Spaces:
Sleeping
Sleeping
Carlos Isael RamiΜrez GonzaΜlez
commited on
Commit
Β·
1dd8a9e
1
Parent(s):
d269fec
Modelo y logica lista
Browse files- .gitattributes +1 -0
- app.py +25 -0
- config.py +10 -0
- memory.py +47 -0
- mojica_agent.py +292 -0
- requirements.txt +0 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.db filter=lfs diff=lfs merge=lfs -text
|
app.py
CHANGED
|
@@ -1,7 +1,32 @@
|
|
| 1 |
from fastapi import FastAPI
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
|
| 3 |
app = FastAPI()
|
| 4 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
@app.get("/")
|
| 6 |
def greet_json():
|
| 7 |
return {"Hello": "World!"}
|
|
|
|
| 1 |
from fastapi import FastAPI
|
| 2 |
+
from pydantic import BaseModel
|
| 3 |
+
from typing import Any
|
| 4 |
+
import pandas as pd
|
| 5 |
+
from mojica_agent import MojicaAgent
|
| 6 |
+
from config import Config
|
| 7 |
|
| 8 |
app = FastAPI()
|
| 9 |
|
| 10 |
+
mojica_bot = MojicaAgent(Config)
|
| 11 |
+
|
| 12 |
+
# * Esquema de entrada como marshmellow
|
| 13 |
+
class QuestionRequest(BaseModel):
|
| 14 |
+
question: str
|
| 15 |
+
|
| 16 |
+
class AnswerResponse(BaseModel):
|
| 17 |
+
sql: str
|
| 18 |
+
result: Any
|
| 19 |
+
|
| 20 |
+
@app.post("/ask", response_model=AnswerResponse)
|
| 21 |
+
def ask_question(req: QuestionRequest):
|
| 22 |
+
sql, result = mojica_bot.consult(req.question)
|
| 23 |
+
|
| 24 |
+
# * Si es dataframe lo convertimos a json
|
| 25 |
+
if isinstance(result, pd.DataFrame):
|
| 26 |
+
result = result.to_dict(orient="records")
|
| 27 |
+
|
| 28 |
+
return {"sql": sql, "result": result}
|
| 29 |
+
|
| 30 |
@app.get("/")
|
| 31 |
def greet_json():
|
| 32 |
return {"Hello": "World!"}
|
config.py
ADDED
|
@@ -0,0 +1,10 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import torch
|
| 2 |
+
class Config:
|
| 3 |
+
DB_PATH = 'dataset.db'
|
| 4 |
+
TABLE_NAME = 'sells'
|
| 5 |
+
MODEL_NAME = "ibm-granite/granite-3b-code-instruct-128k"
|
| 6 |
+
CSV_PATH = "/kaggle/input/mojica-hoja-1/mojica_hoja_1.csv"
|
| 7 |
+
MAX_HISTORY = 3 # Mantener las ΓΊltimas 3 interacciones (memoria)
|
| 8 |
+
MAX_TOKENS = 8_000
|
| 9 |
+
MAX_NEW_TOKENS = 400
|
| 10 |
+
DEVICE = "cuda" if torch.cuda.is_available() else "cpu"
|
memory.py
ADDED
|
@@ -0,0 +1,47 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from collections import deque
|
| 2 |
+
import pandas as pd
|
| 3 |
+
from config import Config
|
| 4 |
+
|
| 5 |
+
class ConversationMemory:
|
| 6 |
+
def __init__(self, max_history: int = Config.MAX_HISTORY):
|
| 7 |
+
self.history = deque(maxlen=max_history)
|
| 8 |
+
self.schema_cache = None
|
| 9 |
+
|
| 10 |
+
def add_interaction(self, question: str, sql: str, result: str):
