Spaces:
Build error
Build error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,7 +1,6 @@
|
|
| 1 |
import os
|
| 2 |
import pandas as pd
|
| 3 |
import json
|
| 4 |
-
import ast
|
| 5 |
import gradio as gr
|
| 6 |
from openai import AzureOpenAI
|
| 7 |
from PyPDF2 import PdfReader
|
|
@@ -41,123 +40,250 @@ function refresh() {
|
|
| 41 |
}
|
| 42 |
}
|
| 43 |
"""
|
| 44 |
-
|
| 45 |
# Azure OpenAI setup
|
|
|
|
| 46 |
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("AZURE_OPENAI_ENDPOINT")
|
| 47 |
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY")
|
| 48 |
-
deployment = os.getenv("AZURE_OPENAI_AI_DEPLOYMENT")
|
| 49 |
|
| 50 |
client = AzureOpenAI(
|
| 51 |
api_version="2023-05-15",
|
| 52 |
-
azure_deployment=deployment
|
| 53 |
)
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 55 |
def read_file_metadata(file_path):
|
| 56 |
df = pd.read_csv(file_path)
|
| 57 |
column_names = list(df.columns)
|
| 58 |
-
|
| 59 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 60 |
|
| 61 |
-
|
| 62 |
-
def create_column_mapping_prompt(metadata):
|
| 63 |
prompt = (
|
| 64 |
-
"You are given CSV data from different sources
|
| 65 |
-
"
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 66 |
)
|
| 67 |
-
for i, (file_path, column_names, first_row) in enumerate(metadata):
|
| 68 |
-
prompt += f"Data from {file_path}:\n"
|
| 69 |
-
prompt += f"Column names: {column_names}\n"
|
| 70 |
-
prompt += f"Example row: {first_row}\n\n"
|
| 71 |
-
prompt += "Suggest mappings to standardize the columns across these files. Please return in JSON format."
|
| 72 |
return prompt
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
column_match_prompt = create_column_mapping_prompt(file_metadata)
|
| 77 |
completion = client.chat.completions.create(
|
| 78 |
model="gpt-4o",
|
| 79 |
messages=[{"role": "user", "content": column_match_prompt}],
|
| 80 |
-
temperature=0,
|
| 81 |
response_format={"type": "json_object"},
|
| 82 |
)
|
| 83 |
-
print(completion.choices[0].message.content)
|
| 84 |
-
result_dict = ast.literal_eval(completion.choices[0].message.content)
|
| 85 |
-
return result_dict
|
| 86 |
|
| 87 |
-
|
| 88 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 89 |
file_metadata = []
|
| 90 |
for file_path in file_paths:
|
| 91 |
-
|
| 92 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 93 |
|
| 94 |
-
|
|
|
|
| 95 |
|
| 96 |
all_data = []
|
| 97 |
for file_path in file_paths:
|
| 98 |
-
|
| 99 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 100 |
all_data.append(df)
|
| 101 |
|
|
|
|
|
|
|
|
|
|
| 102 |
final_df = pd.concat(all_data, ignore_index=True)
|
|
|
|
|
|
|
|
|
|
|
|
|
| 103 |
final_df.to_csv("merged_data.csv", index=False)
|
| 104 |
return final_df
|
| 105 |
|
| 106 |
-
# Step 5: Extract text from PDF
|
| 107 |
def extract_text_from_pdf(pdf_path):
|
| 108 |
reader = PdfReader(pdf_path)
|
| 109 |
text = ""
|
| 110 |
for page in reader.pages:
|
| 111 |
-
|
|
|
|
|
|
|
| 112 |
return text
|
| 113 |
|
| 114 |
-
|
| 115 |
-
def map_pdf_to_csv_structure(pdf_path, csv_df):
|
| 116 |
pdf_text = extract_text_from_pdf(pdf_path)
|
| 117 |
column_headers = list(csv_df.columns)
|
| 118 |
-
first_row_data = csv_df.iloc[0].to_dict()
|
| 119 |
-
|
| 120 |
-
prompt = f"""
|
| 121 |
-
Based on the following document text extracted from a government project in Thailand:
|
| 122 |
-
{pdf_text}
|
| 123 |
-
|
| 124 |
-
Please map the information to JSON format using the following structure:
|
| 125 |
-
Column Headers: {column_headers}
|
| 126 |
-
Example Data (from the first row of the CSV): {first_row_data}
|
| 127 |
|
| 128 |
-
|
| 129 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 130 |
|
| 131 |
-
Return only JSON with no additional explanations or modifications.
