Spaces:
Sleeping
Sleeping
IlayMalinyak
commited on
Commit
·
766ed77
1
Parent(s):
47127a2
sanity check
Browse files- tasks/audio.py +8 -8
- tasks/models/frugal_2025-02-01/frugal_kan_features_2.pth +3 -0
- tasks/run.py +86 -5
- tasks/utils/data.py +10 -4
- tasks/utils/data_utils.py +4 -4
- tasks/utils/dfs/train_val.csv +0 -0
- tasks/utils/models.py +67 -6
- tasks/utils/train.py +5 -3
- tasks/utils/transforms.py +73 -6
tasks/audio.py
CHANGED
|
@@ -132,11 +132,11 @@ async def evaluate_audio(request: AudioEvaluationRequest):
|
|
| 132 |
|
| 133 |
return results
|
| 134 |
|
| 135 |
-
if __name__ == "__main__":
|
| 136 |
-
|
| 137 |
-
|
| 138 |
-
|
| 139 |
-
|
| 140 |
-
|
| 141 |
-
#
|
| 142 |
-
|
|
|
|
| 132 |
|
| 133 |
return results
|
| 134 |
|
| 135 |
+
# if __name__ == "__main__":
|
| 136 |
+
# sample_request = AudioEvaluationRequest(
|
| 137 |
+
# dataset_name="rfcx/frugalai", # Replace with actual dataset name
|
| 138 |
+
# test_size=0.2, # Example values
|
| 139 |
+
# test_seed=42
|
| 140 |
+
# )
|
| 141 |
+
# #
|
| 142 |
+
# asyncio.run(evaluate_audio(sample_request))
|
tasks/models/frugal_2025-02-01/frugal_kan_features_2.pth
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:d3fbc9f7a73a40a99863fbbf70e244598d2594e451f01737812b553e354541c2
|
| 3 |
+
size 614523
|
tasks/run.py
CHANGED
|
@@ -2,7 +2,7 @@ from torch.utils.data import DataLoader
|
|
| 2 |
from .utils.data import FFTDataset, SplitDataset
|
| 3 |
from datasets import load_dataset
|
| 4 |
from .utils.train import Trainer, XGBoostTrainer
|
| 5 |
-
from .utils.models import CNNKan, KanEncoder, CNNKanFeaturesEncoder
|
| 6 |
from .utils.data_utils import *
|
| 7 |
from huggingface_hub import login
|
| 8 |
import yaml
|
|
@@ -13,6 +13,42 @@ import pandas as pd
|
|
| 13 |
import seaborn as sns
|
| 14 |
import matplotlib.pyplot as plt
|
| 15 |
from collections import OrderedDict
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 16 |
|
| 17 |
# local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 18 |
current_date = datetime.date.today().strftime("%Y-%m-%d")
|
|
@@ -37,18 +73,62 @@ with open("../logs//token.txt", "r") as f:
|
|
| 37 |
local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 38 |
login(api_key)
|
| 39 |
dataset = load_dataset("rfcx/frugalai", streaming=True)
|
|
|
|
| 40 |
|
| 41 |
-
train_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=True)
|
| 42 |
|
| 43 |
train_dl = DataLoader(train_ds, batch_size=data_args.batch_size, collate_fn=collate_fn)
|
| 44 |
|
| 45 |
-
val_ds = SplitDataset(FFTDataset(dataset["train"]), is_train=False)
|
| 46 |
|
| 47 |
val_dl = DataLoader(val_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
|
| 48 |
|
| 49 |
-
test_ds = FFTDataset(dataset["test"])
|
| 50 |
test_dl = DataLoader(test_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
|
| 51 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 52 |
# data = []
|
| 53 |
#
|
| 54 |
# # Iterate over the dataset
|
|
@@ -92,7 +172,8 @@ test_dl = DataLoader(test_ds,batch_size=data_args.batch_size, collate_fn=collate
|
|
| 92 |
# model = DualEncoder(model_args, model_args_f, conformer_args)
|
| 93 |
# model = FasterKAN([18000,64,64,16,1])
|
| 94 |
# model = CNNKan(model_args, conformer_args, kan_args.get_dict())
|
| 95 |
-
model = CNNKanFeaturesEncoder(
|
|
|
|
| 96 |
# model.kan.speed()
|
| 97 |
# model = KanEncoder(kan_args.get_dict())
|
| 98 |
model = model.to(local_rank)
|
|
|
|
