Ziad Meligy commited on
Commit
eb8805a
·
1 Parent(s): e024132

Pushing deployment to space

Browse files
CNN_encoder.py ADDED
@@ -0,0 +1,70 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import torch
2
+ import torch.nn as nn
3
+ import numpy as np
4
+ from utility import load_model,get_layers
5
+ import tensorflow as tf
6
+ from tensorflow.keras.models import Model # type: ignore
7
+ import sys
8
+
9
+
10
+ class CNN_Encoder(nn.Module):
11
+ def __init__(self,model_path,model_name,pop_conv_layers,encoder_layers,tags_threshold,tags_embeddings=None,finetune_visual_model=False,num_tags=105):
12
+ super(CNN_Encoder,self).__init__()
13
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
14
+ if tags_embeddings is not None:
15
+ # Initialize embeddings and move them to the device
16
+ self.tags_embeddings = nn.Parameter(torch.tensor(tags_embeddings, dtype=torch.float32).to(self.device), requires_grad=True)
17
+ else:
18
+ # Initialize embeddings with ones and move them to the device
19
+ self.tags_embeddings = nn.Parameter(torch.ones((num_tags, 400), dtype=torch.float32).to(self.device), requires_grad=True)
20
+
21
+
22
+ self.tags_threshold=tags_threshold
23
+ # visual_model.children() gets an iterator over child modules(layers) of the model (pretrained chexnet)
24
+ #list* => converts this iterator into a list of layers so it is easier to manipulate
25
+ # if pop_conv_layers is, it removes the last layer from the model
26
+ # nn.sequentail=> creates a new model that consists of all the layers up to the pop_conv_layers, stacks layers in a linear sequence
27
+ visual_model=load_model(model_path,model_name)
28
+ self.visual_model = Model(inputs=visual_model.input,
29
+ outputs=[visual_model.output, visual_model.layers[-pop_conv_layers - 1].output],
30
+ trainable=finetune_visual_model)
31
+
32
+ self.encoder_layers=get_layers(encoder_layers,'relu')
33
+
34
+ def get_visual_features(self, images):
35
+ images_np = images.cpu().numpy()
36
+ images_tf = tf.convert_to_tensor(images_np)
37
+ images_tf = tf.transpose(images_tf, perm=[0,2,3,1 ])
38
+ predictions, visual_features = self.visual_model(images_tf)
39
+ predictions = torch.tensor(predictions.numpy(), device=self.device, requires_grad=True)
40
+ visual_features = torch.tensor(visual_features.numpy(), device=self.device, requires_grad=True)
41
+
42
+ predictions = predictions.view(predictions.size(0), predictions.size(-1), -1)
43
+ visual_features = visual_features.view(visual_features.size(0), -1, visual_features.size(-1))
44
+
45
+ if self.tags_threshold >= 0:
46
+ predictions = (predictions >= self.tags_threshold).float()
47
+
48
+ return predictions, visual_features
49
+
50
+ def forward(self, images):
51
+ # print python version
52
+ print("Python version:", sys.version)
53
+
54
+ images=images.to(self.device)
55
+ tags_predictions, visual_features = self.get_visual_features(images)
56
+ if tags_predictions is not None:
57
+ tags_predictions=tags_predictions.to(self.device)
58
+ self.tags_embeddings = self.tags_embeddings.to(self.device)
59
+ tags_embed = tags_predictions * self.tags_embeddings
60
+ else:
61
+ tags_embed=None
62
+
63
+ for layer in self.encoder_layers:
64
+ visual_features = layer(visual_features)
65
+ if tags_embed is not None:
66
+ tags_embed = layer(tags_embed)
67
+
68
+ return visual_features, tags_embed
69
+
70
+
Dockerfile ADDED
@@ -0,0 +1,13 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ FROM python:3.8.8-slim
2
+
3
+ RUN useradd -m -u 1000 user
4
+ USER user
5
+ ENV PATH="/home/user/.local/bin:$PATH"
6
+
7
+ WORKDIR /app
8
+
9
+ COPY --chown=user ./requirements.txt requirements.txt
10
+ RUN pip install --no-cache-dir --upgrade -r requirements.txt
11
+
12
+ COPY --chown=user . /app
13
+ CMD ["uvicorn", "main:app", "--host", "0.0.0.0", "--port", "7860"]
configs.py ADDED
@@ -0,0 +1,72 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from tags import tags
2
+
3
+
4
+ class argHandler(dict):
5
+ __getattr__ = dict.get
6
+ __setattr__ = dict.__setitem__
7
+ __delattr__ = dict.__delitem__
8
+ _descriptions = {'help, --h, -h': 'show this super helpful message and exit'}
9
+ def setDefaults(self):
10
+ self.define('train_csv', './IU-XRay/training_set.csv',
11
+ 'path to training csv containing the images names and the labels')
12
+ self.define('test_csv', './IU-XRay/testing_set.csv',
13
+ 'path to testing csv containing the images names and the labels')
14
+ self.define('all_data_csv', './IU-XRay/all_data.csv',
15
+ 'path to all data csv containing the images names and the labels')
16
+ self.define('image_directory', './IU-XRay/images',
17
+ 'path to folder containing the patient folders which containing the images')
18
+ self.define('output_images_folder', './outputs/CDGPT2',
19
+ 'path to folder containing output images')
20
+ self.define('data_dir', './IU-XRay',
21
+ 'path to folder containing the patient folders which containing the images')
22
+ # self.define('visual_model_name', 'fine_tuned_chexnet',
23
+ self.define('visual_model_name', 'fine_tuned_chexnet',
24
+ 'path to folder containing the patient folders which containing the images')
25
+ self.define('finetune_visual_model', False,
26
+ 'option if you want to finetune the visual model')
27
+ self.define('visual_model_pop_layers', 2,
28
+ 'number of conv layers to pop to get visual features')
29
+ self.define('csv_label_columns', ['Caption'], 'the name of the label columns in the csv')
30
+ self.define('image_target_size', (224, 224, 3), 'the target size to resize the image')
31
+
32
+ self.define('max_sequence_length', 200,
33
+ 'Maximum number of words in a sentence')
34
+ self.define('num_epochs', 100, 'maximum number of epochs')
35
+ self.define('encoder_layers', [0.4], 'a list describing the hidden layers of the encoder. Example [10,0.4,5] will create a hidden layer with size 10 then dropout wth drop prob 0.4, then hidden layer with size 5. If empty it will connect to output nodes directly.')
