Ziad Meligy
commited on
Commit
·
733a570
1
Parent(s):
8390b91
dicm endpoint
Browse files- main.py +146 -0
- requirements.txt +6 -1
main.py
CHANGED
|
@@ -2,6 +2,82 @@ from fastapi import FastAPI, File, UploadFile
|
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from inference_service import generate_report_serviceFn
|
| 4 |
from PIL import Image
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 5 |
app = FastAPI()
|
| 6 |
@app.post("/generate_report")
|
| 7 |
async def generate_report(file: UploadFile = File(...)):
|
|
@@ -16,3 +92,73 @@ async def generate_report(file: UploadFile = File(...)):
|
|
| 16 |
except Exception as e:
|
| 17 |
return JSONResponse({"error": str(e)}, status_code=500)
|
| 18 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 2 |
from fastapi.responses import JSONResponse
|
| 3 |
from inference_service import generate_report_serviceFn
|
| 4 |
from PIL import Image
|
| 5 |
+
import pydicom
|
| 6 |
+
import tempfile
|
| 7 |
+
from fastapi import HTTPException
|
| 8 |
+
import numpy as np
|
| 9 |
+
|
| 10 |
+
|
| 11 |
+
def is_xray_dicom(dicom_data):
|
| 12 |
+
"""
|
| 13 |
+
Check if the DICOM file is an X-ray image based on metadata
|
| 14 |
+
"""
|
| 15 |
+
try:
|
| 16 |
+
# Check modality
|
| 17 |
+
if hasattr(dicom_data, 'Modality') and dicom_data.Modality in ['CR', 'DX', 'RF']:
|
| 18 |
+
return True
|
| 19 |
+
|
| 20 |
+
# Check body part examined for chest X-ray indicators
|
| 21 |
+
if hasattr(dicom_data, 'BodyPartExamined'):
|
| 22 |
+
chest_keywords = ['CHEST', 'THORAX', 'LUNG', 'PULMONARY']
|
| 23 |
+
body_part = str(dicom_data.BodyPartExamined).upper()
|
| 24 |
+
if any(keyword in body_part for keyword in chest_keywords):
|
| 25 |
+
return True
|
| 26 |
+
|
| 27 |
+
# Check study description
|
| 28 |
+
if hasattr(dicom_data, 'StudyDescription'):
|
| 29 |
+
study_desc = str(dicom_data.StudyDescription).upper()
|
| 30 |
+
xray_keywords = ['X-RAY', 'XRAY', 'RADIOGRAPH', 'CHEST']
|
| 31 |
+
if any(keyword in study_desc for keyword in xray_keywords):
|
| 32 |
+
return True
|
| 33 |
+
|
| 34 |
+
return False
|
| 35 |
+
except Exception:
|
| 36 |
+
return False
|
| 37 |
+
|
| 38 |
+
def dicom_to_png(dicom_data):
|
| 39 |
+
"""
|
| 40 |
+
Convert DICOM image data to PNG format
|
| 41 |
+
"""
|
| 42 |
+
try:
|
| 43 |
+
# Ensure pixel data exists
|
| 44 |
+
if not hasattr(dicom_data, "PixelData"):
|
| 45 |
+
raise ValueError("No pixel data found in DICOM file.")
|
| 46 |
+
|
| 47 |
+
# Get and squeeze pixel array
|
| 48 |
+
pixel_array = dicom_data.pixel_array
|
| 49 |
+
pixel_array = np.squeeze(pixel_array) # Removes (1, 1, 512) → (512)
|
| 50 |
+
|
| 51 |
+
if pixel_array.ndim == 3:
|
| 52 |
+
pixel_array = pixel_array[pixel_array.shape[0] // 2]
|
| 53 |
+
if pixel_array.ndim == 1:
|
| 54 |
+
raise ValueError(f"Unsupported 1D image shape: {pixel_array.shape}")
|
| 55 |
+
|
| 56 |
+
# Normalize pixel values to 0-255 range
|
| 57 |
+
if pixel_array.dtype != np.uint8:
|
| 58 |
+
max_val = 2 ** dicom_data.get("BitsStored", 16) - 1
|
| 59 |
+
pixel_array = ((pixel_array - pixel_array.min()) / (max_val - pixel_array.min()) * 255).astype(np.uint8)
|
| 60 |
+
|
| 61 |
+
# Handle MONOCHROME1
|
| 62 |
+
if dicom_data.get("PhotometricInterpretation") == "MONOCHROME1":
|
| 63 |
+
pixel_array = 255 - pixel_array
|
| 64 |
+
|
| 65 |
+
# Convert to PIL image
|
| 66 |
+
if pixel_array.ndim == 2:
|
| 67 |
+
image = Image.fromarray(pixel_array, mode="L")
|
| 68 |
+
elif pixel_array.ndim == 3 and pixel_array.shape[-1] in [3, 4]: # RGB or RGBA
|
| 69 |
+
image = Image.fromarray(pixel_array)
|
| 70 |
+
else:
|
| 71 |
+
raise ValueError(f"Unsupported image shape: {pixel_array.shape}")
|
| 72 |
+
|
| 73 |
+
return image.convert("RGB")
|
| 74 |
+
|
| 75 |
+
except Exception as e:
|
| 76 |
+
raise ValueError(f"Failed to convert DICOM to PNG: {str(e)}")
|
| 77 |
+
|
| 78 |
+
|
| 79 |
+
|
| 80 |
+
|
| 81 |
app = FastAPI()
|
| 82 |
@app.post("/generate_report")
|
| 83 |
async def generate_report(file: UploadFile = File(...)):
|
|
|
|
| 92 |
except Exception as e:
|
| 93 |
return JSONResponse({"error": str(e)}, status_code=500)
|
| 94 |
|
| 95 |
+
|
| 96 |
+
@app.post("/generate_report_dicom")
|
| 97 |
+
async def generate_report_dicom(file: UploadFile = File(...)):
|
| 98 |
+
"""
|
| 99 |
+
Generate radiology report from DICOM file.
