Spaces:
Runtime error
Runtime error
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,15 +1,11 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
| 3 |
-
|
| 4 |
-
import spaces
|
| 5 |
import torch
|
| 6 |
import spaces
|
| 7 |
import random
|
| 8 |
-
|
| 9 |
from diffusers import AutoPipelineForText2Image
|
| 10 |
from PIL import Image
|
| 11 |
|
| 12 |
-
|
| 13 |
MAX_SEED = np.iinfo(np.int32).max
|
| 14 |
MAX_IMAGE_SIZE = 2048
|
| 15 |
|
|
@@ -19,47 +15,9 @@ pipe = AutoPipelineForText2Image.from_pretrained(
|
|
| 19 |
torch_dtype=torch.bfloat16,
|
| 20 |
).to("cuda")
|
| 21 |
|
| 22 |
-
# def calculate_optimal_dimensions(image: Image.Image):
|
| 23 |
-
# # Extract the original dimensions
|
| 24 |
-
# original_width, original_height = image.size
|
| 25 |
-
|
| 26 |
-
# # Set constants
|
| 27 |
-
# MIN_ASPECT_RATIO = 9 / 16
|
| 28 |
-
# MAX_ASPECT_RATIO = 16 / 9
|
| 29 |
-
# FIXED_DIMENSION = 1024
|
| 30 |
-
|
| 31 |
-
# # Calculate the aspect ratio of the original image
|
| 32 |
-
# original_aspect_ratio = original_width / original_height
|
| 33 |
-
|
| 34 |
-
# # Determine which dimension to fix
|
| 35 |
-
# if original_aspect_ratio > 1: # Wider than tall
|
| 36 |
-
# width = FIXED_DIMENSION
|
| 37 |
-
# height = round(FIXED_DIMENSION / original_aspect_ratio)
|
| 38 |
-
# else: # Taller than wide
|
| 39 |
-
# height = FIXED_DIMENSION
|
| 40 |
-
# width = round(FIXED_DIMENSION * original_aspect_ratio)
|
| 41 |
-
|
| 42 |
-
# # Ensure dimensions are multiples of 8
|
| 43 |
-
# width = (width // 8) * 8
|
| 44 |
-
# height = (height // 8) * 8
|
| 45 |
-
|
| 46 |
-
# # Enforce aspect ratio limits
|
| 47 |
-
# calculated_aspect_ratio = width / height
|
| 48 |
-
# if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
| 49 |
-
# width = (height * MAX_ASPECT_RATIO // 8) * 8
|
| 50 |
-
# elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
| 51 |
-
# height = (width / MIN_ASPECT_RATIO // 8) * 8
|
| 52 |
-
|
| 53 |
-
# # Ensure width and height remain above the minimum dimensions
|
| 54 |
-
# width = max(width, 576) if width == FIXED_DIMENSION else width
|
| 55 |
-
# height = max(height, 576) if height == FIXED_DIMENSION else height
|
| 56 |
-
|
| 57 |
-
# return width, height
|
| 58 |
-
|
| 59 |
@spaces.GPU
|
| 60 |
-
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5,control_strength=0.5, control_stop=0.33, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
|
| 61 |
image = edit_images["background"].convert("RGB")
|
| 62 |
-
# width, height = calculate_optimal_dimensions(image)
|
| 63 |
mask = edit_images["layers"][0].convert("RGB")
|
| 64 |
if randomize_seed:
|
| 65 |
seed = random.randint(0, MAX_SEED)
|
|
@@ -76,80 +34,328 @@ def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height
|
|
| 76 |
generator=torch.Generator("cpu").manual_seed(seed)