36
+ self.define('classifier_layers', [0.4], 'a list describing the hidden layers of the encoder. Example [10,0.4,5] will create a hidden layer with size 10 then dropout wth drop prob 0.4, then hidden layer with size 5. If empty it will connect to output nodes directly.')
37
+ self.define('tags_threshold', -1,
38
+ 'The threshold from which to detect a tag. -1 will multiply the tags embeddings according to prediction')
39
+ self.define('tokenizer_vocab_size', 1001,
40
+ 'The number of words to tokinze, the rest will be set as <unk>')
41
+ self.define('batch_size', 16, 'batch size for training and testing')
42
+ self.define('generator_workers', 8, 'The number of cpu workers generating batches.')
43
+ self.define('beam_width', 7, 'The beam search width during evaluation')
44
+ self.define('epochs_to_evaluate', 3, 'The number of epochs to train before evaluating on the test set.')
45
+
46
+ self.define('generator_queue_length', 24, 'The maximum number of batches in the queue to be trained on.')
47
+
48
+ self.define('ckpt_path', './checkpoints/CDGPT2/',
49
+ 'where to save the checkpoints. The path will be created if it does not exist. The system saves every epoch by default')
50
+ self.define('continue_from_last_ckpt', True,
51
+ 'continue training from last ckpt or not')
52
+ self.define('calculate_loss_after_epoch', False,
53
+ 'if True it will calculate the train and test loss by passing over the data again and append it to losses_csv')
54
+ self.define('learning_rate', 1e-3, 'The optimizer learning rate')
55
+ self.define('optimizer_type', 'Adam', 'Choose from (Adam, SGD, RMSprop, Adagrad, Adadelta, Adamax, Nadam)')
56
+ self.define('tags', tags,
57
+ 'the names of the tags')
58
+
59
+ def define(self, argName, default, description):
60
+ self[argName] = default
61
+ self._descriptions[argName] = description
62
+
63
+ def help(self):
64
+ print('Arguments:')
65
+ spacing = max([len(i) for i in self._descriptions.keys()]) + 2
66
+ for item in self._descriptions:
67
+ currentSpacing = spacing - len(item)
68
+ print(' --' + item + (' ' * currentSpacing) + self._descriptions[item])
69
+ exit()
70
+
71
+
72
+
distil_gpt2.py ADDED
@@ -0,0 +1,680 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from dataclasses import dataclass
2
+ import torch
3
+ import torch.nn as nn
4
+ from torch.nn import functional as F
5
+ import math
6
+ from transformers import GPT2Tokenizer
7
+ import tiktoken
8
+ from transformers import GPT2LMHeadModel
9
+ from transformers import PretrainedConfig
10
+
11
+
12
+ @dataclass
13
+ class GPTConfig(PretrainedConfig):
14
+ visual_size: int = 1024
15
+ vocab_size: int = 50257
16
+ block_size: int = 1024
17
+ tags_embd: int = 400
18
+ n_embd: int = 768
19
+ n_layer: int = 6
20
+ n_head: int = 12
21
+
22
+ def __init__(self,**kwargs):
23
+ super().__init__(**kwargs)
24
+ self.hidden_size = self.n_embd
25
+
26
+
27
+ class CasualSelfAttention(nn.Module):
28
+ def __init__(self, config: GPTConfig):
29
+ super().__init__()
30
+ assert config.n_embd % config.n_head == 0
31
+ self.c_attn = nn.Linear(config.n_embd, config.n_embd * 3)
32
+ self.visual_attn = nn.Linear(config.visual_size, config.n_embd * 2)
33
+ self.tags_attn = nn.Linear(config.tags_embd, config.n_embd * 2)
34
+
35
+ self.c_proj = nn.Linear(config.n_embd, config.n_embd)
36
+ self.n_head = config.n_head
37
+ self.n_embed = config.n_embd
38
+ self.device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
39
+
40
+ self.register_buffer(
41
+ 'bias', torch.tril(torch.ones(199, 353))
42
+ .view(1, 1, 199, 353)
43
+ )
44
+
45
+ def forward(self, x: torch.Tensor, visual_features: torch.Tensor = None, tags_embedding: torch.Tensor = None) -> torch.Tensor:
46
+
47
+ B, T, C = x.size()
48
+ visual_features=visual_features.to(self.device)
49
+ tags_embedding=tags_embedding.to(self.device)
50
+
51
+
52
+ qkv = self.c_attn(x) # the error happens here
53
+
54
+ q, k, v = qkv.split(self.n_embed, dim=2)
55
+ q = q.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2)
56
+ k = k.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2)
57
+ v = v.view(B, T, self.n_head, self.n_embed // self.n_head).transpose(1, 2)
58
+ # Handle visual input if provided
59
+ if visual_features is not None:
60
+ visual_kv = self.visual_attn(visual_features)
61
+ visual_k, visual_v = visual_kv.split(self.n_embed, dim=2)
62
+ visual_k = visual_k.view(B, visual_features.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
63
+ visual_v = visual_v.view(B, visual_features.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
64
+
65
+ k = torch.cat([k, visual_k], dim=-2)
66
+ v = torch.cat([v, visual_v], dim=-2)
67
+
68
+ if tags_embedding is not None:
69
+ tags_kv = self.tags_attn(tags_embedding)
70
+ tags_k, tags_v = tags_kv.split(self.n_embed, dim=2)
71
+ tags_k = tags_k.view(B, tags_embedding.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
72
+ tags_v = tags_v.view(B, tags_embedding.size(1), self.n_head, self.n_embed // self.n_head).transpose(1, 2)
73
+
74
+ k = torch.cat([k, tags_k], dim=-2)
75
+ v = torch.cat([v, tags_v], dim=-2)
76
+
77
+ # Causal self-attention computation
78
+ att = (q @ k.transpose(-2, -1)) * (1.0 / math.sqrt(k.size(-1)))
79
+ device = att.device
80
+ query_seq_len, key_seq_len = T, k.size(-2)
81
+
82
+ # Text can attend to: previous text + all visual/tag tokens