|
| 11 |
+
self.history.append({
|
| 12 |
+
"question": question,
|
| 13 |
+
"sql": sql,
|
| 14 |
+
"result_summary": self._summarize_result(result)
|
| 15 |
+
})
|
| 16 |
+
|
| 17 |
+
def _summarize_result(self, result) -> str:
|
| 18 |
+
"""Resumen ejecutivo para memoria de contexto"""
|
| 19 |
+
if isinstance(result, pd.DataFrame):
|
| 20 |
+
# Enfocado en datos CLAVE no en metadatos
|
| 21 |
+
if len(result) == 1:
|
| 22 |
+
return f"Γnico resultado: {result.iloc[0].to_dict()}"
|
| 23 |
+
elif 'Cliente' in result.columns:
|
| 24 |
+
top = result.nlargest(3, 'Neto') if 'Neto' in result.columns else result.head(3)
|
| 25 |
+
return f"Top clientes: {top['Cliente'].tolist()}"
|
| 26 |
+
else:
|
| 27 |
+
return f"Filas: {len(result)}, Columnas: {list(result.columns)}"
|
| 28 |
+
return str(result)
|
| 29 |
+
|
| 30 |
+
def get_context(self, current_question: str) -> str:
|
| 31 |
+
if not self.history:
|
| 32 |
+
return ""
|
| 33 |
+
last_relevant = []
|
| 34 |
+
for interaction in self.history:
|
| 35 |
+
if "producto" in interaction['question'].lower() and "producto" in current_question.lower():
|
| 36 |
+
last_relevant.append(interaction)
|
| 37 |
+
elif "cliente" in interaction['question'].lower() and "cliente" in current_question.lower():
|
| 38 |
+
last_relevant.append(interaction)
|
| 39 |
+
|
| 40 |
+
context = ""
|
| 41 |
+
for i, interaction in enumerate(last_relevant[-1:], 1): # Solo la ΓΊltima relevante
|
| 42 |
+
context += (
|
| 43 |
+
f"InteracciΓ³n #{i}: {interaction['question'][:50]}...\n"
|
| 44 |
+
f"SQL: {interaction['sql'][:70]}...\n"
|
| 45 |
+
f"Resultado: {interaction['result_summary']}\n\n"
|
| 46 |
+
)
|
| 47 |
+
return context
|
mojica_agent.py
ADDED
|
@@ -0,0 +1,292 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from memory import ConversationMemory
|
| 2 |
+
from config import Config
|
| 3 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 4 |
+
import torch, gc
|
| 5 |
+
import unicodedata
|
| 6 |
+
from typing import Dict, Tuple
|
| 7 |
+
import re
|
| 8 |
+
import pandas as pd
|
| 9 |
+
import sqlite3
|
| 10 |
+
|
| 11 |
+
class MojicaAgent:
|
| 12 |
+
def __init__(self, config: Config):
|
| 13 |
+
self.config = config
|
| 14 |
+
self.memory = ConversationMemory()
|
| 15 |
+
# self._initialize_database()
|
| 16 |
+
self._safe_initializer_model()
|
| 17 |
+
|
| 18 |
+
def _safe_initializer_model(self):
|
| 19 |
+
def try_load_model():
|
| 20 |
+
dtype = torch.float16 if "cuda" in self.config.DEVICE else torch.float32
|
| 21 |
+
tokenizer = AutoTokenizer.from_pretrained(self.config.MODEL_NAME)
|
| 22 |
+
model = (
|
| 23 |
+
AutoModelForCausalLM.from_pretrained(
|