| 2 |
from .utils.data import FFTDataset, SplitDataset
|
| 3 |
from datasets import load_dataset
|
| 4 |
from .utils.train import Trainer, XGBoostTrainer
|
| 5 |
+
from .utils.models import CNNKan, KanEncoder, CNNKanFeaturesEncoder, CNNFeaturesEncoder
|
| 6 |
from .utils.data_utils import *
|
| 7 |
from huggingface_hub import login
|
| 8 |
import yaml
|
|
|
|
| 13 |
import seaborn as sns
|
| 14 |
import matplotlib.pyplot as plt
|
| 15 |
from collections import OrderedDict
|
| 16 |
+
import xgboost as xgb
|
| 17 |
+
from tqdm import tqdm
|
| 18 |
+
from sklearn.metrics import accuracy_score, classification_report, roc_auc_score
|
| 19 |
+
from sklearn.model_selection import train_test_split
|
| 20 |
+
import warnings
|
| 21 |
+
|
| 22 |
+
warnings.filterwarnings("ignore")
|
| 23 |
+
|
| 24 |
+
|
| 25 |
+
|
| 26 |
+
def create_dataframe(ds, save_name='train'):
|
| 27 |
+
try:
|
| 28 |
+
df = pd.read_csv(f"tasks/utils/dfs/{save_name}.csv")
|
| 29 |
+
except FileNotFoundError:
|
| 30 |
+
data = []
|
| 31 |
+
|
| 32 |
+
# Iterate over the dataset
|
| 33 |
+
pbar = tqdm(enumerate(ds))
|
| 34 |
+
for i, batch in pbar:
|
| 35 |
+
label = batch['label']
|
| 36 |
+
features = batch['audio']['features']
|
| 37 |
+
|
| 38 |
+
# Flatten the nested dictionary structure
|
| 39 |
+
feature_dict = {'label': label}
|
| 40 |
+
for k, v in features.items():
|
| 41 |
+
if isinstance(v, dict):
|
| 42 |
+
for sub_k, sub_v in v.items():
|
| 43 |
+
feature_dict[f"{k}_{sub_k}"] = sub_v[0].item() # Aggregate (e.g., mean)
|
| 44 |
+
data.append(feature_dict)
|
| 45 |
+
# Convert to DataFrame
|
| 46 |
+
df = pd.DataFrame(data)
|
| 47 |
+
print(os.getcwd())
|
| 48 |
+
df.to_csv(f"tasks/utils/dfs/{save_name}.csv", index=False)
|
| 49 |
+
X = df.drop(columns=['label'])
|
| 50 |
+
y = df['label']
|
| 51 |
+
return X, y
|
| 52 |
|
| 53 |
# local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 54 |
current_date = datetime.date.today().strftime("%Y-%m-%d")
|
|
|
|
| 73 |
local_rank = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
|
| 74 |
login(api_key)
|
| 75 |
dataset = load_dataset("rfcx/frugalai", streaming=True)
|
| 76 |
+
full_ds = FFTDataset(dataset["train"], features=True)
|
| 77 |
|
| 78 |
+
train_ds = SplitDataset(FFTDataset(dataset["train"], features=True), is_train=True)
|
| 79 |
|
| 80 |
train_dl = DataLoader(train_ds, batch_size=data_args.batch_size, collate_fn=collate_fn)
|
| 81 |
|
| 82 |
+
val_ds = SplitDataset(FFTDataset(dataset["train"], features=True), is_train=False)
|
| 83 |
|
| 84 |
val_dl = DataLoader(val_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
|
| 85 |
|
| 86 |
+
test_ds = FFTDataset(dataset["test"], features=True)
|
| 87 |
test_dl = DataLoader(test_ds,batch_size=data_args.batch_size, collate_fn=collate_fn)
|
| 88 |
|
| 89 |
+
|
| 90 |
+
x,y = create_dataframe(full_ds, save_name='train_val')
|
| 91 |
+
print(x.shape)
|
| 92 |
+
x_train, x_val, y_train, y_val = train_test_split(x, y, test_size=0.2, random_state=42)
|
| 93 |
+
|
| 94 |
+
evals_result = {}
|
| 95 |
+
num_boost_round = 1000 # Set a large number of boosting rounds
|
| 96 |
+
|
| 97 |
+
# Watchlist to monitor performance on train and validation data
|
| 98 |
+
|
| 99 |
+
dtrain = xgb.DMatrix(x_train, label=y_train)
|
| 100 |
+
dval = xgb.DMatrix(x_val, label=y_val)
|
| 101 |
+
watchlist = [(dtrain, 'train'), (dval, 'eval')]
|
| 102 |
+
params = {
|
| 103 |
+
'objective': 'binary:logistic',
