import sys from pathlib import Path import cv2 import numpy as np import pytest # Ensure project root is available on sys.path when tests run directly. ROOT = Path(__file__).resolve().parents[1] if str(ROOT) not in sys.path: sys.path.insert(0, str(ROOT)) try: import onnxruntime as ort # type: ignore except ImportError: # pragma: no cover - dependency managed by test skip ort = None # type: ignore from backend.py.app.inference.dl_adapters.superpoint import ( SuperPointAdapter, SuperPointTransformersAdapter, ) try: import torch except ImportError: # pragma: no cover - dependency managed by test skips torch = None # type: ignore def _synthetic_corner_image(size: int = 256) -> np.ndarray: img = np.zeros((size, size, 3), dtype=np.uint8) cv2.rectangle(img, (size // 8, size // 8), (7 * size // 8, 7 * size // 8), (255, 255, 255), thickness=3) cv2.line(img, (size // 8, size // 8), (7 * size // 8, 7 * size // 8), (255, 255, 255), thickness=2) cv2.line(img, (size // 8, 7 * size // 8), (7 * size // 8, size // 8), (255, 255, 255), thickness=2) cv2.circle(img, (size // 2, size // 2), size // 4, (255, 255, 255), thickness=2) return img def _normalized_heatmap(heat: np.ndarray) -> np.ndarray: heat_min = float(np.min(heat)) heat_max = float(np.max(heat)) eps = 1e-8 return (heat - heat_min) / (heat_max - heat_min + eps) @pytest.mark.skipif(ort is None, reason="onnxruntime is required for SuperPoint ONNX comparison") @pytest.mark.xfail( reason="Current superpoint.onnx export diverges from the transformers reference implementation", strict=True, ) def test_superpoint_onnx_matches_transformers_heatmap(): model_path = ROOT / "models" / "superpoint.onnx" if not model_path.is_file(): pytest.skip("superpoint.onnx model not available in ./models directory") try: hf_adapter = SuperPointTransformersAdapter(device="cpu") except ImportError as exc: # pragma: no cover - dependency checked by skip pytest.skip(str(exc)) if torch is None: # pragma: no cover - dependency checked by skip pytest.skip("PyTorch is required for the transformers comparison test") sess = ort.InferenceSession(str(model_path), providers=["CPUExecutionProvider"]) onnx_adapter = SuperPointAdapter() image = _synthetic_corner_image() feed_onnx, ctx_onnx = onnx_adapter.preprocess(image, sess) outputs_onnx = sess.run(None, feed_onnx) semi_onnx, _ = onnx_adapter._pick_outputs(outputs_onnx) heat_onnx = onnx_adapter._semi_to_heat(semi_onnx) heat_onnx = cv2.resize(heat_onnx, (image.shape[1], image.shape[0]), interpolation=cv2.INTER_CUBIC) heat_onnx = _normalized_heatmap(heat_onnx) feed_hf, ctx_hf = hf_adapter.preprocess(image, None) outputs_hf = hf_adapter._forward(feed_hf[hf_adapter._PIXEL_VALUES_KEY]) mask = outputs_hf.mask[0] if outputs_hf.mask is not None else torch.ones_like(outputs_hf.scores[0], dtype=torch.bool) mask = mask.bool() keypoints = outputs_hf.keypoints[0][mask] scores = outputs_hf.scores[0][mask] heat_hf = np.zeros_like(heat_onnx) keypoints_np = keypoints.detach().cpu().numpy() scores_np = scores.detach().cpu().numpy() H, W = image.shape[:2] for (x_rel, y_rel), score in zip(keypoints_np, scores_np): x = int(round(float(np.clip(x_rel * (W - 1), 0, W - 1)))) y = int(round(float(np.clip(y_rel * (H - 1), 0, H - 1)))) heat_hf[y, x] = max(heat_hf[y, x], float(score)) heat_hf = _normalized_heatmap(heat_hf) correlation = np.corrcoef(heat_onnx.flatten(), heat_hf.flatten())[0, 1] mean_absolute_error = float(np.mean(np.abs(heat_onnx - heat_hf))) _, meta_onnx = onnx_adapter.postprocess(outputs_onnx, image, ctx_onnx, "Corners (SuperPoint)") _, meta_hf = hf_adapter.postprocess(outputs_hf, image, ctx_hf, "Corners (SuperPoint)") assert correlation > 0.9 assert mean_absolute_error < 0.05 assert meta_onnx["num_corners"] == pytest.approx(meta_hf["num_keypoints"], rel=0.1, abs=10) assert meta_onnx["heat_mean"] == pytest.approx(meta_hf["scores_mean"], rel=0.1, abs=1e-3) @pytest.mark.skipif(torch is None, reason="PyTorch is required for the transformers adapter test") def test_superpoint_transformers_adapter_infer_returns_overlay_and_meta(): try: adapter = SuperPointTransformersAdapter(device="cpu") except ImportError as exc: # pragma: no cover - dependency checked by skip pytest.skip(str(exc)) image = _synthetic_corner_image() overlay, meta = adapter.infer(image, detector="Corners (SuperPoint)") assert overlay.shape == image.shape assert overlay.dtype == np.uint8 assert meta["adapter"] == "superpoint_transformers" assert meta["backend"] == "transformers" assert isinstance(meta["num_keypoints"], int) assert meta["descriptors_shape"] is None or meta["descriptors_shape"][1] == 256