|
| 77 |
).images[0]
|
| 78 |
return (image, out_image), seed
|
| 79 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 80 |
examples = [
|
| 81 |
"a tiny astronaut hatching from an egg on the moon",
|
| 82 |
"a cat holding a sign that says hello world",
|
| 83 |
"an anime illustration of a wiener schnitzel",
|
| 84 |
]
|
| 85 |
|
| 86 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 87 |
#col-container {
|
| 88 |
margin: 0 auto;
|
| 89 |
-
max-width:
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 90 |
}
|
| 91 |
"""
|
| 92 |
|
| 93 |
-
with gr.Blocks(css=css) as demo:
|
| 94 |
-
|
| 95 |
with gr.Column(elem_id="col-container"):
|
| 96 |
-
|
| 97 |
-
|
| 98 |
-
|
| 99 |
-
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
type='pil',
|
| 106 |
-
sources=["upload", "webcam"],
|
| 107 |
-
image_mode='RGB',
|
| 108 |
-
layers=False,
|
| 109 |
-
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
|
| 110 |
-
height=600
|
| 111 |
-
)
|
| 112 |
-
prompt = gr.Text(
|
| 113 |
-
label="Prompt",
|
| 114 |
-
show_label=False,
|
| 115 |
-
max_lines=1,
|
| 116 |
-
placeholder="Enter your prompt",
|
| 117 |
-
container=False,
|
| 118 |
-
)
|
| 119 |
-
run_button = gr.Button("Run")
|
| 120 |
-
|
| 121 |
-
result = gr.ImageSlider(label="Generated Image", type="pil", image_mode='RGB')
|
| 122 |
|
| 123 |
-
|
| 124 |
-
|
| 125 |
-
seed = gr.Slider(
|
| 126 |
-
label="Seed",
|
| 127 |
-
minimum=0,
|
| 128 |
-
maximum=MAX_SEED,
|
| 129 |
-
step=1,
|
| 130 |
-
value=0,
|
| 131 |
-
)
|
| 132 |
-
|
| 133 |
-
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 134 |
-
|
| 135 |
with gr.Row():
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 136 |
|
| 137 |
-
|
| 138 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 139 |
|
| 140 |
-
|
| 141 |
-
|
| 142 |
-
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 146 |
|
|
|
|
| 147 |
run_button.click(
|
| 148 |
-
fn
|
| 149 |
-
inputs
|
| 150 |
-
outputs
|
| 151 |
)
|
| 152 |
|
| 153 |
-
|
| 154 |
-
|
| 155 |
demo.launch()
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import numpy as np
|
|
|
|
|
|
|
| 3 |
import torch
|
| 4 |
import spaces
|
| 5 |
import random
|
|
|
|
| 6 |
from diffusers import AutoPipelineForText2Image
|
| 7 |
from PIL import Image
|
| 8 |
|
|
|
|
| 9 |
MAX_SEED = np.iinfo(np.int32).max
|
| 10 |
MAX_IMAGE_SIZE = 2048
|
| 11 |
|
|
|
|
| 15 |
torch_dtype=torch.bfloat16,
|
| 16 |
).to("cuda")
|
| 17 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 18 |
@spaces.GPU
|
| 19 |
+
def infer(edit_images, prompt, seed=42, randomize_seed=False, width=1024, height=1024, guidance_scale=3.5, control_strength=0.5, control_stop=0.33, num_inference_steps=50, progress=gr.Progress(track_tqdm=True)):
|
| 20 |
image = edit_images["background"].convert("RGB")
|
|
|
|
| 21 |