|
| 104 |
+
'eval_metric': 'logloss',
|
| 105 |
+
**boost_args.get_dict()
|
| 106 |
+
}
|
| 107 |
+
# Train the model
|
| 108 |
+
xgb_model = xgb.train(
|
| 109 |
+
params,
|
| 110 |
+
dtrain,
|
| 111 |
+
num_boost_round=num_boost_round,
|
| 112 |
+
evals=watchlist,
|
| 113 |
+
early_stopping_rounds=10, # Early stopping after 10 rounds with no improvement
|
| 114 |
+
evals_result=evals_result,
|
| 115 |
+
verbose_eval=False # Show evaluation results for each iteration
|
| 116 |
+
)
|
| 117 |
+
|
| 118 |
+
xgb_pred = xgb_model.predict(dval, output_margin=False) # Take probability of class 1
|
| 119 |
+
# xgb_pred = torch.tensor(xgb_pred, dtype=torch.float32, device=x.device).unsqueeze(1)
|
| 120 |
+
y_pred = (xgb_pred >= 0.5).astype(int)
|
| 121 |
+
|
| 122 |
+
# Get the number of trees in the trained model
|
| 123 |
+
|
| 124 |
+
accuracy = accuracy_score(y_val, y_pred)
|
| 125 |
+
roc_auc = roc_auc_score(y_val, y_pred)
|
| 126 |
+
|
| 127 |
+
print(f'Accuracy: {accuracy:.4f}')
|
| 128 |
+
print(f'ROC AUC Score: {roc_auc:.4f}')
|
| 129 |
+
num_xgb_features = xgb_model.best_iteration + 1
|
| 130 |
+
print(num_xgb_features)
|
| 131 |
+
|
| 132 |
# data = []
|
| 133 |
#
|
| 134 |
# # Iterate over the dataset
|
|
|
|
| 172 |
# model = DualEncoder(model_args, model_args_f, conformer_args)
|
| 173 |
# model = FasterKAN([18000,64,64,16,1])
|
| 174 |
# model = CNNKan(model_args, conformer_args, kan_args.get_dict())
|
| 175 |
+
# model = CNNKanFeaturesEncoder(xgb_model, model_args, kan_args.get_dict())
|
| 176 |
+
model = CNNFeaturesEncoder(xgb_model,model_args)
|
| 177 |
# model.kan.speed()
|
| 178 |
# model = KanEncoder(kan_args.get_dict())
|
| 179 |
model = model.to(local_rank)
|
tasks/utils/data.py
CHANGED
|
@@ -52,11 +52,16 @@ class SplitDataset(IterableDataset):
|
|
| 52 |
|
| 53 |
|
| 54 |
class FFTDataset(IterableDataset):
|
| 55 |
-
def __init__(self, original_dataset,
|
|
|
|
|
|
|
|
|
|
|
|
|
| 56 |
self.dataset = original_dataset
|
| 57 |
self.resampler = T.Resample(orig_freq=orig_sample_rate, new_freq=target_sample_rate)
|
| 58 |
self.target_sample_rate = target_sample_rate
|
| 59 |
self.max_len = max_len
|
|
|
|
| 60 |
|
| 61 |
|
| 62 |
def normalize_audio(self, audio):
|
|
@@ -89,8 +94,10 @@ class FFTDataset(IterableDataset):
|
|
| 89 |
fft_data = fft(audio_data)
|
| 90 |
magnitude = torch.abs(fft_data)
|
| 91 |
phase = torch.angle(fft_data)
|
| 92 |
-
|
| 93 |
-
|
|
|
|
|
|
|
| 94 |
magnitude_centered = fftshift(magnitude)
|
| 95 |
phase_centered = fftshift(phase)
|
| 96 |
# cwt = features['cwt_power']
|
|
@@ -103,7 +110,6 @@ class FFTDataset(IterableDataset):
|
|
| 103 |
# item['audio']['cwt_mag'] = torch.nan_to_num(cwt, 0)
|
| 104 |
item['audio']['array'] = torch.nan_to_num(audio_data, 0)
|
| 105 |
# item['audio']['features'] = features
|
| 106 |
-
item['audio']['features_arr'] = torch.nan_to_num(features_arr, 0)
|
| 107 |
yield item
|
| 108 |
|
| 109 |
|
|
|
|
| 52 |
|
| 53 |
|
| 54 |
class FFTDataset(IterableDataset):
|
| 55 |
+
def __init__(self, original_dataset,
|
| 56 |
+
max_len=72000,
|
| 57 |
+
orig_sample_rate=12000,
|
| 58 |
+
target_sample_rate=3000,
|
| 59 |
+
features=False):
|
| 60 |
self.dataset = original_dataset
|
| 61 |
self.resampler = T.Resample(orig_freq=orig_sample_rate, new_freq=target_sample_rate)
|
| 62 |
self.target_sample_rate = target_sample_rate
|
| 63 |
self.max_len = max_len
|
| 64 |
+
self.features = features