83
+ text_mask = torch.tril(torch.ones(T, T, device=device)) # Text-to-text causal
84
+ non_text_mask = torch.ones(T, key_seq_len - T, device=device) # Text-to-other full
85
+ combined_mask = torch.cat([text_mask, non_text_mask], dim=1)
86
+
87
+ # Reshape for broadcasting
88
+ combined_mask = combined_mask.view(1, 1, T, key_seq_len)
89
+ att = att.masked_fill(combined_mask == 0, float('-inf'))
90
+
91
+
92
+
93
+ att = F.softmax(att, dim=-1)
94
+ visual_att = att[..., :T, T:].mean().item() # Text → Visual attention
95
+ y = att @ v
96
+ y = y.transpose(1, 2).contiguous().view(B, T, self.n_head * (self.n_embed // self.n_head))
97
+ y = self.c_proj(y)
98
+
99
+ return y
100
+
101
+ class MLP(nn.Module):
102
+ def __init__(self, config: GPTConfig):
103
+ super(MLP, self).__init__()
104
+ self.c_fc = nn.Linear(config.n_embd, config.n_embd * 4) # c_fc means fully connected layer and c is for context
105
+ self.gelu = nn.GELU()
106
+ self.c_proj = nn.Linear(config.n_embd * 4, config.n_embd)
107
+
108
+ def forward(self, x: torch.Tensor) -> torch.Tensor:
109
+ x = self.c_fc(x)
110
+ x = self.gelu(x)
111
+ x = self.c_proj(x)
112
+ return x
113
+
114
+
115
+ class Block(nn.Module):
116
+ def __init__(self, config: GPTConfig):
117
+ super(Block, self).__init__()
118
+ self.ln_1 = nn.LayerNorm(config.n_embd)
119
+ self.attn = CasualSelfAttention(config)
120
+ self.ln_2 = nn.LayerNorm(config.n_embd)
121
+ self.mlp = MLP(config)
122
+
123
+ def forward(self, x: torch.Tensor,visual_features: torch.Tensor, tags_embedding: torch.Tensor) -> torch.Tensor:
124
+ x = x + self.attn(self.ln_1(x),visual_features, tags_embedding)
125
+ x = x + self.mlp(self.ln_2(x))
126
+ return x
127
+
128
+
129
+ class DistilGPT2(GPT2LMHeadModel):
130
+ def __init__(self, config: GPTConfig):
131
+ super(DistilGPT2, self).__init__(config)
132
+ self.config = config
133
+
134
+
135
+ self.transformer = nn.ModuleDict(
136
+ {
137
+ 'wte': nn.Embedding(config.vocab_size, config.n_embd),
138
+ 'wpe': nn.Embedding(config.block_size, config.n_embd),
139
+ 'h': nn.ModuleList(
140
+ [
141
+ Block(config) for _ in range(config.n_layer)
142
+ ]
143
+ ), # transformer blocks
144
+ 'ln_f': nn.LayerNorm(config.n_embd) # final layer normalization
145
+ }
146
+ )
147
+ self.lm_head = nn.Linear(config.n_embd, config.vocab_size, bias=False) # linear layer for projection from embedding to vocab size
148
+
149
+ def forward(self, idx: torch.Tensor, visual_features: torch.Tensor = None, tags_embedding: torch.Tensor = None, return_dict: bool = False) -> torch.Tensor:
150
+ idx=idx.to(self.device)
151
+ B, T = idx.size()
152
+ assert T <= self.config.block_size, f"Cannot forward sequence of length {T}, Block size is {self.config.block_size}"
153
+
154
+ # forward the token and positional embeddings
155
+ pos = torch.arange(0, T, dtype=torch.long, device=idx.device)
156
+ pos_emb = self.transformer['wpe'](pos)
157
+ tok_emb = self.transformer['wte'](idx)
158
+ x = tok_emb + pos_emb
159
+
160
+ # forward the transformer
161
+ for block in self.transformer['h']:
162
+ x = block(x, visual_features=visual_features, tags_embedding=tags_embedding)
163
+
164
+ # forward the head
165
+ x = self.transformer['ln_f'](x)
166
+ logits = self.lm_head(x)
167
+
168
+ if return_dict:
169
+ return {'logits': logits}
170
+ else:
171
+
172
+ return logits
173
+
174
+
175
+ @classmethod
176
+ def from_pretrained(cls, model_type: str):
177
+ """Loads pre-trained GPT-2 model weights from Hugging Face and handles custom layers."""
178
+ from transformers import GPT2LMHeadModel
179
+ print(f"Loading weights from pre-trained GPT: {model_type}")
180
+
181
+ # Ensure the model type is supported
182
+ assert model_type in {'distilgpt2', 'gpt2', 'gpt2-medium', 'gpt2-large', 'gpt2-xl'}
183
+
184
+ # Define configurations based on the model type
185
+ config_args = {
186
+ 'distilgpt2': dict(n_layer=6, n_head=12, n_embd=768),
187
+ 'gpt2': dict(n_layer=12, n_head=12, n_embd=768),
188
+ 'gpt2-medium': dict(n_layer=24, n_head=16, n_embd=1024),
189
+ 'gpt2-large': dict(n_layer=36, n_head=20, n_embd=1280),
190
+ 'gpt2-xl': dict(n_layer=48, n_head=25, n_embd=1600),
191
+ }[model_type]
192
+ config_args['vocab_size'] = 50257
193
+ config_args['block_size'] = 1024
194
+
195
+ # Initialize the custom model with the given configuration
196
+ config = GPTConfig(**config_args)
197
+ from transformers import GPT2Config
198
+
199
+ config = GPT2Config.from_pretrained('distilgpt2')
200
+
201
+ config.visual_size=1024
202
+ config.block_size=1024
203
+ config.tags_embd=400
204
+ config.n_embd=768
205
+ config.n_layer=6
206
+ config.n_head=12
207
+
208
+ model = cls(config)
209
+
210
+ # Load state dictionary from Hugging Face model
211
+ model_hf = GPT2LMHeadModel.from_pretrained(model_type)
212
+ sd_hf = model_hf.state_dict()
213
+
214
+ # State dictionary of the custom model
215
+ sd = model.state_dict()
216
+
217
+ # Filter out custom keys that are not in the pre-trained model
218
+ custom_keys = {k for k in sd if 'visual_attn' in k or 'tags_attn' in k}
219
+ sd_keys_filtered = [k for k in sd if k not in custom_keys]
220
+
221
+ # Load matching keys
222
+ for k in sd_keys_filtered:
223
+ if k in sd_hf and sd_hf[k].shape == sd[k].shape:
224
+ with torch.no_grad():
225
+ sd[k].copy_(sd_hf[k])
226
+