mask = edit_images["layers"][0].convert("RGB")
|
| 22 |
if randomize_seed:
|
| 23 |
seed = random.randint(0, MAX_SEED)
|
|
|
|
| 34 |
generator=torch.Generator("cpu").manual_seed(seed)
|
| 35 |
).images[0]
|
| 36 |
return (image, out_image), seed
|
| 37 |
+
|
| 38 |
+
def create_example_card(example):
|
| 39 |
+
return f"""
|
| 40 |
+
<div class="example-card">
|
| 41 |
+
<p>{example}</p>
|
| 42 |
+
</div>
|
| 43 |
+
"""
|
| 44 |
+
|
| 45 |
examples = [
|
| 46 |
"a tiny astronaut hatching from an egg on the moon",
|
| 47 |
"a cat holding a sign that says hello world",
|
| 48 |
"an anime illustration of a wiener schnitzel",
|
| 49 |
]
|
| 50 |
|
| 51 |
+
example_html = "".join([create_example_card(ex) for ex in examples])
|
| 52 |
+
|
| 53 |
+
css = """
|
| 54 |
+
:root {
|
| 55 |
+
--primary-color: #7E57C2;
|
| 56 |
+
--secondary-color: #5E35B1;
|
| 57 |
+
--accent-color: #B39DDB;
|
| 58 |
+
--background-color: #F5F5F7;
|
| 59 |
+
--card-background: #FFFFFF;
|
| 60 |
+
--text-color: #333333;
|
| 61 |
+
--shadow: 0 4px 12px rgba(0, 0, 0, 0.08);
|
| 62 |
+
--radius: 12px;
|
| 63 |
+
}
|
| 64 |
+
|
| 65 |
+
body {
|
| 66 |
+
font-family: 'Inter', system-ui, sans-serif;
|
| 67 |
+
background-color: var(--background-color);
|
| 68 |
+
}
|
| 69 |
+
|
| 70 |
#col-container {
|
| 71 |
margin: 0 auto;
|
| 72 |
+
max-width: 1200px;
|
| 73 |
+
padding: 0;
|
| 74 |
+
}
|
| 75 |
+
|
| 76 |
+
.container {
|
| 77 |
+
background-color: var(--card-background);
|
| 78 |
+
border-radius: var(--radius);
|
| 79 |
+
box-shadow: var(--shadow);
|
| 80 |
+
padding: 24px;
|
| 81 |
+
margin-bottom: 24px;
|
| 82 |
+
}
|
| 83 |
+
|
| 84 |
+
.header-container {
|
| 85 |
+
background: linear-gradient(135deg, var(--primary-color), var(--secondary-color));
|
| 86 |
+
border-radius: var(--radius);
|
| 87 |
+
padding: 32px;
|
| 88 |
+
margin-bottom: 24px;
|
| 89 |
+
color: white;
|
| 90 |
+
text-align: center;
|
| 91 |
+
box-shadow: var(--shadow);
|
| 92 |
+
}
|
| 93 |
+
|
| 94 |
+
.header-container h1 {
|
| 95 |
+
font-weight: 700;
|
| 96 |
+
font-size: 2.5rem;
|
| 97 |
+
margin-bottom: 8px;
|
| 98 |
+
background: linear-gradient(to right, #ffffff, #e0e0e0);
|
| 99 |
+
-webkit-background-clip: text;
|
| 100 |
+
background-clip: text;
|
| 101 |
+
-webkit-text-fill-color: transparent;
|
| 102 |
+
}
|
| 103 |
+
|
| 104 |
+
.header-container p {
|
| 105 |
+
font-size: 1.1rem;
|
| 106 |
+
opacity: 0.92;
|
| 107 |
+
margin-bottom: 16px;
|
| 108 |
+
}
|
| 109 |
+
|
| 110 |
+
.header-container a {
|
| 111 |
+
color: var(--accent-color);
|
| 112 |
+
text-decoration: underline;
|
| 113 |
+
transition: opacity 0.2s;
|
| 114 |
+
}
|
| 115 |
+
|
| 116 |
+
.header-container a:hover {
|
| 117 |
+
opacity: 0.8;
|
| 118 |
+
}
|
| 119 |
+
|
| 120 |
+
.btn-primary {
|
| 121 |
+
background: linear-gradient(90deg, var(--primary-color), var(--secondary-color));