|
| 65 |
|
| 66 |
|
| 67 |
def normalize_audio(self, audio):
|
|
|
|
| 94 |
fft_data = fft(audio_data)
|
| 95 |
magnitude = torch.abs(fft_data)
|
| 96 |
phase = torch.angle(fft_data)
|
| 97 |
+
if self.features:
|
| 98 |
+
features = compute_all_features(audio_data, sample_rate=self.target_sample_rate)
|
| 99 |
+
# features_arr = torch.tensor([v for _, v in features['frequency_domain'].items()])
|
| 100 |
+
item['audio']['features'] = features
|
| 101 |
magnitude_centered = fftshift(magnitude)
|
| 102 |
phase_centered = fftshift(phase)
|
| 103 |
# cwt = features['cwt_power']
|
|
|
|
| 110 |
# item['audio']['cwt_mag'] = torch.nan_to_num(cwt, 0)
|
| 111 |
item['audio']['array'] = torch.nan_to_num(audio_data, 0)
|
| 112 |
# item['audio']['features'] = features
|
|
|
|
| 113 |
yield item
|
| 114 |
|
| 115 |
|
tasks/utils/data_utils.py
CHANGED
|
@@ -5,10 +5,10 @@ from torch.nn.utils.rnn import pad_sequence
|
|
| 5 |
|
| 6 |
def collate_fn(batch):
|
| 7 |
# Extract audio arrays and FFT data from the batch of dictionaries
|
| 8 |
-
audio_arrays = [
|
| 9 |
-
fft_arrays = [
|
| 10 |
# cwt_arrays = [torch.tensor(item['audio']['cwt_mag']) for item in batch]
|
| 11 |
-
|
| 12 |
# features_arr = torch.stack([item['audio']['features_arr'] for item in batch])
|
| 13 |
labels = [torch.tensor(item['label']) for item in batch]
|
| 14 |
|
|
@@ -22,7 +22,7 @@ def collate_fn(batch):
|
|
| 22 |
'audio': {
|
| 23 |
'array': padded_audio,
|
| 24 |
'fft_mag': padded_fft,
|
| 25 |
-
|
| 26 |
# 'features_arr': features_arr,
|
| 27 |
# 'cwt_mag': padded_cwt,
|
| 28 |
},
|
|
|
|
| 5 |
|
| 6 |
def collate_fn(batch):
|
| 7 |
# Extract audio arrays and FFT data from the batch of dictionaries
|
| 8 |
+
audio_arrays = [item['audio']['array'] for item in batch]
|
| 9 |
+
fft_arrays = [item['audio']['fft_mag'] for item in batch]
|
| 10 |
# cwt_arrays = [torch.tensor(item['audio']['cwt_mag']) for item in batch]
|
| 11 |
+
features = [item['audio']['features'] for item in batch]
|
| 12 |
# features_arr = torch.stack([item['audio']['features_arr'] for item in batch])
|
| 13 |
labels = [torch.tensor(item['label']) for item in batch]
|
| 14 |
|
|
|
|
| 22 |
'audio': {
|
| 23 |
'array': padded_audio,
|
| 24 |
'fft_mag': padded_fft,
|
| 25 |
+
'features': features,
|
| 26 |
# 'features_arr': features_arr,
|
| 27 |
# 'cwt_mag': padded_cwt,
|
| 28 |
},
|
tasks/utils/dfs/train_val.csv
ADDED
|
The diff for this file is too large to render.
See raw diff
|
|
|
tasks/utils/models.py
CHANGED
|
@@ -3,6 +3,10 @@ import torch.nn as nn
|
|
| 3 |
from .Modules.conformer import ConformerEncoder, ConformerDecoder
|
| 4 |
from .Modules.mhsa_pro import RotaryEmbedding, ContinuousRotaryEmbedding
|
| 5 |
from .kan.fasterkan import FasterKAN
|
|
|
|
|
|
|
|
|
|
|
|
|
| 6 |
|
| 7 |
|
| 8 |
class Sine(nn.Module):
|
|
@@ -161,6 +165,46 @@ class DualEncoder(nn.Module):
|
|
| 161 |
logits = torch.cat([x1, x2], dim=-1)
|
| 162 |
return self.regressor(logits).squeeze()
|
| 163 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 164 |
class CNNKan(nn.Module):
|
| 165 |
def __init__(self, args, conformer_args, kan_args):
|
| 166 |
super().__init__()
|
|
@@ -173,18 +217,35 @@ class CNNKan(nn.Module):
|
|
| 173 |
return self.kan(x)
|
| 174 |
|
| 175 |
class CNNKanFeaturesEncoder(nn.Module):
|
| 176 |
-
def __init__(self,
|
| 177 |
super().__init__()
|
|
|
|
|
|
|
| 178 |
self.backbone = CNNEncoder(args)
|
| 179 |
-
self.