| 24 |
+
self.config.MODEL_NAME, trust_remote_code=True, torch_dtype=dtype
|
| 25 |
+
)
|
| 26 |
+
.to(self.config.DEVICE)
|
| 27 |
+
.eval()
|
| 28 |
+
) # eval porque solo se predice
|
| 29 |
+
return tokenizer, model
|
| 30 |
+
|
| 31 |
+
try:
|
| 32 |
+
self.tokenizer, self.model = try_load_model()
|
| 33 |
+
except torch.cuda.OutOfMemoryError:
|
| 34 |
+
# Liberar memoria y volver a intentar
|
| 35 |
+
gc.collect()
|
| 36 |
+
torch.cuda.empty_cache()
|
| 37 |
+
torch.cuda.ipc_collect()
|
| 38 |
+
|
| 39 |
+
self.tokenizer, self.model = try_load_model()
|
| 40 |
+
|
| 41 |
+
def _initialize_database(self):
|
| 42 |
+
self.conn = sqlite3.connect(self.config.DB_PATH)
|
| 43 |
+
# cursor = self.conn.cursor()
|
| 44 |
+
|
| 45 |
+
# # Si la tabla existe, la borramos
|
| 46 |
+
# cursor.execute(f"DROP TABLE IF EXISTS {self.config.TABLE_NAME}")
|
| 47 |
+
# self.conn.commit()
|
| 48 |
+
|
| 49 |
+
# # Cargar todos los datos del CSV en la tabla
|
| 50 |
+
# df = pd.read_csv(self.config.CSV_PATH, low_memory=False)
|
| 51 |
+
# df.to_sql(self.config.TABLE_NAME, self.conn, if_exists="replace", index=False)
|
| 52 |
+
self.schema = self._get_schema_structured()
|
| 53 |
+
|
| 54 |
+
def _get_schema_structured(self) -> Dict:
|
| 55 |
+
if self.memory.schema_cache:
|
| 56 |
+
return self.memory.schema_cache
|
| 57 |
+
cursor = self.conn.cursor()
|
| 58 |
+
cursor.execute(f"PRAGMA table_info({self.config.TABLE_NAME})")
|
| 59 |
+
columns = [
|
| 60 |
+
{"name": column[1], "type": column[2]} for column in cursor.fetchall()
|
| 61 |
+
]
|
| 62 |
+
schema = {"table_name": self.config.TABLE_NAME, "columns": columns}
|
| 63 |
+
self.memory.schema_cache = schema
|
| 64 |
+
return schema
|
| 65 |
+
|
| 66 |
+
def _build_prompt(self, question: str) -> str:
|
| 67 |
+
memory_context = self.memory.get_context(question)
|
| 68 |
+
table_name = self.schema["table_name"]
|
| 69 |
+
|
| 70 |
+
# 1. Detectar tipo de pregunta
|
| 71 |
+
question_type = (
|
| 72 |
+
"PRODUCTOS"
|
| 73 |
+
if "producto" in question.lower()
|
| 74 |
+
else "CLIENTES" if "cliente" in question.lower() else "GENERAL"
|
| 75 |
+
)
|
| 76 |
+
|
| 77 |
+
# 2. Ejemplos dinΓ‘micos
|
| 78 |
+
examples = {
|
| 79 |
+
"PRODUCTOS": (
|
| 80 |
+
"-- P: 'Top 10 productos mΓ‘s vendidos'\n"
|
| 81 |
+
'SELECT "Descripcion", SUM("Cantidad") AS total_vendido\n'
|
| 82 |
+
f'FROM "{table_name}"\n'
|
| 83 |
+
'WHERE "Descripcion" IS NOT NULL\n'
|
| 84 |
+
'GROUP BY "Descripcion"\n'
|
| 85 |
+
"ORDER BY total_vendido DESC\n"
|
| 86 |
+
"LIMIT 10;\n\n"
|
| 87 |
+
"-- P: 'Productos con mayor valor neto'\n"
|
| 88 |
+
'SELECT "Descripcion", SUM("Neto") AS valor_total\n'
|
| 89 |
+
f'FROM "{table_name}"\n'