|
| 122 |
+
border: none;
|
| 123 |
+
border-radius: 8px;
|
| 124 |
+
color: white;
|
| 125 |
+
font-weight: 600;
|
| 126 |
+
padding: 12px 24px;
|
| 127 |
+
font-size: 16px;
|
| 128 |
+
cursor: pointer;
|
| 129 |
+
transition: all 0.3s ease;
|
| 130 |
+
box-shadow: 0 4px 12px rgba(126, 87, 194, 0.3);
|
| 131 |
+
}
|
| 132 |
+
|
| 133 |
+
.btn-primary:hover {
|
| 134 |
+
transform: translateY(-2px);
|
| 135 |
+
box-shadow: 0 6px 16px rgba(126, 87, 194, 0.4);
|
| 136 |
+
}
|
| 137 |
+
|
| 138 |
+
.image-editor-container {
|
| 139 |
+
border-radius: var(--radius);
|
| 140 |
+
overflow: hidden;
|
| 141 |
+
box-shadow: var(--shadow);
|
| 142 |
+
}
|
| 143 |
+
|
| 144 |
+
.prompt-container {
|
| 145 |
+
background-color: var(--card-background);
|
| 146 |
+
border-radius: var(--radius);
|
| 147 |
+
padding: 16px;
|
| 148 |
+
box-shadow: var(--shadow);
|
| 149 |
+
margin-top: 16px;
|
| 150 |
+
}
|
| 151 |
+
|
| 152 |
+
.result-container {
|
| 153 |
+
border-radius: var(--radius);
|
| 154 |
+
overflow: hidden;
|
| 155 |
+
box-shadow: var(--shadow);
|
| 156 |
+
}
|
| 157 |
+
|
| 158 |
+
.settings-container {
|
| 159 |
+
background-color: var(--card-background);
|
| 160 |
+
border-radius: var(--radius);
|
| 161 |
+
padding: 20px;
|
| 162 |
+
box-shadow: var(--shadow);
|
| 163 |
+
margin-top: 16px;
|
| 164 |
+
}
|
| 165 |
+
|
| 166 |
+
.example-section {
|
| 167 |
+
background-color: var(--card-background);
|
| 168 |
+
border-radius: var(--radius);
|
| 169 |
+
padding: 20px;
|
| 170 |
+
box-shadow: var(--shadow);
|
| 171 |
+
margin-top: 24px;
|
| 172 |
+
}
|
| 173 |
+
|
| 174 |
+
.example-section h3 {
|
| 175 |
+
font-size: 1.3rem;
|
| 176 |
+
font-weight: 600;
|
| 177 |
+
margin-bottom: 16px;
|
| 178 |
+
color: var(--primary-color);
|
| 179 |
+
}
|
| 180 |
+
|
| 181 |
+
.examples-grid {
|
| 182 |
+
display: flex;
|
| 183 |
+
flex-wrap: wrap;
|
| 184 |
+
gap: 12px;
|
| 185 |
+
}
|
| 186 |
+
|
| 187 |
+
.example-card {
|
| 188 |
+
background: linear-gradient(135deg, #f3f3f7, #ffffff);
|
| 189 |
+
border-radius: 8px;
|
| 190 |
+
padding: 16px;
|
| 191 |
+
cursor: pointer;
|
| 192 |
+
transition: all 0.2s ease;
|
| 193 |
+
border: 1px solid #e0e0e0;
|
| 194 |
+
flex: 1;
|
| 195 |
+
min-width: 200px;
|
| 196 |
+
}
|
| 197 |
+
|
| 198 |
+
.example-card:hover {
|
| 199 |
+
transform: translateY(-2px);
|
| 200 |
+
box-shadow: var(--shadow);
|
| 201 |
+
border-color: var(--accent-color);
|
| 202 |
+
}
|
| 203 |
+
|
| 204 |
+
.example-card p {
|
| 205 |
+
margin: 0;
|
| 206 |
+
font-size: 14px;
|
| 207 |
+
color: var(--text-color);
|
| 208 |
+
}
|
| 209 |
+
|
| 210 |
+
.accordion-header {
|
| 211 |
+
font-weight: 600;
|
| 212 |
+
color: var(--primary-color);
|
| 213 |
+
}
|
| 214 |
+
|
| 215 |
+
/* Custom slider styling */
|
| 216 |
+