|
| 180 |
-
kan_args['layers_hidden'][0] += self.mlp.output_dim
|
| 181 |
self.kan = FasterKAN(**kan_args)
|
| 182 |
|
| 183 |
-
def
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 184 |
x = self.backbone(x)
|
| 185 |
x = x.mean(dim=1)
|
| 186 |
-
|
| 187 |
-
|
|
|
|
|
|
|
|
|
|
| 188 |
return self.kan(x_f)
|
| 189 |
|
| 190 |
class KanEncoder(nn.Module):
|
|
|
|
| 3 |
from .Modules.conformer import ConformerEncoder, ConformerDecoder
|
| 4 |
from .Modules.mhsa_pro import RotaryEmbedding, ContinuousRotaryEmbedding
|
| 5 |
from .kan.fasterkan import FasterKAN
|
| 6 |
+
import numpy as np
|
| 7 |
+
import xgboost as xgb
|
| 8 |
+
import pandas as pd
|
| 9 |
+
|
| 10 |
|
| 11 |
|
| 12 |
class Sine(nn.Module):
|
|
|
|
| 165 |
logits = torch.cat([x1, x2], dim=-1)
|
| 166 |
return self.regressor(logits).squeeze()
|
| 167 |
|
| 168 |
+
class CNNFeaturesEncoder(nn.Module):
|
| 169 |
+
def __init__(self, xgb_model, args, mlp_hidden=64):
|
| 170 |
+
super().__init__()
|
| 171 |
+
self.xgb_model = xgb_model
|
| 172 |
+
self.best_xgb_features = xgb_model.best_iteration + 1
|
| 173 |
+
self.backbone = CNNEncoder(args)
|
| 174 |
+
self.total_features = self.best_xgb_features + args.encoder_dims[-1]
|
| 175 |
+
self.mlp = nn.Sequential(
|
| 176 |
+
nn.Linear(self.total_features, mlp_hidden),
|
| 177 |
+
nn.BatchNorm1d(mlp_hidden),
|
| 178 |
+
nn.SiLU(),
|
| 179 |
+
nn.Linear(mlp_hidden, mlp_hidden),
|
| 180 |
+
nn.BatchNorm1d(mlp_hidden),
|
| 181 |
+
nn.SiLU(),
|
| 182 |
+
nn.Linear(mlp_hidden, 1),
|
| 183 |
+
)
|
| 184 |
+
|
| 185 |
+
def _create_features_data(self, features):
|
| 186 |
+
# Handle batch processing
|
| 187 |
+
batch_size = len(features)
|
| 188 |
+
data = []
|
| 189 |
+
|
| 190 |
+
# Iterate through each item in the batch
|
| 191 |
+
for batch_idx in range(batch_size):
|
| 192 |
+
feature_dict = {}
|
| 193 |
+
for k, v in features[batch_idx].items():
|
| 194 |
+
feature_dict[f"frequency_domain_{k}"] = v[0].item()
|
| 195 |
+
data.append(feature_dict)
|
| 196 |
+
|
| 197 |
+
return pd.DataFrame(data)
|
| 198 |
+
def forward(self, x: torch.Tensor, f) -> torch.Tensor:
|
| 199 |
+
x = self.backbone(x)
|
| 200 |
+
x = x.mean(dim=-1)
|
| 201 |
+
f_np = self._create_features_data(f)
|
| 202 |
+
dtest = xgb.DMatrix(f_np) # Convert input to DMatrix
|
| 203 |
+
xgb_features = self.xgb_model.predict(dtest, pred_leaf=True).astype(np.float32)
|
| 204 |
+
xgb_features = torch.tensor(xgb_features, dtype=torch.float32, device=x.device)
|
| 205 |
+
x_f = torch.cat([x, xgb_features[:, :self.best_xgb_features]], dim=1)
|
| 206 |
+
return self.mlp(x_f)
|
| 207 |
+
|
| 208 |
class CNNKan(nn.Module):
|
| 209 |
def __init__(self, args, conformer_args, kan_args):
|
| 210 |
super().__init__()
|
|
|
|
| 217 |
return self.kan(x)
|
| 218 |
|
| 219 |
class CNNKanFeaturesEncoder(nn.Module):
|
| 220 |
+
def __init__(self, xgb_model, args, kan_args):
|
| 221 |
super().__init__()
|
| 222 |
+
self.xgb_model = xgb_model
|
| 223 |
+
self.best_xgb_features = xgb_model.best_iteration + 1
|
| 224 |
self.backbone = CNNEncoder(args)
|
| 225 |
+
kan_args['layers_hidden'][0] += self.best_xgb_features
|
|
|
|
| 226 |
self.kan = FasterKAN(**kan_args)
|
| 227 |
|
| 228 |
+
def _create_features_data(self, features):
|
| 229 |
+
# Handle batch processing
|
| 230 |
+
batch_size = len(features)
|
| 231 |
+
data = []
|
| 232 |
+
|
| 233 |
+
# Iterate through each item in the batch
|
| 234 |
+
for batch_idx in range(batch_size):
|
| 235 |
+
feature_dict = {}
|
| 236 |
+
for k, v in features[batch_idx].items():
|
| 237 |
+
feature_dict[f"frequency_domain_{k}"] = v[0].item()
|
| 238 |
+
data.append(feature_dict)