227
+ # Initialize custom layers separately
228
+ for k in custom_keys:
229
+ with torch.no_grad():
230
+ print(f"Initializing custom layer: {k}")
231
+ sd[k].normal_(0.0, 0.02) # Adjust initialization method as needed
232
+
233
+ # Update the model's state dictionary
234
+ model.load_state_dict(sd, strict=False)
235
+
236
+ return model
237
+
238
+ def prepare_inputs_for_generation(self, input_ids, past=None, **kwargs):
239
+ # Prepare inputs for autoregressive generation
240
+ inputs = {"idx": input_ids}
241
+ if past:
242
+ inputs["past_key_values"] = past # Include past key values for caching
243
+
244
+ # Include additional features like visual and tags if provided
245
+ if "visual_features" in kwargs:
246
+ inputs["visual_features"] = kwargs["visual_features"]
247
+ if "tags_embedding" in kwargs:
248
+ inputs["tags_embedding"] = kwargs["tags_embedding"]
249
+
250
+ return inputs
251
+ def generate(
252
+ self,
253
+ input_ids: torch.Tensor = None,
254
+ max_length: int = None,
255
+ min_length: int = None,
256
+ do_sample: bool = None,
257
+ early_stopping: bool = None,
258
+ num_beams: int = None,
259
+ temperature: float = None,
260
+ top_k: int = None,
261
+ top_p: float = None,
262
+ repetition_penalty: float = None,
263
+ bos_token_id: int = None,
264
+ pad_token_id: int = None,
265
+ eos_token_ids: int = None,
266
+ length_penalty: float = None,
267
+ no_repeat_ngram_size: int = None,
268
+ num_return_sequences: int = None,
269
+ attention_mask: torch.Tensor = None,
270
+ visual_features: torch.Tensor = None,
271
+ tags_embedding: torch.Tensor = None,
272
+ ):
273
+ """
274
+ Generate sequences using autoregressive decoding.
275
+
276
+ Args:
277
+ input_ids (torch.Tensor): Input tensor of token IDs.
278
+ max_length (int): Maximum length of the generated sequence.
279
+ min_length (int): Minimum length of the generated sequence.
280
+ do_sample (bool): Whether to use sampling; if False, uses greedy decoding.
281
+ early_stopping (bool): Whether to stop when all beams have finished.
282
+ num_beams (int): Number of beams for beam search.
283
+ temperature (float): Sampling temperature.
284
+ top_k (int): Top-k sampling.
285
+ top_p (float): Top-p (nucleus) sampling.
286
+ repetition_penalty (float): Penalty for repeated n-grams.
287
+ bos_token_id (int): Beginning of sequence token ID.
288
+ pad_token_id (int): Padding token ID.
289
+ eos_token_ids (int): End of sequence token ID.
290
+ length_penalty (float): Beam search length penalty.
291
+ no_repeat_ngram_size (int): Size of n-grams not to repeat.
292
+ num_return_sequences (int): Number of sequences to return.
293
+ attention_mask (torch.Tensor): Attention mask for padding tokens.
294
+ visual_features (torch.Tensor): Visual features for the transformer.
295
+ tags_embedding (torch.Tensor): Tags embeddings for the transformer.
296
+
297
+ Returns:
298
+ torch.Tensor: Generated sequences of token IDs.
299
+ """
300
+ # Default values for unspecified parameters
301
+ max_length = max_length or self.config.block_size
302
+ min_length = min_length or 0
303
+ do_sample = do_sample or False
304
+ early_stopping = early_stopping or False
305
+ num_beams = num_beams or 1
306
+ temperature = temperature or 1.0
307
+ top_k = top_k or 0
308
+ top_p = top_p or 1.0
309
+ repetition_penalty = repetition_penalty or 1.0
310
+ bos_token_id = bos_token_id or self.config.bos_token_id
311
+ pad_token_id = pad_token_id or self.config.pad_token_id
312
+ eos_token_ids = eos_token_ids or self.config.eos_token_ids
313
+ length_penalty = length_penalty or 1.0
314
+ no_repeat_ngram_size = no_repeat_ngram_size or 0
315
+ num_return_sequences = num_return_sequences or 1
316
+
317
+ if input_ids is not None:
318
+ batch_size=input_ids.shape[0]
319
+ else:
320
+ batch_size=1
321
+
322
+ if input_ids is None:
323
+ assert isinstance(bos_token_id, int) and bos_token_id >= 0, (
324
+ "You should either supply a context to complete as `input_ids` input "
325
+ "or a `bos_token_id` (integer >= 0) as a first token to start the generation."
326
+ )
327
+ input_ids = torch.full((batch_size, 1), bos_token_id, dtype=torch.long)
328
+
329
+ else:
330
+ assert input_ids.dim() == 2, "Input prompt should be of shape (batch_size, sequence length)."
331
+
332
+ # Avoid duplicate outputs when greedy decoding
333
+ if not do_sample:
334
+ if num_beams == 1:
335
+ assert num_return_sequences == 1, (
336
+ "Greedy decoding will always produce the same output for num_beams == 1 "
337
+ "and num_return_sequences > 1. Please set num_return_sequences = 1."
338
+ )
339
+ else:
340
+ assert num_beams >= num_return_sequences, (
341
+ "Greedy beam search decoding cannot return more sequences than it has beams. "
342
+ "Please set num_beams >= num_return_sequences."
343
+ )
344
+
345
+ # Create attention mask if necessary
346
+ if attention_mask is None:
347
+ if pad_token_id is not None and pad_token_id in input_ids:
348
+ attention_mask = (input_ids != pad_token_id).long()
349
+ else:
350
+ attention_mask = torch.ones_like(input_ids)
351
+
352
+ # Set pad_token_id if not provided and eos_token_ids is available
353
+ if pad_token_id is None and eos_token_ids is not None:
354
+ pad_token_id = eos_token_ids
355
+ print(f"Setting `pad_token_id` to {pad_token_id} (first `eos_token_ids`) to generate sequence.")