|
| 90 |
+
'WHERE "Descripcion" IS NOT NULL\n'
|
| 91 |
+
'GROUP BY "Descripcion"\n'
|
| 92 |
+
"ORDER BY valor_total DESC\n"
|
| 93 |
+
"LIMIT 5;"
|
| 94 |
+
),
|
| 95 |
+
"CLIENTES": (
|
| 96 |
+
"-- P: 'Top 5 clientes con mayor valor neto'\n"
|
| 97 |
+
'SELECT "Cliente", SUM("Neto") AS valor_total\n'
|
| 98 |
+
f'FROM "{table_name}"\n'
|
| 99 |
+
"WHERE \"Cliente\" IS NOT NULL AND \"Fecha\" BETWEEN '2025-01-01' AND '2025-12-31'\n"
|
| 100 |
+
'GROUP BY "Cliente"\n'
|
| 101 |
+
"ORDER BY valor_total DESC\n"
|
| 102 |
+
"LIMIT 5;\n\n"
|
| 103 |
+
"-- P: 'Clientes con mΓ‘s compras en marzo'\n"
|
| 104 |
+
'SELECT "Cliente", COUNT(*) AS total_compras\n'
|
| 105 |
+
f'FROM "{table_name}"\n'
|
| 106 |
+
"WHERE \"Cliente\" IS NOT NULL AND strftime('%m', \"Fecha\") = '03'\n"
|
| 107 |
+
'GROUP BY "Cliente"\n'
|
| 108 |
+
"ORDER BY total_compras DESC\n"
|
| 109 |
+
"LIMIT 10;\n\n"
|
| 110 |
+
"-- P: 'Clientes de Guadalajara con mΓ‘s compras'\n"
|
| 111 |
+
'SELECT "Cliente", "Razon Social", COUNT(*) AS total_compras\n'
|
| 112 |
+
f'FROM "{table_name}"\n'
|
| 113 |
+
'WHERE "Cliente" IS NOT NULL AND "Ciudad" = \'Guadalajara\'\n'
|
| 114 |
+
'GROUP BY "Cliente", "Razon Social"\n'
|
| 115 |
+
"ORDER BY total_compras DESC\n"
|
| 116 |
+
"LIMIT 10;"
|
| 117 |
+
),
|
| 118 |
+
"GENERAL": (
|
| 119 |
+
"-- P: 'Ventas totales por mes'\n"
|
| 120 |
+
'SELECT strftime(\'%m\', "Fecha") AS mes, SUM("Neto") AS ventas\n'
|
| 121 |
+
f'FROM "{table_name}"\n'
|
| 122 |
+
"WHERE mes IS NOT NULL\n"
|
| 123 |
+
"GROUP BY mes\n"
|
| 124 |
+
"ORDER BY mes;\n\n"
|
| 125 |
+
"-- P: 'Producto menos vendido en 2025'\n"
|
| 126 |
+
'SELECT "Descripcion", SUM("Cantidad") AS total_vendido\n'
|
| 127 |
+
f'FROM "{table_name}"\n'
|
| 128 |
+
"WHERE \"Descripcion\" IS NOT NULL AND \"Fecha\" BETWEEN '2025-01-01' AND '2025-12-31'\n"
|
| 129 |
+
'GROUP BY "Descripcion"\n'
|
| 130 |
+
"ORDER BY total_vendido ASC\n"
|
| 131 |
+
"LIMIT 1;"
|
| 132 |
+
),
|
| 133 |
+
}
|
| 134 |
+
|
| 135 |
+
# 3. Columnas esenciales
|
| 136 |
+
essential_columns = [
|
| 137 |
+
{
|
| 138 |
+
"name": "Descripcion",
|
| 139 |
+
"type": "TEXT",
|
| 140 |
+
"description": "Nombre del producto",
|
| 141 |
+
},
|
| 142 |
+
{"name": "Cantidad", "type": "REAL", "description": "Unidades vendidas"},
|
| 143 |
+
{"name": "Cliente", "type": "TEXT", "description": "CΓ³digo de cliente"},
|
| 144 |
+
{
|
| 145 |
+
"name": "Razon Social",
|
| 146 |
+
"type": "TEXT",
|
| 147 |
+
"description": "Nombre completo del cliente",
|
| 148 |
+
},
|
| 149 |
+
{"name": "Ciudad", "type": "TEXT", "description": "Ciudad del cliente"},
|
| 150 |
+
{
|
| 151 |
+
"name": "Fecha",
|
| 152 |
+
"type": "TEXT",