|
| 239 |
+
|
| 240 |
+
return pd.DataFrame(data)
|
| 241 |
+
def forward(self, x: torch.Tensor, f) -> torch.Tensor:
|
| 242 |
x = self.backbone(x)
|
| 243 |
x = x.mean(dim=1)
|
| 244 |
+
f_np = self._create_features_data(f)
|
| 245 |
+
dtest = xgb.DMatrix(f_np) # Convert input to DMatrix
|
| 246 |
+
xgb_features = self.xgb_model.predict(dtest, pred_leaf=True).astype(np.float32)
|
| 247 |
+
xgb_features = torch.tensor(xgb_features, dtype=torch.float32, device=x.device)
|
| 248 |
+
x_f = torch.cat([x, xgb_features[:, :self.best_xgb_features]], dim=1)
|
| 249 |
return self.kan(x_f)
|
| 250 |
|
| 251 |
class KanEncoder(nn.Module):
|
tasks/utils/train.py
CHANGED
|
@@ -226,14 +226,14 @@ class Trainer(object):
|
|
| 226 |
|
| 227 |
def train_batch(self, batch, batch_idx, device):
|
| 228 |
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
|
| 229 |
-
|
| 230 |
# cwt = batch['audio']['cwt_mag']
|
| 231 |
x = x.to(device).float()
|
| 232 |
fft = fft.to(device).float()
|
| 233 |
# cwt = cwt.to(device).float()
|
| 234 |
y = y.to(device).float()
|
| 235 |
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
|
| 236 |
-
y_pred = self.model(x_fft).squeeze()
|
| 237 |
loss = self.criterion(y_pred, y)
|
| 238 |
loss.backward()
|
| 239 |
self.optimizer.step()
|
|
@@ -267,13 +267,15 @@ class Trainer(object):
|
|
| 267 |
|
| 268 |
def eval_batch(self, batch, batch_idx, device):
|
| 269 |
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
|
|
|
|
|
|
|
| 270 |
# features = batch['audio']['features_arr'].to(device).float()
|
| 271 |
x = x.to(device).float()
|
| 272 |
fft = fft.to(device).float()
|
| 273 |
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
|
| 274 |
y = y.to(device).float()
|
| 275 |
with torch.no_grad():
|
| 276 |
-
y_pred = self.model(x_fft).squeeze()
|
| 277 |
loss = self.criterion(y_pred.squeeze(), y)
|
| 278 |
probs = torch.sigmoid(y_pred)
|
| 279 |
cls_pred = (probs > 0.5).float()
|
|
|
|
| 226 |
|
| 227 |
def train_batch(self, batch, batch_idx, device):
|
| 228 |
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
|
| 229 |
+
features = batch['audio']['features']
|
| 230 |
# cwt = batch['audio']['cwt_mag']
|
| 231 |
x = x.to(device).float()
|
| 232 |
fft = fft.to(device).float()
|
| 233 |
# cwt = cwt.to(device).float()
|
| 234 |
y = y.to(device).float()
|
| 235 |
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
|
| 236 |
+
y_pred = self.model(x_fft, features).squeeze()
|
| 237 |
loss = self.criterion(y_pred, y)
|
| 238 |
loss.backward()
|
| 239 |
self.optimizer.step()
|
|
|
|
| 267 |
|
| 268 |
def eval_batch(self, batch, batch_idx, device):
|
| 269 |
x, fft, y = batch['audio']['array'], batch['audio']['fft_mag'], batch['label']
|
| 270 |
+
features = batch['audio']['features']
|
| 271 |
+
|
| 272 |
# features = batch['audio']['features_arr'].to(device).float()
|
| 273 |
x = x.to(device).float()
|
| 274 |
fft = fft.to(device).float()
|
| 275 |
x_fft = torch.cat((x.unsqueeze(dim=1), fft.unsqueeze(dim=1)), dim=1)
|
| 276 |
y = y.to(device).float()
|
| 277 |
with torch.no_grad():
|
| 278 |
+
y_pred = self.model(x_fft, features).squeeze()
|
| 279 |
loss = self.criterion(y_pred.squeeze(), y)
|
| 280 |
probs = torch.sigmoid(y_pred)
|
| 281 |
cls_pred = (probs > 0.5).float()
|
tasks/utils/transforms.py
CHANGED
|
@@ -156,7 +156,6 @@ def compute_time_domain_features(audio, sample_rate, frame_length=2048, hop_leng
|
|
| 156 |
|
| 157 |
return features
|
| 158 |
|
| 159 |
-
|
| 160 |
def compute_frequency_domain_features(audio, sample_rate, n_fft=2048, hop_length=512):
|
| 161 |
"""
|
| 162 |
Compute frequency-domain features from audio signal.