356
+
357
+ # Current sequence length and vocabulary size
358
+ cur_len = input_ids.size(1)
359
+ vocab_size = self.config.vocab_size
360
+
361
+ # Adjust effective batch size and multiplier for sampling
362
+ if do_sample:
363
+ effective_batch_size = batch_size * num_return_sequences
364
+ effective_batch_mult = num_return_sequences
365
+ else:
366
+ effective_batch_size = batch_size
367
+ effective_batch_mult = 1
368
+
369
+ # Expand input_ids and attention_mask for beam search or multiple return sequences
370
+ if num_return_sequences > 1 or num_beams > 1:
371
+ input_ids_len = input_ids.size(-1)
372
+
373
+ # Expand dimensions and repeat for each beam and return sequence
374
+ input_ids = input_ids.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
375
+ attention_mask = attention_mask.unsqueeze(1).expand(batch_size, effective_batch_mult * num_beams, input_ids_len)
376
+
377
+ # Reshape to combine batch and beam dimensions
378
+ input_ids = input_ids.reshape(effective_batch_size * num_beams, input_ids_len)
379
+ attention_mask = attention_mask.reshape(effective_batch_size * num_beams, input_ids_len)
380
+
381
+ if num_beams > 1:
382
+ output = self._generate_beam_search(
383
+ input_ids=input_ids,
384
+ attention_mask=attention_mask,
385
+ visual_features=visual_features,
386
+ tags_embedding=tags_embedding,
387
+ cur_len=input_ids.size(1),
388
+ max_length=max_length,
389
+ min_length=min_length,
390
+ do_sample=do_sample,
391
+ early_stopping=early_stopping,
392
+ temperature=temperature,
393
+ top_k=top_k,
394
+ top_p=top_p,
395
+ repetition_penalty=repetition_penalty,
396
+ no_repeat_ngram_size=no_repeat_ngram_size,
397
+ pad_token_id=pad_token_id,
398
+ eos_token_ids=eos_token_ids,
399
+ length_penalty=length_penalty,
400
+ num_return_sequences=num_return_sequences,
401
+ num_beams=num_beams,
402
+ )
403
+ else:
404
+ output = self._generate_no_beam_search(
405
+ input_ids=input_ids,
406
+ attention_mask=attention_mask,
407
+ visual_features=visual_features,
408
+ tags_embedding=tags_embedding,
409
+ cur_len=input_ids.size(1),
410
+ max_length=max_length,
411
+ min_length=min_length,
412
+ do_sample=do_sample,
413
+ temperature=temperature,
414
+ top_k=top_k,
415
+ top_p=top_p,
416
+ repetition_penalty=repetition_penalty,
417
+ no_repeat_ngram_size=no_repeat_ngram_size,
418
+ pad_token_id=pad_token_id,
419
+ eos_token_ids=eos_token_ids,
420
+ batch_size=batch_size,
421
+ vocab_size=vocab_size,
422
+ )
423
+
424
+ return output
425
+
426
+
427
+ def _generate_no_beam_search(
428
+ self,
429
+ input_ids,
430
+ visual_features,
431
+ tags_embedding,
432
+ cur_len,
433
+ max_length,
434
+ min_length,
435
+ do_sample,
436
+ temperature,
437
+ top_k,
438
+ top_p,
439
+ repetition_penalty,
440
+ no_repeat_ngram_size,
441
+ pad_token_id,
442
+ eos_token_ids,
443
+ batch_size,
444
+ vocab_size,
445
+ attention_mask,
446
+ ):
447
+ """
448
+ Generate sequences for each example without beam search (num_beams == 1).
449
+ All returned sequences are generated independently.
450
+ """
451
+ # Track unfinished sentences and their lengths
452
+ unfinished_sents=torch.ones_like(input_ids[:,0])
453
+ sent_lengths=torch.ones_like(input_ids[:,0])*max_length
454
+
455
+ past=None
456
+
457
+
458
+ while cur_len < max_length:
459
+ if past is None:
460
+ inputs = input_ids
461
+ else:
462
+ inputs = input_ids[:, -1].unsqueeze(1)
463
+
464
+ model_inputs = self.prepare_inputs_for_generation(
465
+ inputs, past=past, visual_features=visual_features, tags_embedding=tags_embedding
466
+ )
467
+ outputs = self(**model_inputs)
468
+ # next_token_logits = outputs[0][-1, :] # Extract logits for the last token, shape: [batch_size, vocab_size]
469
+ next_token_logits = outputs[:, -1, :]
470
+
471
+ # next_token_logits = next_token_logits.unsqueeze(0) # Add a new dimension: [1, batch_size, vocab_size]
472
+ next_token_logits = next_token_logits.expand(batch_size, vocab_size) # Expand to match batch size: [batch_size, vocab_size]
473
+
474
+
475
+ # if self._do_output_past(outputs): # we dont have this function implemented
476
+ # past = outputs[1]
477
+
478
+ # Apply repetition penalty
479
+ if repetition_penalty != 1.0:
480
+ next_token_logits_penalties=self._create_next_token_logits_penalties(input_ids,next_token_logits,repetition_penalty)
481
+ next_token_logits=next_token_logits @ next_token_logits_penalties.T # .T de mn 3ndy
482
+
483
+
484
+ # Prevent repetition of n-grams
485
+ if no_repeat_ngram_size > 0: # not checked generated by chat
486
+ banned_tokens=self.calc_banned_ngram_tokens(input_ids,batch_size,no_repeat_ngram_size,cur_len) # not checked generated by chat
487
+ banned_tokens_indices_mask=[]
488
+
489
+ for banned_tokens_slice in banned_tokens:
490
+ banned_tokens_indices_mask.append(
491
+ [True if token in banned_tokens_slice else False for token in range(vocab_size)]
492
+ )
493
+
494
+ banned_tokens_indices_mask=torch.tensor(banned_tokens_indices_mask,dtype=bool)
