Spaces:
Running
Running
Upload 4 files
Browse files- Dockerfile +23 -0
- README.md +5 -5
- app.py +83 -0
- requirements.txt +5 -0
Dockerfile
ADDED
|
@@ -0,0 +1,23 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Read the doc: https://huggingface.co/docs/hub/spaces-sdks-docker
|
| 2 |
+
# you will also find guides on how best to write your Dockerfile
|
| 3 |
+
|
| 4 |
+
FROM python:3.12
|
| 5 |
+
#FROM ollama/ollama:0.12.1-rc0
|
| 6 |
+
|
| 7 |
+
# RUN useradd -m -u 1000 ollama
|
| 8 |
+
# USER user
|
| 9 |
+
# ENV PATH="/home/user/.local/bin:$PATH"
|
| 10 |
+
|
| 11 |
+
WORKDIR /app
|
| 12 |
+
|
| 13 |
+
COPY --chown=user ./requirements.txt ./requirements.txt
|
| 14 |
+
RUN apt update
|
| 15 |
+
RUN apt install -y python3 python3-pip
|
| 16 |
+
RUN pip install --no-cache-dir --upgrade -r ./requirements.txt --break-system-packages
|
| 17 |
+
# Create a directory named 'my_app_data' with specific permissions
|
| 18 |
+
RUN rm -rvf /.cache ; mkdir -p /.cache && chmod 777 /.cache
|
| 19 |
+
COPY ./ ./
|
| 20 |
+
COPY --chown=user . /app
|
| 21 |
+
RUN ls -alh ./
|
| 22 |
+
#Override the entrypoint to run the vLLM server with your model
|
| 23 |
+
ENTRYPOINT ["python3", "./app.py"]
|
README.md
CHANGED
|
@@ -1,12 +1,12 @@
|
|
| 1 |
---
|
| 2 |
-
title:
|
| 3 |
-
emoji:
|
| 4 |
-
colorFrom:
|
| 5 |
-
colorTo:
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: afl-3.0
|
| 9 |
-
short_description:
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
|
|
|
| 1 |
---
|
| 2 |
+
title: DockerOllama
|
| 3 |
+
emoji: 🏢
|
| 4 |
+
colorFrom: yellow
|
| 5 |
+
colorTo: pink
|
| 6 |
sdk: docker
|
| 7 |
pinned: false
|
| 8 |
license: afl-3.0
|
| 9 |
+
short_description: DockerOllama
|
| 10 |
---
|
| 11 |
|
| 12 |
Check out the configuration reference at https://huggingface.co/docs/hub/spaces-config-reference
|
app.py
ADDED
|
@@ -0,0 +1,83 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
import subprocess
|
| 3 |
+
from flask import Flask
|
| 4 |
+
from flask import request
|
| 5 |
+
import torch
|
| 6 |
+
from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 7 |
+
|
| 8 |
+
name='Hello'
|
| 9 |
+
model_id = "Qwen/Qwen3-1.7B-Base"
|
| 10 |
+
# filename = "tinyllama-1.1b-chat-v1.0.Q6_K.gguf"
|
| 11 |
+
|
| 12 |
+
|
| 13 |
+
print(name, model_id)
|
| 14 |
+
|
| 15 |
+
|
| 16 |
+
# # pip install gguf
|
| 17 |
+
# import torch
|
| 18 |
+
# from transformers import AutoTokenizer, AutoModelForCausalLM
|
| 19 |
+
|
| 20 |
+
|
| 21 |
+
# dtype = torch.float32 # could be torch.float16 or torch.bfloat16 too
|
| 22 |
+
# tokenizer = AutoTokenizer.from_pretrained(model_id, gguf_file=filename)
|
| 23 |
+
|
| 24 |
+
# model = AutoModelForCausalLM.from_pretrained(model_id, gguf_file=filename, dtype=dtype)
|
| 25 |
+
|
| 26 |
+
|
| 27 |
+
# load the tokenizer and the model
|
| 28 |
+
tokenizer = AutoTokenizer.from_pretrained(model_id)
|
| 29 |
+
model = AutoModelForCausalLM.from_pretrained(
|
| 30 |
+
model_id,
|
| 31 |
+
dtype="auto",
|
| 32 |
+
device_map="auto",
|
| 33 |
+
)
|
| 34 |
+
|
| 35 |
+
def get_texts(ask):
|
| 36 |
+
|
| 37 |
+
# prepare the model input
|
| 38 |
+
messages = [ {"role": "user", "content": ask},]
|
| 39 |
+
text = tokenizer.apply_chat_template(
|
| 40 |
+
messages,
|
| 41 |
+
tokenize=False,
|
| 42 |
+
add_generation_prompt=True,
|
| 43 |
+
)
|
| 44 |
+
model_inputs = tokenizer([text], return_tensors="pt").to(model.device)
|
| 45 |
+
|
| 46 |
+
# conduct text completion
|
| 47 |
+
generated_ids = model.generate(
|
| 48 |
+
**model_inputs,
|
| 49 |
+
max_new_tokens=16384,
|
| 50 |
+
)
|
| 51 |
+
output_ids = generated_ids[0][len(model_inputs.input_ids[0]):].tolist()
|
| 52 |
+
|
| 53 |
+
content = tokenizer.decode(output_ids, skip_special_tokens=True)
|
| 54 |
+
|
| 55 |
+
print("content:", content)
|
| 56 |
+
return content
|
| 57 |
+
|
| 58 |
+
|
| 59 |
+
|
| 60 |
+
app = Flask(name)
|
| 61 |
+
|
| 62 |
+
@app.route('/')
|
| 63 |
+
def hello_world():
|
| 64 |
+
return '<p>Hello, World!</p>'
|
| 65 |
+
|
| 66 |
+
@app.route('/gen/', methods=['GET'])
|
| 67 |
+
def gen_text():
|
| 68 |
+
error = None
|
| 69 |
+
query = request.args.get('ask')
|
| 70 |
+
# проверяем, передается ли параметр
|
| 71 |
+
# 'query' в URL-адресе
|
| 72 |
+
if query and query != '':
|
| 73 |
+
# если `query`существует и это не пустая строка,
|
| 74 |
+
# то можно приступать к обработке запроса
|
| 75 |
+
return f'<p>{get_texts(query)}</p>'
|
| 76 |
+
else:
|
| 77 |
+
# если `query` не существует или это пустая строка, то
|
| 78 |
+
# отображаем форму поискового запроса с сообщением.
|
| 79 |
+
error = 'Не введен запрос!'
|
| 80 |
+
return f'search.html'
|
| 81 |
+
|
| 82 |
+
if __name__ == '__main__':
|
| 83 |
+
app.run(debug=True, host='0.0.0.0', port='7860')
|
requirements.txt
ADDED
|
@@ -0,0 +1,5 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
Flask
|
| 2 |
+
gguf
|
| 3 |
+
torch
|
| 4 |
+
transformers
|
| 5 |
+
accelerate
|