|
|
@@ -175,7 +174,6 @@ def compute_frequency_domain_features(audio, sample_rate, n_fft=2048, hop_length
|
|
| 175 |
sr=sample_rate,
|
| 176 |
n_fft=n_fft,
|
| 177 |
hop_length=hop_length,
|
| 178 |
-
|
| 179 |
)
|
| 180 |
features['spectral_centroid'] = torch.FloatTensor([spectral_centroids.max()])
|
| 181 |
except Exception as e:
|
|
@@ -188,7 +186,6 @@ def compute_frequency_domain_features(audio, sample_rate, n_fft=2048, hop_length
|
|
| 188 |
sr=sample_rate,
|
| 189 |
n_fft=n_fft,
|
| 190 |
hop_length=hop_length,
|
| 191 |
-
|
| 192 |
)
|
| 193 |
features['spectral_rolloff'] = torch.FloatTensor([spectral_rolloff.max()])
|
| 194 |
except Exception as e:
|
|
@@ -205,6 +202,7 @@ def compute_frequency_domain_features(audio, sample_rate, n_fft=2048, hop_length
|
|
| 205 |
features['spectral_bandwidth'] = torch.FloatTensor([spectral_bandwidth.max()])
|
| 206 |
except Exception as e:
|
| 207 |
features['spectral_bandwidth'] = torch.FloatTensor([np.nan])
|
|
|
|
| 208 |
# 4. Spectral Contrast
|
| 209 |
try:
|
| 210 |
spectral_contrast = librosa.feature.spectral_contrast(
|
|
@@ -240,6 +238,77 @@ def compute_frequency_domain_features(audio, sample_rate, n_fft=2048, hop_length
|
|
| 240 |
except Exception as e:
|
| 241 |
features['spectral_flux'] = torch.FloatTensor([np.nan])
|
| 242 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 243 |
return features
|
| 244 |
|
| 245 |
|
|
@@ -267,6 +336,4 @@ def compute_all_features(audio, sample_rate, wavelet='db1', decompos_level=4):
|
|
| 267 |
# features['time_domain'] = compute_time_domain_features(audio, sample_rate)
|
| 268 |
|
| 269 |
# Frequency domain features
|
| 270 |
-
|
| 271 |
-
|
| 272 |
-
return features
|
|
|
|
| 156 |
|
| 157 |
return features
|
| 158 |
|
|
|
|
| 159 |
def compute_frequency_domain_features(audio, sample_rate, n_fft=2048, hop_length=512):
|
| 160 |
"""
|
| 161 |
Compute frequency-domain features from audio signal.