|
| 100 |
+
Checks if the DICOM is an X-ray, converts it to PNG, and generates a report.
|
| 101 |
+
"""
|
| 102 |
+
try:
|
| 103 |
+
# Validate file type
|
| 104 |
+
if not file.filename.lower().endswith(('.dcm', '.dicom')):
|
| 105 |
+
raise HTTPException(status_code=400, detail="File must be a DICOM file (.dcm or .dicom)")
|
| 106 |
+
|
| 107 |
+
# Read DICOM file
|
| 108 |
+
file_content = await file.read()
|
| 109 |
+
|
| 110 |
+
# Create a temporary file to store DICOM data
|
| 111 |
+
with tempfile.NamedTemporaryFile(delete=False, suffix='.dcm') as temp_file:
|
| 112 |
+
temp_file.write(file_content)
|
| 113 |
+
temp_file_path = temp_file.name
|
| 114 |
+
|
| 115 |
+
try:
|
| 116 |
+
# Read DICOM data
|
| 117 |
+
dicom_data = pydicom.dcmread(temp_file_path)
|
| 118 |
+
|
| 119 |
+
# # Check if it's an X-ray
|
| 120 |
+
# if not is_xray_dicom(dicom_data):
|
| 121 |
+
# return JSONResponse(
|
| 122 |
+
# {"error": "DICOM file does not appear to be an X-ray image"},
|
| 123 |
+
# status_code=400
|
| 124 |
+
# )
|
| 125 |
+
|
| 126 |
+
# Convert DICOM to PNG
|
| 127 |
+
image = dicom_to_png(dicom_data)
|
| 128 |
+
|
| 129 |
+
# Generate the report using the service function
|
| 130 |
+
report = generate_report_serviceFn(image)
|
| 131 |
+
|
| 132 |
+
# Get additional DICOM metadata for context
|
| 133 |
+
metadata = {}
|
| 134 |
+
if hasattr(dicom_data, 'PatientID'):
|
| 135 |
+
metadata['patient_id'] = str(dicom_data.PatientID)
|
| 136 |
+
if hasattr(dicom_data, 'StudyDate'):
|
| 137 |
+
metadata['study_date'] = str(dicom_data.StudyDate)
|
| 138 |
+
if hasattr(dicom_data, 'Modality'):
|
| 139 |
+
metadata['modality'] = str(dicom_data.Modality)
|
| 140 |
+
if hasattr(dicom_data, 'BodyPartExamined'):
|
| 141 |
+
metadata['body_part'] = str(dicom_data.BodyPartExamined)
|
| 142 |
+
|
| 143 |
+
return JSONResponse({
|
| 144 |
+
"generated_report": report,
|
| 145 |
+
"dicom_metadata": metadata,
|
| 146 |
+
"image_info": {
|
| 147 |
+
"width": image.width,
|
| 148 |
+
"height": image.height,
|
| 149 |
+
"mode": image.mode
|
| 150 |
+
}
|
| 151 |
+
})
|
| 152 |
+
|
| 153 |
+
finally:
|
| 154 |
+
# Clean up temporary file
|
| 155 |
+
import os
|
| 156 |
+
try:
|
| 157 |
+
os.unlink(temp_file_path)
|
| 158 |
+
except:
|
| 159 |
+
pass
|
| 160 |
+
|
| 161 |
+
except HTTPException:
|
| 162 |
+
raise
|
| 163 |
+
except Exception as e:
|
| 164 |
+
return JSONResponse({"error": str(e)}, status_code=500)
|
requirements.txt
CHANGED
|
@@ -3,4 +3,9 @@ pillow
|
|
| 3 |
torch
|
| 4 |
transformers
|
| 5 |
python-multipart
|
| 6 |
-
uvicorn
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 3 |
torch
|
| 4 |
transformers
|
| 5 |
python-multipart
|
| 6 |
+
uvicorn
|
| 7 |
+
nltk
|
| 8 |
+
scikit-learn
|
| 9 |
+
numpy
|
| 10 |
+
pandas
|
| 11 |
+
pydicom
|