input[type="range"] {
|
| 217 |
+
height: 6px;
|
| 218 |
+
border-radius: 3px;
|
| 219 |
+
background: linear-gradient(90deg, var(--primary-color), var(--secondary-color));
|
| 220 |
+
}
|
| 221 |
+
|
| 222 |
+
input[type="range"]::-webkit-slider-thumb {
|
| 223 |
+
background: var(--primary-color);
|
| 224 |
+
border: 2px solid white;
|
| 225 |
+
height: 18px;
|
| 226 |
+
width: 18px;
|
| 227 |
+
}
|
| 228 |
+
|
| 229 |
+
.footer {
|
| 230 |
+
text-align: center;
|
| 231 |
+
padding: 24px;
|
| 232 |
+
color: #777;
|
| 233 |
+
font-size: 14px;
|
| 234 |
+
}
|
| 235 |
+
|
| 236 |
+
/* Animate the result transition */
|
| 237 |
+
@keyframes fadeIn {
|
| 238 |
+
from { opacity: 0; }
|
| 239 |
+
to { opacity: 1; }
|
| 240 |
+
}
|
| 241 |
+
|
| 242 |
+
.result-animation {
|
| 243 |
+
animation: fadeIn 0.5s ease-in-out;
|
| 244 |
+
}
|
| 245 |
+
|
| 246 |
+
/* Responsive adjustments */
|
| 247 |
+
@media (max-width: 768px) {
|
| 248 |
+
.examples-grid {
|
| 249 |
+
flex-direction: column;
|
| 250 |
+
}
|
| 251 |
}
|
| 252 |
"""
|
| 253 |
|
| 254 |
+
with gr.Blocks(css=css, theme=gr.themes.Monochrome()) as demo:
|
|
|
|
| 255 |
with gr.Column(elem_id="col-container"):
|
| 256 |
+
# Header with gradient
|
| 257 |
+
with gr.Column(elem_classes=["header-container"]):
|
| 258 |
+
gr.HTML("""
|
| 259 |
+
<h1>Flex.2 Preview - Inpaint</h1>
|
| 260 |
+
<p>Advanced 8B parameter Text to Image Diffusion Model with universal control and built-in inpainting support</p>
|
| 261 |
+
<p>Created by <a href="https://huggingface.co/ostris" target="_blank">ostris</a> |
|
| 262 |
+
<a href="https://huggingface.co/datasets/choosealicense/licenses/blob/main/markdown/apache-2.0.md" target="_blank">apache-2.0 license</a> |
|
| 263 |
+
<a href="https://huggingface.co/ostris/Flex.2-preview" target="_blank">model</a></p>
|
| 264 |
+
""")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 265 |
|
| 266 |
+
# Main interface container
|
| 267 |
+
with gr.Column(elem_classes=["container"]):
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 268 |
with gr.Row():
|
| 269 |
+
# Left column: Input
|
| 270 |
+
with gr.Column(scale=1):
|
| 271 |
+
with gr.Column(elem_classes=["image-editor-container"]):
|
| 272 |
+
edit_image = gr.ImageEditor(
|
| 273 |
+
label='Upload and draw mask for inpainting',
|
| 274 |
+
type='pil',
|
| 275 |
+
sources=["upload", "webcam"],
|
| 276 |
+
image_mode='RGB',
|
| 277 |
+
layers=False,
|
| 278 |
+
brush=gr.Brush(colors=["#FFFFFF"], color_mode="fixed"),
|
| 279 |
+
height=500
|
| 280 |
+
)
|
| 281 |
+
|
| 282 |
+
with gr.Column(elem_classes=["prompt-container"]):
|
| 283 |
+
prompt = gr.Text(
|
| 284 |
+
label="Your creative prompt",
|
| 285 |
+
show_label=True,
|
| 286 |
+
max_lines=1,
|
| 287 |
+
placeholder="Describe what you want to generate...",
|
| 288 |
+