|
| 153 |
+
"description": "Fecha de venta (YYYY-MM-DD)",
|
| 154 |
+
},
|
| 155 |
+
{"name": "Neto", "type": "REAL", "description": "Valor neto de la venta"},
|
| 156 |
+
]
|
| 157 |
+
|
| 158 |
+
# 4. Prompt final con nueva regla
|
| 159 |
+
return (
|
| 160 |
+
f"""
|
| 161 |
+
### TAREA ###
|
| 162 |
+
Generar SOLO cΓ³digo SQL para la pregunta, usando EXCLUSIVAMENTE la tabla: "{table_name}"
|
| 163 |
+
|
| 164 |
+
### COLUMNAS RELEVANTES ###
|
| 165 |
+
"""
|
| 166 |
+
+ "\n".join(
|
| 167 |
+
[
|
| 168 |
+
f"- {col['name']} ({col['type']}): {col['description']}"
|
| 169 |
+
for col in essential_columns
|
| 170 |
+
]
|
| 171 |
+
)
|
| 172 |
+
+ f"""
|
| 173 |
+
|
| 174 |
+
### CONTEXTO (Γltimas interacciones) ###
|
| 175 |
+
{memory_context if memory_context else "Sin historial relevante"}
|
| 176 |
+
|
| 177 |
+
### EJEMPLOS ({question_type}) ###
|
| 178 |
+
{examples[question_type]}
|
| 179 |
+
|
| 180 |
+
### REGLAS CRΓTICAS ###
|
| 181 |
+
- Usar siempre nombres exactos de columnas
|
| 182 |
+
- Agrupar por la dimensiΓ³n principal (producto/cliente)
|
| 183 |
+
- Ordenar DESC para 'mΓ‘s/mayor', ASC para 'menos/menor'
|
| 184 |
+
- Usar LIMIT para top N
|
| 185 |
+
- AΓ±o actual: 2025
|
| 186 |
+
- Siempre terminar con un LIMIT = 1 en caso que se indique lo contrario
|
| 187 |
+
- Para 'mΓ‘s vendido' usar SUM("Cantidad"), para 'mayor valor' usar SUM("Neto")
|
| 188 |
+
- Usar "Razon Social" cuando pregunten por el nombre del cliente
|
| 189 |
+
- Usar "Ciudad" para filtrar o agrupar por ubicaciΓ³n
|
| 190 |
+
- Queda estrictamente prohibido usar acentos
|
| 191 |
+
- **Siempre excluir valores nulos con 'IS NOT NULL' en las columnas usadas en WHERE, GROUP BY u ORDER BY**
|
| 192 |
+
|
| 193 |
+
### PREGUNTA ACTUAL ###
|
| 194 |
+
\"\"\"{question}\"\"\"
|
| 195 |
+
|
| 196 |
+
### SQL:
|
| 197 |
+
"""
|
| 198 |
+
)
|
| 199 |
+
|
| 200 |
+
def _clean_sql_output(self, output: str) -> str:
|
| 201 |
+
# Encuentra todas las posibles queries completas que terminen en ;
|
| 202 |
+
sql_matches = list(
|
| 203 |
+
re.finditer(
|
| 204 |
+
r"(SELECT|WITH|INSERT|UPDATE|DELETE)[\s\S]+?;", output, re.IGNORECASE
|
| 205 |
+
)
|
| 206 |
+
)
|
| 207 |
+
|
| 208 |
+
if not sql_matches:
|
| 209 |
+
return None
|
| 210 |
+
|
| 211 |
+
# Tomar la ΓΊltima query encontrada
|
| 212 |
+
sql = sql_matches[-1].group(0).strip()
|
| 213 |
+
|
| 214 |
+
# Seguridad: bloquear queries peligrosas
|
| 215 |
+
if any(
|
| 216 |
+
cmd in sql.upper()
|
| 217 |
+
for cmd in ["DROP", "DELETE", "UPDATE", "INSERT", "ALTER"]
|
| 218 |
+
):
|
| 219 |
+
return None
|
| 220 |
+
|
| 221 |
+
# Asegurar que termine en ;
|
| 222 |
+
if not sql.endswith(";"):