|
|
|
|
| 174 |
sr=sample_rate,
|
| 175 |
n_fft=n_fft,
|
| 176 |
hop_length=hop_length,
|
|
|
|
| 177 |
)
|
| 178 |
features['spectral_centroid'] = torch.FloatTensor([spectral_centroids.max()])
|
| 179 |
except Exception as e:
|
|
|
|
| 186 |
sr=sample_rate,
|
| 187 |
n_fft=n_fft,
|
| 188 |
hop_length=hop_length,
|
|
|
|
| 189 |
)
|
| 190 |
features['spectral_rolloff'] = torch.FloatTensor([spectral_rolloff.max()])
|
| 191 |
except Exception as e:
|
|
|
|
| 202 |
features['spectral_bandwidth'] = torch.FloatTensor([spectral_bandwidth.max()])
|
| 203 |
except Exception as e:
|
| 204 |
features['spectral_bandwidth'] = torch.FloatTensor([np.nan])
|
| 205 |
+
|
| 206 |
# 4. Spectral Contrast
|
| 207 |
try:
|
| 208 |
spectral_contrast = librosa.feature.spectral_contrast(
|
|
|
|
| 238 |
except Exception as e:
|
| 239 |
features['spectral_flux'] = torch.FloatTensor([np.nan])
|
| 240 |
|
| 241 |
+
# 7. MFCCs (Mel-Frequency Cepstral Coefficients)
|
| 242 |
+
try:
|
| 243 |
+
mfccs = librosa.feature.mfcc(
|
| 244 |
+
y=audio_np,
|
| 245 |
+
sr=sample_rate,
|
| 246 |
+
n_mfcc=13, # Number of MFCCs to compute
|
| 247 |
+
n_fft=n_fft,
|
| 248 |
+
hop_length=hop_length
|
| 249 |
+
)
|
| 250 |
+
features['mfcc_mean'] = torch.FloatTensor([mfccs.mean()])
|
| 251 |
+
except Exception as e:
|
| 252 |
+
features['mfcc_mean'] = torch.FloatTensor([np.nan])
|
| 253 |
+
|
| 254 |
+
# 8. Chroma Features
|
| 255 |
+
try:
|
| 256 |
+
chroma = librosa.feature.chroma_stft(
|
| 257 |
+
y=audio_np,
|
| 258 |
+
sr=sample_rate,
|
| 259 |
+
n_fft=n_fft,
|
| 260 |
+
hop_length=hop_length
|
| 261 |
+
)
|
| 262 |
+
features['chroma_mean'] = torch.FloatTensor([chroma.mean()])
|
| 263 |
+
except Exception as e:
|
| 264 |
+
features['chroma_mean'] = torch.FloatTensor([np.nan])
|
| 265 |
+
|
| 266 |
+
# 9. Spectral Kurtosis
|
| 267 |
+
try:
|
| 268 |
+
spectral_kurtosis = librosa.feature.spectral_kurtosis(
|
| 269 |
+
y=audio_np,
|
| 270 |
+
sr=sample_rate,
|
| 271 |
+
n_fft=n_fft,
|
| 272 |
+
hop_length=hop_length
|
| 273 |
+
)
|
| 274 |
+
features['spectral_kurtosis'] = torch.FloatTensor([spectral_kurtosis.mean()])
|
| 275 |
+
except Exception as e:
|
| 276 |
+
features['spectral_kurtosis'] = torch.FloatTensor([np.nan])
|
| 277 |
+
|
| 278 |
+
# 10. Spectral Skewness
|
| 279 |
+
try:
|
| 280 |
+
spectral_skewness = librosa.feature.spectral_skewness(
|
| 281 |
+
y=audio_np,
|
| 282 |
+
sr=sample_rate,
|
| 283 |
+
n_fft=n_fft,
|
| 284 |
+
hop_length=hop_length
|
| 285 |
+
)
|
| 286 |
+
features['spectral_skewness'] = torch.FloatTensor([spectral_skewness.mean()])
|
| 287 |
+
except Exception as e:
|
| 288 |
+
features['spectral_skewness'] = torch.FloatTensor([np.nan])
|
| 289 |
+
|
| 290 |
+
# 11. Spectral Slope
|
| 291 |
+
try:
|
| 292 |
+
spectral_slope = librosa.feature.spectral_slope(
|
| 293 |
+
y=audio_np,
|
| 294 |
+
sr=sample_rate,
|
| 295 |
+
n_fft=n_fft,
|
| 296 |
+
hop_length=hop_length
|
| 297 |
+
)
|
| 298 |
+
features['spectral_slope'] = torch.FloatTensor([spectral_slope.mean()])
|
| 299 |
+
except Exception as e:
|
| 300 |
+
features['spectral_slope'] = torch.FloatTensor([np.nan])
|
| 301 |
+
|
| 302 |
+
# 12. Tonnetz (Tonal Centroid Features)
|
| 303 |
+
try:
|
| 304 |
+
tonnetz = librosa.feature.tonnetz(
|
| 305 |
+
y=audio_np,
|
| 306 |
+
sr=sample_rate
|
| 307 |
+
)
|
| 308 |
+
features['tonnetz_mean'] = torch.FloatTensor([tonnetz.mean()])
|
| 309 |
+
except Exception as e:
|
| 310 |
+
features['tonnetz_mean'] = torch.FloatTensor([np.nan])
|
| 311 |
+
|
| 312 |
return features
|
| 313 |
|
| 314 |
|
|
|
|
| 336 |
# features['time_domain'] = compute_time_domain_features(audio, sample_rate)
|
| 337 |
|
| 338 |
# Frequency domain features
|
| 339 |
+
return compute_frequency_domain_features(audio, sample_rate)
|
|
|
|
|
|