|
| 132 |
-
"""
|
| 133 |
completion = client.chat.completions.create(
|
| 134 |
model="gpt-4o",
|
| 135 |
messages=[{"role": "user", "content": prompt}],
|
| 136 |
temperature=0,
|
| 137 |
response_format={"type": "json_object"},
|
| 138 |
)
|
| 139 |
-
|
| 140 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 141 |
return new_data_df
|
| 142 |
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 148 |
final_df.to_csv("merged_all_data.csv", index=False)
|
| 149 |
return final_df
|
| 150 |
|
| 151 |
-
#
|
| 152 |
-
|
| 153 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 154 |
return final_df
|
| 155 |
-
|
| 156 |
with open("Frame 1.png", "rb") as logo_file:
|
| 157 |
base64_logo = base64.b64encode(logo_file.read()).decode("utf-8")
|
| 158 |
|
| 159 |
-
#
|
| 160 |
-
|
|
|
|
|
|
|
| 161 |
# Add logo at the top using Base64 HTML
|
| 162 |
with gr.Row():
|
| 163 |
gr.HTML(
|
|
@@ -167,21 +293,33 @@ with gr.Blocks(title="AI Data Transformation (AI can make mistakes)",theme=baset
|
|
| 167 |
<img src="data:image/png;base64,{base64_logo}" alt="Logo" style="width: 150px; height: auto;">
|
| 168 |
</div>
|
| 169 |
<div style="justify-self: center;">
|
| 170 |
-
<h2 style="margin: 0; text-align: center;">AI Data Transformation
|
| 171 |
</div>
|
| 172 |
<div></div>
|
| 173 |
</div>
|
| 174 |
"""
|
| 175 |
)
|
| 176 |
-
# Gradio UI
|
| 177 |
gr.Interface(
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
import os
|
| 2 |
import pandas as pd
|
| 3 |
import json
|
|
|
|
| 4 |
import gradio as gr
|
| 5 |
from openai import AzureOpenAI
|
| 6 |
from PyPDF2 import PdfReader
|
|
|
|
| 40 |
}
|
| 41 |
}
|
| 42 |
"""
|
| 43 |
+
# ===============================
|
| 44 |
# Azure OpenAI setup
|
| 45 |
+
# ===============================
|
| 46 |
os.environ["AZURE_OPENAI_ENDPOINT"] = os.getenv("AZURE_OPENAI_ENDPOINT")
|
| 47 |
os.environ["AZURE_OPENAI_API_KEY"] = os.getenv("AZURE_OPENAI_API_KEY")
|
|
|
|
| 48 |
|
| 49 |
client = AzureOpenAI(
|
| 50 |
api_version="2023-05-15",
|
| 51 |
+
azure_deployment="gpt-4o", # Replace with your actual model deployment name
|
| 52 |
)
|
| 53 |
+
|
| 54 |
+
# ===============================
|
| 55 |
+
# Helper Functions
|
| 56 |
+
# ===============================
|
| 57 |
+
|
| 58 |
+
def parse_field_definitions(field_text):
|
| 59 |
+
"""
|
| 60 |
+
Converts user-entered lines in the format:
|
| 61 |
+
Field Name: Description
|
| 62 |
+
into a dictionary { "Field Name": "Description", ... }.
|
| 63 |
+
Lines without a colon are ignored or added with an empty description.