container=True,
|
| 289 |
+
)
|
| 290 |
+
|
| 291 |
+
run_button = gr.Button("β¨ Generate", elem_classes=["btn-primary"])
|
| 292 |
|
| 293 |
+
# Right column: Output
|
| 294 |
+
with gr.Column(scale=1, elem_classes=["result-container"]):
|
| 295 |
+
result = gr.ImageSlider(
|
| 296 |
+
label="Before & After",
|
| 297 |
+
type="pil",
|
| 298 |
+
image_mode='RGB',
|
| 299 |
+
elem_classes=["result-animation"]
|
| 300 |
+
)
|
| 301 |
+
|
| 302 |
+
# Advanced settings in a nice container
|
| 303 |
+
with gr.Column(elem_classes=["settings-container"]):
|
| 304 |
+
with gr.Accordion("Advanced Settings", open=False, elem_classes=["accordion-header"]):
|
| 305 |
+
with gr.Column():
|
| 306 |
+
with gr.Row():
|
| 307 |
+
seed = gr.Slider(
|
| 308 |
+
label="Seed",
|
| 309 |
+
minimum=0,
|
| 310 |
+
maximum=MAX_SEED,
|
| 311 |
+
step=1,
|
| 312 |
+
value=0,
|
| 313 |
+
)
|
| 314 |
+
randomize_seed = gr.Checkbox(label="Randomize seed", value=True)
|
| 315 |
+
|
| 316 |
+
with gr.Row():
|
| 317 |
+
height = gr.Slider(64, 2048, value=512, step=64, label="Height")
|
| 318 |
+
width = gr.Slider(64, 2048, value=512, step=64, label="Width")
|
| 319 |
+
|
| 320 |
+
with gr.Row():
|
| 321 |
+
guidance_scale = gr.Slider(0.0, 20.0, value=3.5, step=0.1, label="Guidance Scale")
|
| 322 |
+
control_strength = gr.Slider(0.0, 1.0, value=0.5, step=0.05, label="Control Strength")
|
| 323 |
+
|
| 324 |
+
with gr.Row():
|
| 325 |
+
control_stop = gr.Slider(0.0, 1.0, value=0.33, step=0.05, label="Control Stop")
|
| 326 |
+
num_inference_steps = gr.Slider(1, 100, value=50, step=1, label="Inference Steps")
|
| 327 |
+
|
| 328 |
+
# Example prompts section
|
| 329 |
+
with gr.Column(elem_classes=["example-section"]):
|
| 330 |
+
gr.HTML(f"""
|
| 331 |
+
<h3>Try these example prompts:</h3>
|
| 332 |
+
<div class="examples-grid">
|
| 333 |
+
{example_html}
|
| 334 |
+
</div>
|
| 335 |
+
""")
|
| 336 |
|
| 337 |
+
# Example functionality
|
| 338 |
+
for i, example in enumerate(examples):
|
| 339 |
+
gr.HTML(f"""
|
| 340 |
+
<script>
|
| 341 |
+
document.querySelectorAll('.example-card')[{i}].addEventListener('click', function() {{
|
| 342 |
+
document.querySelector('textarea').value = "{example}";
|
| 343 |
+
}});
|
| 344 |
+
</script>
|
| 345 |
+
""")
|
| 346 |
+
|
| 347 |
+
# Footer
|
| 348 |
+
gr.HTML("""
|
| 349 |
+
<div class="footer">
|
| 350 |
+
<p>Powered by Gradio β’ Flex.2 Preview Inpainting Demo</p>
|
| 351 |
+
</div>
|
| 352 |
+
""")
|
| 353 |
|
| 354 |
+
# Handle examples click to populate prompt
|
| 355 |
run_button.click(
|
| 356 |
+
fn=infer,
|
| 357 |
+
inputs=[edit_image, prompt, seed, randomize_seed, width, height, guidance_scale, control_strength, control_stop, num_inference_steps],
|
| 358 |
+
outputs=[result, seed]
|
| 359 |
)
|
| 360 |
|
|
|
|
|
|
|
| 361 |
demo.launch()
|