| ], | |
| title="Multi-Object Detection with Audio Narration", | |
| ) | |
| # Launch the Blocks interface | |
| demo.launch() | |