Spaces:
Paused
Paused
add vllm
Browse files
app.py
CHANGED
|
@@ -53,6 +53,7 @@ def initialize_llm():
|
|
| 53 |
print("LLM initialization failed:", e)
|
| 54 |
return None
|
| 55 |
|
|
|
|
| 56 |
llm = initialize_llm()
|
| 57 |
|
| 58 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
@@ -67,68 +68,77 @@ def infer(image_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
|
| 67 |
if llm is None:
|
| 68 |
return "Error: LLM initialization failed. Please try again later."
|
| 69 |
|
| 70 |
-
|
| 71 |
-
|
| 72 |
-
|
|
|
|
| 73 |
|
| 74 |
-
|
| 75 |
-
|
| 76 |
-
|
| 77 |
-
|
| 78 |
-
|
| 79 |
-
|
| 80 |
|
| 81 |
-
|
| 82 |
|
| 83 |
-
|
|
|
|
|
|
|
| 84 |
|
| 85 |
@spaces.GPU()
|
| 86 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 87 |
if llm is None:
|
| 88 |
return "Error: LLM initialization failed. Please try again later."
|
| 89 |
|
| 90 |
-
|
| 91 |
-
|
| 92 |
-
|
| 93 |
-
|
| 94 |
-
|
| 95 |
-
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
|
|
|
|
|
|
|
|
|
| 111 |
|
| 112 |
@spaces.GPU()
|
| 113 |
def calculate_image_similarity(image1_url, image2_url):
|
| 114 |
if llm is None:
|
| 115 |
return "Error: LLM initialization failed. Please try again later."
|
| 116 |
|
| 117 |
-
|
| 118 |
-
|
| 119 |
-
|
| 120 |
-
|
|
|
|
| 121 |
|
| 122 |
-
|
| 123 |
-
|
| 124 |
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
|
| 129 |
-
|
| 130 |
|
| 131 |
-
|
|
|
|
|
|
|
| 132 |
|
| 133 |
with gr.Blocks() as demo:
|
| 134 |
gr.Markdown(title)
|
|
|
|
| 53 |
print("LLM initialization failed:", e)
|
| 54 |
return None
|
| 55 |
|
| 56 |
+
sampling_params = SamplingParams(max_tokens=8192)
|
| 57 |
llm = initialize_llm()
|
| 58 |
|
| 59 |
def encode_image(image: Image.Image, image_format="PNG") -> str:
|
|
|
|
| 68 |
if llm is None:
|
| 69 |
return "Error: LLM initialization failed. Please try again later."
|
| 70 |
|
| 71 |
+
try:
|
| 72 |
+
image = Image.open(BytesIO(requests.get(image_url).content))
|
| 73 |
+
image = image.resize((3844, 2408))
|
| 74 |
+
new_image_url = f"data:image/png;base64,{encode_image(image, image_format='PNG')}"
|
| 75 |
|
| 76 |
+
messages = [
|
| 77 |
+
{
|
| 78 |
+
"role": "user",
|
| 79 |
+
"content": [{"type": "text", "text": prompt}, {"type": "image_url", "image_url": {"url": new_image_url}}]
|
| 80 |
+
},
|
| 81 |
+
]
|
| 82 |
|
| 83 |
+
outputs = llm.chat(messages, sampling_params=sampling_params)
|
| 84 |
|
| 85 |
+
return outputs[0].outputs[0].text
|
| 86 |
+
except Exception as e:
|
| 87 |
+
return f"Error during inference: {e}"
|
| 88 |
|
| 89 |
@spaces.GPU()
|
| 90 |
def compare_images(image1_url, image2_url, prompt, progress=gr.Progress(track_tqdm=True)):
|
| 91 |
if llm is None:
|
| 92 |
return "Error: LLM initialization failed. Please try again later."
|
| 93 |
|
| 94 |
+
try:
|
| 95 |
+
image1 = Image.open(BytesIO(requests.get(image1_url).content))
|
| 96 |
+
image2 = Image.open(BytesIO(requests.get(image2_url).content))
|
| 97 |
+
image1 = image1.resize((3844, 2408))
|
| 98 |
+
image2 = image2.resize((3844, 2408))
|
| 99 |
+
new_image1_url = f"data:image/png;base64,{encode_image(image1, image_format='PNG')}"
|
| 100 |
+
new_image2_url = f"data:image/png;base64,{encode_image(image2, image_format='PNG')}"
|
| 101 |
+
|
| 102 |
+
messages = [
|
| 103 |
+
{
|
| 104 |
+
"role": "user",
|
| 105 |
+
"content": [
|
| 106 |
+
{"type": "text", "text": prompt},
|
| 107 |
+
{"type": "image_url", "image_url": {"url": new_image1_url}},
|
| 108 |
+
{"type": "image_url", "image_url": {"url": new_image2_url}}
|
| 109 |
+
]
|
| 110 |
+
},
|
| 111 |
+
]
|
| 112 |
+
|
| 113 |
+
outputs = llm.chat(messages, sampling_params=sampling_params)
|
| 114 |
+
|
| 115 |
+
return outputs[0].outputs[0].text
|
| 116 |
+
except Exception as e:
|
| 117 |
+
return f"Error during image comparison: {e}"
|
| 118 |
|
| 119 |
@spaces.GPU()
|
| 120 |
def calculate_image_similarity(image1_url, image2_url):
|
| 121 |
if llm is None:
|
| 122 |
return "Error: LLM initialization failed. Please try again later."
|
| 123 |
|
| 124 |
+
try:
|
| 125 |
+
image1 = Image.open(BytesIO(requests.get(image1_url).content)).convert('RGB')
|
| 126 |
+
image2 = Image.open(BytesIO(requests.get(image2_url).content)).convert('RGB')
|
| 127 |
+
image1 = image1.resize((224, 224)) # Resize to match model input size
|
| 128 |
+
image2 = image2.resize((224, 224))
|
| 129 |
|
| 130 |
+
image1_tensor = torch.tensor(list(image1.getdata())).view(1, 3, 224, 224).float() / 255.0
|
| 131 |
+
image2_tensor = torch.tensor(list(image2.getdata())).view(1, 3, 224, 224).float() / 255.0
|
| 132 |
|
| 133 |
+
with torch.no_grad():
|
| 134 |
+
embedding1 = llm.model.vision_encoder([image1_tensor])
|
| 135 |
+
embedding2 = llm.model.vision_encoder([image2_tensor])
|
| 136 |
|
| 137 |
+
similarity = F.cosine_similarity(embedding1.mean(dim=0), embedding2.mean(dim=0), dim=0).item()
|
| 138 |
|
| 139 |
+
return similarity
|
| 140 |
+
except Exception as e:
|
| 141 |
+
return f"Error during image similarity calculation: {e}"
|
| 142 |
|
| 143 |
with gr.Blocks() as demo:
|
| 144 |
gr.Markdown(title)
|