|
| 64 |
+
"""
|
| 65 |
+
user_fields = {}
|
| 66 |
+
lines = field_text.split("\n")
|
| 67 |
+
for line in lines:
|
| 68 |
+
line = line.strip()
|
| 69 |
+
if not line:
|
| 70 |
+
continue
|
| 71 |
+
if ":" in line:
|
| 72 |
+
# Split on the first colon
|
| 73 |
+
field, description = line.split(":", 1)
|
| 74 |
+
field = field.strip()
|
| 75 |
+
description = description.strip()
|
| 76 |
+
user_fields[field] = description
|
| 77 |
+
else:
|
| 78 |
+
# If no colon is found, treat entire line as a field with an empty description
|
| 79 |
+
user_fields[line] = ""
|
| 80 |
+
return user_fields
|
| 81 |
+
|
| 82 |
def read_file_metadata(file_path):
|
| 83 |
df = pd.read_csv(file_path)
|
| 84 |
column_names = list(df.columns)
|
| 85 |
+
sample_columns = column_names[:2]
|
| 86 |
+
sample_data = df[sample_columns].iloc[0].to_dict() if len(df) > 0 else {}
|
| 87 |
+
return column_names, sample_data
|
| 88 |
+
|
| 89 |
+
def read_excel_metadata(file_path):
|
| 90 |
+
df = pd.read_excel(file_path)
|
| 91 |
+
column_names = list(df.columns)
|
| 92 |
+
sample_columns = column_names[:2]
|
| 93 |
+
sample_data = df[sample_columns].iloc[0].to_dict() if len(df) > 0 else {}
|
| 94 |
+
return column_names, sample_data
|
| 95 |
|
| 96 |
+
def create_column_mapping_prompt(file_metadata, user_fields):
|
|
|
|
| 97 |
prompt = (
|
| 98 |
+
"You are given CSV/Excel data from different sources. The files contain columns with similar content but with different names.\n"
|
| 99 |
+
"The user has provided the following desired fields and their descriptions:\n"
|
| 100 |
+
f"{json.dumps(user_fields, indent=2)}\n\n"
|
| 101 |
+
"For each file, here are the details (showing example data from the first two columns):\n\n"
|
| 102 |
+
)
|
| 103 |
+
for file_path, column_names, sample_data in file_metadata:
|
| 104 |
+
prompt += f"File: {file_path}\n"
|
| 105 |
+
prompt += f"Columns: {column_names}\n"
|
| 106 |
+
prompt += f"Example Data (first two columns): {sample_data}\n\n"
|
| 107 |
+
prompt += (
|
| 108 |
+
"Your task is to map the existing column names from each file to the desired fields provided by the user. "
|
| 109 |
+
"For each desired field, decide which column name in each file best represents it. "
|
| 110 |
+
"If a field cannot be found, map it to an empty string.\n\n"
|
| 111 |
+
"Return the mapping in JSON format with the following structure:\n"
|
| 112 |
+
"{\n"
|
| 113 |
+
' "desired_field1": { "source_file1": "matched_column_name_or_empty", "source_file2": "matched_column_name_or_empty", ... },\n'
|
| 114 |
+
' "desired_field2": { ... },\n'
|
| 115 |
+
" ...\n"
|
| 116 |
+
"}\n\n"
|
| 117 |
+
"Do not include any additional text in your response."
|
| 118 |
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 119 |
return prompt
|
| 120 |
|
| 121 |
+
def get_column_mapping(file_metadata, user_fields):
|
| 122 |
+
column_match_prompt = create_column_mapping_prompt(file_metadata, user_fields)
|
|
|
|
| 123 |
completion = client.chat.completions.create(
|
| 124 |
model="gpt-4o",
|
| 125 |
messages=[{"role": "user", "content": column_match_prompt}],
|
| 126 |
+
temperature=0.1,
|
| 127 |
response_format={"type": "json_object"},
|
| 128 |
)
|
|
|
|
|
|
|
|
|
|
| 129 |
|
| 130 |
+
try:
|
| 131 |
+
response_text = completion.choices[0].message.content.strip()
|
| 132 |
+
result_mapping = json.loads(response_text)
|
| 133 |
+
except Exception as e:
|
| 134 |
+
raise ValueError(
|
| 135 |
+
f"Error parsing LLM response: {e}\n\nResponse:\n{completion.choices[0].message.content}"
|
| 136 |
+
)
|
| 137 |
+
|
| 138 |
+
return result_mapping
|
| 139 |
+
|
| 140 |
+
def merge_files_with_mapping(file_paths, user_fields):
|
| 141 |
file_metadata = []
|
| 142 |
for file_path in file_paths:
|
| 143 |
+
if file_path.lower().endswith('.csv'):
|
| 144 |
+
columns, sample_data = read_file_metadata(file_path)
|
| 145 |
+
elif file_path.lower().endswith(('.xlsx', '.xls')):
|
| 146 |
+
columns, sample_data = read_excel_metadata(file_path)
|
| 147 |
+
else:
|
| 148 |
+
continue
|
| 149 |
+
file_metadata.append((file_path, columns, sample_data))
|
| 150 |
|
| 151 |
+
# Ask the LLM for a column mapping
|
| 152 |
+
mapping = get_column_mapping(file_metadata, user_fields) if file_metadata else {}
|
| 153 |
|
| 154 |
all_data = []
|
| 155 |
for file_path in file_paths:
|
| 156 |
+
if file_path.lower().endswith('.csv'):
|
| 157 |
+
df = pd.read_csv(file_path)
|
| 158 |
+
elif file_path.lower().endswith(('.xlsx', '.xls')):
|
| 159 |
+
df = pd.read_excel(file_path)
|
| 160 |
+
else:
|
| 161 |
+
continue
|
| 162 |
+
|
| 163 |
+
new_columns = {}
|
| 164 |
+
for desired_field, file_mapping in mapping.items():
|
| 165 |
+
source_column = ""
|
| 166 |
+
if file_path in file_mapping:
|
| 167 |
+
source_column = file_mapping[file_path]
|
| 168 |
+
else:
|
| 169 |
+
base_name = os.path.basename(file_path)
|
| 170 |
+
source_column = file_mapping.get(base_name, "")
|
| 171 |
+
|
| 172 |
+
if source_column and source_column in df.columns:
|
| 173 |
+
new_columns[source_column] = desired_field
|
| 174 |
+
|
| 175 |
+
df.rename(columns=new_columns, inplace=True)
|
| 176 |
all_data.append(df)
|
| 177 |
|
| 178 |
+
if not all_data:
|
| 179 |
+
raise ValueError("No valid CSV/Excel files to merge.")