|
| 223 |
+
sql += ";"
|
| 224 |
+
|
| 225 |
+
# ββββββββββββββββββββββββββββββββ
|
| 226 |
+
# 1. Quitar acentos de toda la query
|
| 227 |
+
# ββββββββββββββββββββββββββββββββ
|
| 228 |
+
def remove_accents(text: str) -> str:
|
| 229 |
+
return "".join(
|
| 230 |
+
c
|
| 231 |
+
for c in unicodedata.normalize("NFKD", text)
|
| 232 |
+
if not unicodedata.combining(c)
|
| 233 |
+
)
|
| 234 |
+
|
| 235 |
+
sql = remove_accents(sql)
|
| 236 |
+
|
| 237 |
+
# ββββββββββββββββββββββββββββββββ
|
| 238 |
+
# 2. Agregar LIMIT si no existe
|
| 239 |
+
# ββββββββββββββββββββββββββββββββ
|
| 240 |
+
# Buscar si ya hay un LIMIT en la query
|
| 241 |
+
if not re.search(r"\bLIMIT\s+\d+", sql, re.IGNORECASE):
|
| 242 |
+
# Insertar antes del ΓΊltimo punto y coma
|
| 243 |
+
sql = (
|
| 244 |
+
sql[:-1] + " LIMIT 1;"
|
| 245 |
+
) # puedes cambiar 100 por el valor default que quieras
|
| 246 |
+
|
| 247 |
+
return sql
|
| 248 |
+
|
| 249 |
+
def _execute_sql(self, sql: str):
|
| 250 |
+
try:
|
| 251 |
+
return pd.read_sql_query(sql, self.conn)
|
| 252 |
+
except Exception as e:
|
| 253 |
+
return f"Error de ejecuciΓ³n: {str(e)}"
|
| 254 |
+
|
| 255 |
+
def consult(self, question: str) -> Tuple[str, any]:
|
| 256 |
+
prompt = self._build_prompt(question)
|
| 257 |
+
|
| 258 |
+
tokenized_input = self.tokenizer(
|
| 259 |
+
prompt,
|
| 260 |
+
return_tensors="pt",
|
| 261 |
+
truncation=True,
|
| 262 |
+
max_length=self.config.MAX_TOKENS,
|
| 263 |
+
).to(self.config.DEVICE)
|
| 264 |
+
|
| 265 |
+
# Desactiva el cΓ‘lculo de gradientes -> Siempre poner cuando se haga prediccion
|
| 266 |
+
# - Reduce consumo de memoria
|
| 267 |
+
# - Acelera inferencia
|
| 268 |
+
with torch.no_grad():
|
| 269 |
+
tokenized_output_model = self.model.generate(
|
| 270 |
+
**tokenized_input,
|
| 271 |
+
max_new_tokens=self.config.MAX_NEW_TOKENS,
|
| 272 |
+
temperature=0.2,
|
| 273 |
+
top_p=0.95,
|
| 274 |
+
top_k=50,
|
| 275 |
+
repetition_penalty=1.1,
|
| 276 |
+
do_sample=True,
|
| 277 |
+
pad_token_id=self.tokenizer.eos_token_id,
|
| 278 |
+
)
|
| 279 |
+
|
| 280 |
+
output_model = self.tokenizer.decode(
|
| 281 |
+
tokenized_output_model[0], skip_special_tokens=True
|
| 282 |
+
)
|
| 283 |
+
|
| 284 |
+
sql_query = self._clean_sql_output(output_model)
|
| 285 |
+
|
| 286 |
+
if not sql_query:
|
| 287 |
+
return "Error: No se pudo generar SQL vΓ‘lido" + "\n" + output_model, None
|
| 288 |
+
|
| 289 |
+
result = self._execute_sql(sql_query)
|
| 290 |
+
self.memory.add_interaction(question, sql_query, result)
|
| 291 |
+
|
| 292 |
+
return sql_query, result
|
requirements.txt
CHANGED
|
Binary files a/requirements.txt and b/requirements.txt differ
|
|
|