import subprocess import spaces import os import gradio as gr import json import base64 from huggingface_hub import InferenceClient, login if not os.path.exists("/home/user/.flag"): subprocess.Popen("chmod +x /home/user/app/data/config_nginx.sh && chmod +x /home/user/app/data/setup.sh", shell=True, executable='/bin/bash').wait() subprocess.Popen("curl -o- file:///home/user/app/data/config_nginx.sh | bash", shell=True, executable='/bin/bash').wait() subprocess.Popen("curl -o- file:///home/user/app/data/setup.sh | bash", shell=True, executable='/bin/bash').wait() subprocess.Popen("source /home/user/.bashrc && source /home/user/.nvm/nvm.sh && nvm install --lts && npm update -g npm", shell=True, executable='/bin/bash').wait() node_version_dir = subprocess.check_output("ls ~/.nvm/versions/node", shell=True, executable='/bin/bash').strip().decode('utf-8') node_path = f"/home/user/.nvm/versions/node/{node_version_dir}/bin/" subprocess.Popen(f"{node_path}node {node_path}npm install n8n@latest -g", shell=True, executable='/bin/bash').wait() subprocess.Popen(f"{node_path}node {node_path}npm install pm2@latest -g", shell=True, executable='/bin/bash').wait() subprocess.Popen(["pm2", "start", f"{node_path}n8n"]).wait() subprocess.Popen(["pm2", "start", "/home/user/app/data/models/llama3-1-8b.py","--interpreter=python3"]).wait() subprocess.Popen(["pm2", "start", "/home/user/app/data/models/llama3-1-70b.py","--interpreter=python3"]).wait() #subprocess.Popen(["pm2", "start", "/home/user/app/data/models/llama3-70b.py","--interpreter=python3"]).wait() # Get the API key from environment variables api_key = os.getenv("ai") # Initialize the InferenceClient with the specified model client = InferenceClient("meta-llama/Meta-Llama-3-70B-Instruct",token=api_key) def decode_base64_to_json(base64_str): try: decoded_bytes = base64.b64decode(base64_str) decoded_str = decoded_bytes.decode('utf-8') decoded_str = decoded_str.replace("\\'", "'").replace('\\"', '"').replace('\\\\', '\\') print(f"===================================================\nDecoded string: {decoded_str}\n===================================================") # Log the decoded string return json.loads(decoded_str) except Exception as e: raise ValueError(f"Error decoding base64 to JSON: {str(e)}") @spaces.GPU() def chat_completion(user_input, max_tokens, temperature, top_p): try: input_data = decode_base64_to_json(user_input) if not isinstance(input_data, list): raise ValueError("Input must be a list of messages.") response = "" for message in client.chat_completion( input_data, max_tokens=max_tokens, stream=True, temperature=temperature, top_p=top_p, ): token = message.choices[0].delta.get("content", "") response += token return json.dumps({"status": "success", "output": response}) except Exception as e: return json.dumps({"status": "error", "message": str(e)}) user_input = gr.Textbox(label="User Input as Base64-encoded JSON String", lines=10) max_tokens = gr.Slider(minimum=1, maximum=8092, value=150, label="Max Tokens") temperature = gr.Slider(minimum=0.0, maximum=1.0, value=0.7, label="Temperature") top_p = gr.Slider(minimum=0.0, maximum=1.0, value=0.9, label="Top P") iface = gr.Interface( fn=chat_completion, inputs=[user_input, max_tokens, temperature, top_p], outputs="text", title="UCode Agent", description="Provide Base64-encoded JSON input with a list of messages and set the max tokens, temperature, and top_p to generate a chat completion." ) if not os.path.exists("/home/user/.flag"): subprocess.Popen("echo 'initialized' > /home/user/.flag", shell=True, executable='/bin/bash').wait() subprocess.Popen("echo 'starting up NginX'", shell=True, executable='/bin/bash').wait() subprocess.Popen(["pm2", "start", "/usr/sbin/nginx"]).wait() iface.launch(share=False)