|
| 180 |
+
|
| 181 |
final_df = pd.concat(all_data, ignore_index=True)
|
| 182 |
+
# Only keep columns in the order the user specified
|
| 183 |
+
desired_columns = list(user_fields.keys())
|
| 184 |
+
final_df = final_df.reindex(columns=desired_columns)
|
| 185 |
+
|
| 186 |
final_df.to_csv("merged_data.csv", index=False)
|
| 187 |
return final_df
|
| 188 |
|
|
|
|
| 189 |
def extract_text_from_pdf(pdf_path):
|
| 190 |
reader = PdfReader(pdf_path)
|
| 191 |
text = ""
|
| 192 |
for page in reader.pages:
|
| 193 |
+
page_text = page.extract_text()
|
| 194 |
+
if page_text:
|
| 195 |
+
text += page_text
|
| 196 |
return text
|
| 197 |
|
| 198 |
+
def map_pdf_to_csv_structure(pdf_path, csv_df, user_fields):
|
|
|
|
| 199 |
pdf_text = extract_text_from_pdf(pdf_path)
|
| 200 |
column_headers = list(csv_df.columns)
|
| 201 |
+
first_row_data = csv_df.iloc[0].to_dict() if len(csv_df) > 0 else {}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 202 |
|
| 203 |
+
prompt = (
|
| 204 |
+
f"Based on the following document text extracted from a government project in Thailand:\n{pdf_text}\n\n"
|
| 205 |
+
f"Please map the information to JSON format using the following structure:\n"
|
| 206 |
+
f"Column Headers: {column_headers}\n"
|
| 207 |
+
f"Example Data (from the first row of the CSV): {first_row_data}\n\n"
|
| 208 |
+
"For each column header, extract the corresponding value from the document text. "
|
| 209 |
+
"If a column header is not applicable or data is missing, use an empty string.\n\n"
|
| 210 |
+
"Return only JSON with no additional explanations."
|
| 211 |
+
)
|
| 212 |
|
|
|
|
|
|
|
| 213 |
completion = client.chat.completions.create(
|
| 214 |
model="gpt-4o",
|
| 215 |
messages=[{"role": "user", "content": prompt}],
|
| 216 |
temperature=0,
|
| 217 |
response_format={"type": "json_object"},
|
| 218 |
)
|
| 219 |
+
|
| 220 |
+
try:
|
| 221 |
+
response_text = completion.choices[0].message.content.strip()
|
| 222 |
+
result_dict = json.loads(response_text)
|
| 223 |
+
except Exception as e:
|
| 224 |
+
raise ValueError(
|
| 225 |
+
f"Error parsing LLM response for PDF mapping: {e}\n\nResponse:\n{completion.choices[0].message.content}"
|
| 226 |
+
)
|
| 227 |
+
|
| 228 |
+
if len(result_dict) == 1:
|
| 229 |
+
# If there's only a single top-level key, use its value as data
|
| 230 |
+
only_value = next(iter(result_dict.values()))
|
| 231 |
+
new_data_df = pd.DataFrame(only_value)
|
| 232 |
+
else:
|
| 233 |
+
new_data_df = pd.DataFrame(result_dict)
|
| 234 |
+
|
| 235 |
+
desired_columns = list(user_fields.keys())
|
| 236 |
+
new_data_df = new_data_df.reindex(columns=desired_columns)
|
| 237 |
return new_data_df
|
| 238 |
|
| 239 |
+
def combine_all_data(file_paths, pdf_file, user_fields):
|
| 240 |
+
merged_csv_df = merge_files_with_mapping(file_paths, user_fields)
|
| 241 |
+
|
| 242 |
+
if pdf_file and os.path.exists(pdf_file):
|
| 243 |
+
pdf_data_df = map_pdf_to_csv_structure(pdf_file, merged_csv_df, user_fields)
|
| 244 |
+
final_df = pd.concat([merged_csv_df, pdf_data_df], ignore_index=True)
|
| 245 |
+
else:
|
| 246 |
+
final_df = merged_csv_df
|
| 247 |
+
|
| 248 |
+
desired_columns = list(user_fields.keys())
|
| 249 |
+