495
+
496
+ next_token_logits[banned_tokens_indices_mask]= -float('inf')
497
+
498
+ # Min length constraint for EOS
499
+ if eos_token_ids is not None and cur_len < min_length:
500
+ # create eos_token_id boolean mask
501
+ is_token_logit_eos_token = torch.arange(vocab_size, device=next_token_logits.device) == eos_token_ids
502
+ eos_token_indices_mask = is_token_logit_eos_token.unsqueeze(0).expand(batch_size, -1)
503
+ # next_token_logits=next_token_logits.unsqueeze(0).expand(batch_size,vocab_size)
504
+
505
+ next_token_logits = next_token_logits.masked_fill(eos_token_indices_mask, -float("inf"))
506
+
507
+
508
+
509
+
510
+
511
+ # Sampling or greedy decoding
512
+ if do_sample:
513
+ if temperature != 1.0:
514
+ next_token_logits = next_token_logits / temperature
515
+
516
+ next_token_logits=self.top_k_top_p_filtering(next_token_logits,top_k=top_k,top_p=top_p)
517
+
518
+ next_token = torch.multinomial(torch.softmax(next_token_logits, dim=-1), num_samples=1).squeeze(1)
519
+
520
+
521
+ else:
522
+ next_token=torch.argmax(next_token_logits,dim=-1)
523
+
524
+
525
+ if eos_token_ids is not None:
526
+ unfinished_sents=unfinished_sents.to(self.device)
527
+ tokens_to_add = next_token * unfinished_sents + pad_token_id * (1 - unfinished_sents)
528
+
529
+ else:
530
+ tokens_to_add = next_token
531
+ input_ids=input_ids.to(self.device)
532
+ input_ids = torch.cat([input_ids, tokens_to_add.unsqueeze(-1)], dim=1)
533
+
534
+ if eos_token_ids is not None:
535
+ eos_in_sents = tokens_to_add == eos_token_ids
536
+ # If sentence is unfinished and the token to add is eos, sent_lengths is filled with current length
537
+ is_sents_unfinished_and_token_to_add_is_eos = unfinished_sents * eos_in_sents.int()
538
+ sent_lengths=sent_lengths.to(self.device)
539
+ sent_lengths = (
540
+ sent_lengths * (1 - is_sents_unfinished_and_token_to_add_is_eos)
541
+ + cur_len * is_sents_unfinished_and_token_to_add_is_eos
542
+ )
543
+
544
+ # Unfinished sentences are set to zero if eos is in the sentence
545
+ unfinished_sents -= is_sents_unfinished_and_token_to_add_is_eos
546
+
547
+ # Stop if there is a </s> in each sentence, or if we exceed the maximum length
548
+ if torch.max(unfinished_sents) == 0: # => this line is what keeps it stopping at 57 etc..
549
+ break
550
+
551
+ cur_len += 1
552
+
553
+ # Pad sequences if necessary
554
+ min_sent_length = sent_lengths.min()
555
+ max_sent_length = sent_lengths.max()
556
+
557
+ if min_sent_length != max_sent_length:
558
+ assert pad_token_id is not None, "`Pad_token_id` has to be defined if batches have different lengths"
559
+ padding = torch.ones((batch_size, max_sent_length), dtype=torch.int) * pad_token_id
560
+ broad_casted_sent_lengths = sent_lengths.unsqueeze(-1).expand(batch_size, max_sent_length)
561
+ broad_casted_range = torch.arange(max_sent_length).unsqueeze(0).expand(batch_size, max_sent_length).T
562
+
563
+ # Use torch.where to apply padding where necessary
564
+ decoded = torch.where(broad_casted_range < broad_casted_sent_lengths, input_ids, padding)
565
+ else:
566
+ decoded = input_ids
567
+
568
+ return decoded
569
+
570
+ def _create_next_token_logits_penalties(self,input_ids, logits, repetition_penalty):
571
+ """
572
+ Create logit penalties for already seen input_ids based on repetition penalty.
573
+
574
+ Args:
575
+ input_ids (torch.Tensor): Tensor of shape (batch_size, seq_len) containing input token IDs.
576
+ logits (torch.Tensor): Tensor of shape (batch_size, vocab_size) containing next-token logits.
577
+ repetition_penalty (float): The penalty to apply for repeated tokens.
578
+
579
+ Returns:
580
+ torch.Tensor: Tensor of shape (batch_size, vocab_size) with applied penalties.
581
+ """
582
+ token_penalties=torch.ones_like(logits)
583
+ prev_input_ids=[torch.unique(input_id) for input_id in input_ids]
584
+
585
+ for i, prev_input_id in enumerate(prev_input_ids):
586
+ logits_penalized=logits[i][prev_input_ids]
587
+ logit_penalties=torch.zeros_like(logits_penalized)
588
+
589
+ logit_penalties[logits_penalized<0]=repetition_penalty
590
+ logit_penalties[logits_penalized>0]=1/repetition_penalty
591
+
592
+ token_penalties[i].scatter_(0,prev_input_id,logit_penalties)
593
+ return token_penalties
594
+
595
+
596
+ def top_k_top_p_filtering(self,logits, top_k=0, top_p=1.0, filter_value=-float("Inf"), min_tokens_to_keep=1):
597
+ """
598
+ Filter a distribution of logits using top-k and/or nucleus (top-p) filtering.
599
+
600
+ Args:
601
+ logits: Logits distribution of shape (batch size, vocabulary size).
602
+ top_k (int): Keep only top k tokens with the highest probability.
603
+ top_p (float): Keep the top tokens with cumulative probability >= top_p (nucleus filtering).
604
+ filter_value (float): Value to assign to filtered logits.
605
+ min_tokens_to_keep (int): Ensure at least this many tokens are kept.
606
+
607
+ Returns:
608
+ torch.Tensor: Filtered logits.
609
+ """
610
+ logits_shape = logits.size()
611
+
612
+ # Top-k filtering
613
+ if top_k > 0:
614
+ top_k = min(max(top_k, min_tokens_to_keep), logits_shape[-1]) # Safety check
615
+ # Remove all tokens with a probability less than the last token of the top-k
616
+ top_k_values, _ = torch.topk(logits, top_k, dim=-1)
617
+ min_top_k_values = top_k_values[:, -1].unsqueeze(-1) # Minimum logit in top-k
618
+ logits = torch.where(logits < min_top_k_values, torch.full_like(logits, filter_value), logits)
619
+
620
+ # Top-p (nucleus) filtering
621
+ if top_p < 1.0:
622
+ sorted_logits, sorted_indices = torch.sort(logits, descending=True, dim=-1)
623
+ cumulative_probs = torch.cumsum(torch.softmax(sorted_logits, dim=-1), dim=-1)
624
+
625
+ # Remove tokens with cumulative probability above the threshold
626
+ sorted_indices_to_remove = cumulative_probs > top_p
627
+
628
+ if min_tokens_to_keep > 1:
629
+ # Ensure we keep at least min_tokens_to_keep tokens
630
+ sorted_indices_to_remove[:, :min_tokens_to_keep] = 0
631
+
632
+ # Shift the indices to the right to keep also the first token above the threshold
633
+ sorted_indices_to_remove = sorted_indices_to_remove.roll(1, dims=-1)
634
+ sorted_indices_to_remove[:, 0] = 0
635
+
636
+ # Scatter sorted indices back to original indexing
637
+ indices_to_remove = sorted_indices_to_remove.scatter(1, sorted_indices, sorted_indices_to_remove)
638
+ logits = torch.where(indices_to_remove, torch.full_like(logits, filter_value), logits)
639
+
640
+ return logits
641
+
642
+ def calc_banned_ngram_tokens(self,prev_input_ids, num_hypos, no_repeat_ngram_size, cur_len):
643
+ """
644
+ Calculate banned n-gram tokens for no-repeat n-gram constraints.
645
+
646
+ Args:
647
+ prev_input_ids (torch.Tensor): Tensor of shape (num_hypos, seq_len) containing token sequences.
648
+ num_hypos (int): Number of hypotheses in the batch.
649
+ no_repeat_ngram_size (int): Size of the n-grams to avoid repeating.
650
+ cur_len (int): Current length of the sequence being generated.
651
+
652
+ Returns:
653
+ List[List[int]]: List of banned tokens for each hypothesis.
654
+ """
655
+ if cur_len + 1 < no_repeat_ngram_size:
656
+ # Return no banned tokens if not enough tokens have been generated
657
+ return [[] for _ in range(num_hypos)]
658
+
659
+ # Dictionary to store generated n-grams for each hypothesis
660
+ generated_ngrams = [{} for _ in range(num_hypos)]
661
+
662
+ # Populate the n-grams
663
+ for idx in range(num_hypos):
664
+ gen_tokens = prev_input_ids[idx].tolist()
665
+ generated_ngram = generated_ngrams[idx]
666
+ for ngram in zip(*[gen_tokens[i:] for i in range(no_repeat_ngram_size)]):
667
+ prev_ngram_tuple = tuple(ngram[:-1])
668
+ generated_ngram[prev_ngram_tuple] = generated_ngram.get(prev_ngram_tuple, []) + [ngram[-1]]
669
+
670
+ def _get_generated_ngrams(hypo_idx):
671
+ # Get n-grams that have already appeared
672
+ start_idx = cur_len + 1 - no_repeat_ngram_size
673
+ ngram_idx = tuple(prev_input_ids[hypo_idx, start_idx:cur_len].tolist())
674
+ return generated_ngrams[hypo_idx].get(ngram_idx, [])
675
+
676
+ # Calculate banned tokens for each hypothesis
677
+ banned_tokens = [_get_generated_ngrams(hypo_idx) for hypo_idx in range(num_hypos)]
678
+ return banned_tokens
679
+
680
+
generate_report.py ADDED
@@ -0,0 +1,69 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from PIL import Image
2
+ import io
3
+ import torch
4
+ import os
5
+ import numpy as np
6
+ from CNN_encoder import CNN_Encoder
7
+ from distil_gpt2 import DistilGPT2
8
+ from configs import argHandler
9
+ from utils import load_image
10
+ from tokenizer_wrapper import TokenizerWrapper
11
+ from huggingface_hub import hf_hub_download
12
+ # from src.models.cnn_encoder import
13
+ # from src.models.distil_gpt2 import DistilGPT2
14
+ # from src.configs import argHandler
15
+
16
+ FLAGS = argHandler()
17
+ FLAGS.setDefaults()
18
+ tokenizer_wrapper = TokenizerWrapper( FLAGS.csv_label_columns[0], FLAGS.max_sequence_length, FLAGS.tokenizer_vocab_size)
19
+
20
+ encoder = CNN_Encoder('pretrained_visual_model', FLAGS.visual_model_name, FLAGS.visual_model_pop_layers,
21
+ FLAGS.encoder_layers, FLAGS.tags_threshold, num_tags=len(FLAGS.tags))
22
+ decoder = DistilGPT2.from_pretrained('distilgpt2')
23
+
24
+ optimizer = torch.optim.Adam(decoder.parameters(), lr=FLAGS.learning_rate)
25
+ # checkpoint_path = os.path.join(FLAGS.ckpt_path, "checkpoint.pth")
26
+ device = torch.device("cuda" if torch.cuda.is_available() else "cpu")
27
+ encoder.to(device)
28
+ decoder.to(device)
29
+
30
+ checkpoint_path = hf_hub_download(repo_id="TransformingBerry/CDGPT2_checkpoint", filename="checkpoint.pth")
31
+
32
+
33
+ if os.path.exists(checkpoint_path):
34
+ print(f"Restoring from checkpoint: {checkpoint_path}")
35
+ checkpoint = torch.load(checkpoint_path, map_location=device, weights_only=True)
36
+ encoder.load_state_dict(checkpoint['encoder_state_dict'])
37
+ decoder.load_state_dict(checkpoint['decoder_state_dict'])
38
+ optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
39
+ else:
40
+ print("No checkpoint found. Starting from scratch.")