final_df = final_df.reindex(columns=desired_columns)
|
| 250 |
+
|
| 251 |
final_df.to_csv("merged_all_data.csv", index=False)
|
| 252 |
return final_df
|
| 253 |
|
| 254 |
+
# ===============================
|
| 255 |
+
# Gradio Interface Function
|
| 256 |
+
# ===============================
|
| 257 |
+
def process_data(files, pdf_file, field_text):
|
| 258 |
+
"""
|
| 259 |
+
Main function for Gradio to handle user inputs:
|
| 260 |
+
- files: list of CSV/Excel files
|
| 261 |
+
- pdf_file: a single PDF file
|
| 262 |
+
- field_text: multiline text with lines in the form: "Field Name: Description"
|
| 263 |
+
"""
|
| 264 |
+
|
| 265 |
+
# Parse the user's desired fields from multiline text
|
| 266 |
+
user_fields = parse_field_definitions(field_text)
|
| 267 |
+
if not user_fields:
|
| 268 |
+
return "No valid fields found. Please use the format:\n\nField Name: Description"
|
| 269 |
+
|
| 270 |
+
file_paths = [f.name for f in files] if files else []
|
| 271 |
+
pdf_path = pdf_file.name if pdf_file is not None else None
|
| 272 |
+
|
| 273 |
+
try:
|
| 274 |
+
final_df = combine_all_data(file_paths, pdf_path, user_fields)
|
| 275 |
+
except Exception as e:
|
| 276 |
+
return f"Error during processing: {e}"
|
| 277 |
+
|
| 278 |
return final_df
|
| 279 |
+
|
| 280 |
with open("Frame 1.png", "rb") as logo_file:
|
| 281 |
base64_logo = base64.b64encode(logo_file.read()).decode("utf-8")
|
| 282 |
|
| 283 |
+
# ===============================
|
| 284 |
+
# Gradio UI
|
| 285 |
+
# ===============================
|
| 286 |
+
with gr.Blocks(theme=basetheme,js=js_func,fill_height=True) as demo:
|
| 287 |
# Add logo at the top using Base64 HTML
|
| 288 |
with gr.Row():
|
| 289 |
gr.HTML(
|
|
|
|
| 293 |
<img src="data:image/png;base64,{base64_logo}" alt="Logo" style="width: 150px; height: auto;">
|
| 294 |
</div>
|
| 295 |
<div style="justify-self: center;">
|
| 296 |
+
<h2 style="margin: 0; text-align: center;">AI Data Transformation with User-Selected Fields</h2>
|
| 297 |
</div>
|
| 298 |
<div></div>
|
| 299 |
</div>
|
| 300 |
"""
|
| 301 |
)
|
|
|
|
| 302 |
gr.Interface(
|
| 303 |
+
fn=process_data,
|
| 304 |
+
inputs=[
|
| 305 |
+
gr.File(label="Upload CSV/Excel files", file_count="multiple",file_types=[".csv", ".xlsx", ".xls"]),
|
| 306 |
+
gr.File(label="Upload PDF file (optional)", file_types=[".pdf"]),
|
| 307 |
+
gr.Textbox(
|
| 308 |
+
label="Desired Fields (one per line, use 'Field Name: Description' format)",
|
| 309 |
+
placeholder="Example:\nName: Full name\nDOB: Date of birth\nAddress: Full address\n",
|
| 310 |
+
lines=6,
|
| 311 |
+
),
|
| 312 |
+
],
|
| 313 |
+
outputs=gr.Dataframe(label="Final Merged Data"),
|
| 314 |
+
description=(
|
| 315 |
+
"Upload one or more CSV/Excel files, optionally a PDF file, and enter your desired fields below. "
|
| 316 |
+
"Type each field on a new line in the format:\n"
|
| 317 |
+
"'Field Name: Description'\n\n"
|
| 318 |
+
"The AI will automatically map and merge columns from your files to these fields, "
|
| 319 |
+
"then optionally extract matching data from the PDF."
|
| 320 |
+
),
|
| 321 |
+
)
|
| 322 |
+
|
| 323 |
+
if __name__ == "__main__":
|
| 324 |
+
# Launch the Gradio app
|
| 325 |
+
demo.launch()
|