41
+
42
+ def generate_report(image_bytes):
43
+ image = Image.open(io.BytesIO(image_bytes))
44
+ image_tensor = load_image(image)
45
+
46
+ visual_features, tags_embedding = encoder(image_tensor)
47
+
48
+ dec_input = torch.unsqueeze(
49
+ torch.tensor(tokenizer_wrapper.GPT2_encode('startseq', pad=False)), 0
50
+ )
51
+
52
+ generation_config = {
53
+ "visual_features": visual_features,
54
+ "tags_embedding": tags_embedding,
55
+ "num_beams": 1,
56
+ "max_length": FLAGS.max_sequence_length,
57
+ "min_length": 3,
58
+ "eos_token_ids": tokenizer_wrapper.GPT2_eos_token_id(),
59
+ "pad_token_id": tokenizer_wrapper.GPT2_pad_token_id(),
60
+ "do_sample": False,
61
+ "early_stopping": True,
62
+ }
63
+
64
+ tokens = decoder.generate(dec_input, **generation_config)
65
+ sentence = tokenizer_wrapper.GPT2_decode(tokens[0])
66
+ sentence = tokenizer_wrapper.filter_special_words(sentence)
67
+ print(sentence)
68
+
69
+ return {"report": sentence}
generator.py ADDED
@@ -0,0 +1,93 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import numpy as np
2
+ import os
3
+ import pandas as pd
4
+ from torch.utils.data import Dataset, DataLoader
5
+ from PIL import Image
6
+ from skimage.transform import resize
7
+ import torch
8
+ from torchvision import transforms
9
+
10
+
11
+ class AugmentedImageSequence(Dataset):
12
+ """
13
+ Thread-safe image generator with imgaug support in PyTorch
14
+ """
15
+
16
+ def __init__(self, dataset_csv_file, class_names, source_image_dir, tokenizer_wrapper, batch_size=16,
17
+ target_size=(224, 224), augmenter=None, verbose=0, steps=None,
18
+ shuffle_on_epoch_end=True, random_state=1):
19
+ """
20
+ :param dataset_csv_file: str, path of dataset csv file
21
+ :param class_names: list of str
22
+ :param batch_size: int
23
+ :param target_size: tuple(int, int)
24
+ :param augmenter: imgaug object. Do not specify resize in augmenter.
25
+ It will be done automatically according to input_shape of the model.
26
+ :param verbose: int
27
+ """
28
+ self.dataset_df = pd.read_csv(dataset_csv_file)
29
+ self.source_image_dir = source_image_dir
30
+ self.batch_size = batch_size
31
+ self.target_size = target_size
32
+ self.augmenter = augmenter
33
+ self.tokenizer_wrapper = tokenizer_wrapper
34
+ self.verbose = verbose
35
+ self.shuffle = shuffle_on_epoch_end
36
+ self.random_state = random_state
37
+ self.class_names = class_names
38
+ self.prepare_dataset()
39
+ if steps is None:
40
+ self.steps = int(np.ceil(len(self.x_path) / float(self.batch_size)))
41
+ else:
42
+ self.steps = int(steps)
43
+
44
+ self.transform = transforms.Compose([
45
+ # transforms.ToTensor(),
46
+ transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
47
+ ])
48
+
49
+ def __len__(self):
50
+ return self.steps
51
+
52
+ def __getitem__(self, idx):
53
+ batch_x_path = self.x_path[idx * self.batch_size:(idx + 1) * self.batch_size]
54
+ batch_x = torch.stack([self.load_image(x_path) for x_path in batch_x_path])
55
+ batch_x = self.transform_batch_images(batch_x)
56
+ batch_y = torch.tensor(self.y[idx * self.batch_size:(idx + 1) * self.batch_size])
57
+ return batch_x, batch_y, batch_x_path.tolist()
58
+
59
+ def load_image(self, image_file):
60
+ image_path = os.path.join(self.source_image_dir, image_file)
61
+ image = Image.open(image_path).convert("RGB")
62
+ image_array = np.asarray(image) / 255.
63
+ image_array = resize(image_array, self.target_size)
64
+ image_tensor = torch.tensor(image_array, dtype=torch.float32).permute(2, 0, 1) # Convert to CxHxW
65
+ return image_tensor
66
+
67
+ def transform_batch_images(self, batch_x):
68
+ if self.augmenter is not None:
69
+ batch_x = torch.stack([torch.tensor(self.augmenter.augment_image(img.permute(1, 2, 0).numpy())) for img in batch_x])
70
+ batch_x = self.transform(batch_x)
71
+ return batch_x
72
+
73
+ def get_y_true(self):
74
+ """
75
+ Use this function to get y_true for DataLoader.
76
+ Ensure shuffle_on_epoch_end is False before using.
77
+ """
78
+ if self.shuffle:
79
+ raise ValueError("get_y_true() can only be used when shuffle_on_epoch_end is False.")
80
+ return torch.tensor(self.y[:self.steps * self.batch_size], dtype=torch.float32)
81
+
82
+ def prepare_dataset(self):
83
+ df = self.dataset_df.sample(frac=1., random_state=self.random_state)
84
+ ## @TODO: tokenize the targets
85
+ self.x_path, self.y = df["Image Index"].values, self.tokenizer_wrapper.GPT2_encode(
86
+ df[self.class_names].values)
87
+
88
+
89
+ def on_epoch_end(self):
90
+ if self.shuffle:
91
+ self.random_state += 1
92
+ self.prepare_dataset()
93
+
main.py ADDED
@@ -0,0 +1,37 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ from fastapi import FastAPI, File, UploadFile, HTTPException
2
+ from fastapi.middleware.cors import CORSMiddleware
3
+ from generate_report import generate_report
4
+ from utils import convert_to_png
5
+ import io
6
+
7
+
8
+ app = FastAPI(title="FastAPI Example App", version="0.1.0")
9
+ app.add_middleware(
10
+ CORSMiddleware,
11
+ allow_origins=["*"],
12
+ allow_credentials=True,
13
+ allow_methods=["*"],
14
+ allow_headers=["*"],
15
+ )
16
+
17
+
18
+ @app.get("/")
19
+ async def read_root():
20
+ return {"message": "Hello oopa"}
21
+
22
+ @app.post("/upload-image/")
23
+ async def upload_image(file: UploadFile = File(...)):
24
+ try:
25
+ image = await convert_to_png(file)
26
+ image_io = io.BytesIO()
27
+ image.save(image_io, format="PNG")
28
+ image_data = image_io.getvalue()
29
+ report = generate_report(image_data)
30
+ return {"report": report}
31
+ except Exception as e:
32
+ raise HTTPException(status_code=500, detail=str(e))
33
+
34
+
35
+
36
+
37
+
pretrained_visual_model/best_weights.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:9c299f950c6a69bb3c82f20afbcf312c0d53e800b27c2420eb4f1c1e7edf77b8
3
+ size 83811496
pretrained_visual_model/best_weights.json ADDED
The diff for this file is too large to render. See raw diff
 
pretrained_visual_model/fine_tuned_chexnet.h5 ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6596d037bb3cc1c1959b7379f9fe8a4bf238963a09d11cd1bbe5d1688192c2c9
3
+ size 29517896
pretrained_visual_model/fine_tuned_chexnet.json ADDED
The diff for this file is too large to render. See raw diff