Update app.py
Browse files
app.py
CHANGED
|
@@ -5,7 +5,7 @@ from threading import Thread
|
|
| 5 |
import os
|
| 6 |
import json
|
| 7 |
import uuid
|
| 8 |
-
from datasets import Dataset
|
| 9 |
from huggingface_hub import HfApi, login
|
| 10 |
import time
|
| 11 |
|
|
@@ -28,63 +28,6 @@ DATASET_FILENAME = "feedback.jsonl" # Filename for feedback data
|
|
| 28 |
# Ensure feedback directory exists
|
| 29 |
os.makedirs(DATASET_PATH, exist_ok=True)
|
| 30 |
|
| 31 |
-
# Sync existing dataset from Hub if available
|
| 32 |
-
def sync_dataset_from_hub():
|
| 33 |
-
"""Download existing dataset from Hub and merge with local data"""
|
| 34 |
-
try:
|
| 35 |
-
# Try to get token from environment variable
|
| 36 |
-
hf_token = os.environ.get("HF_TOKEN")
|
| 37 |
-
if hf_token:
|
| 38 |
-
login(token=hf_token)
|
| 39 |
-
|
| 40 |
-
# Check if the dataset exists on Hub
|
| 41 |
-
api = HfApi()
|
| 42 |
-
try:
|
| 43 |
-
dataset_info = api.dataset_info(DATASET_REPO)
|
| 44 |
-
# Dataset exists, download it
|
| 45 |
-
print(f"Syncing existing dataset from {DATASET_REPO}")
|
| 46 |
-
remote_dataset = load_dataset(DATASET_REPO)
|
| 47 |
-
|
| 48 |
-
# Convert to list of dictionaries
|
| 49 |
-
remote_data = [item for item in remote_dataset['train']]
|
| 50 |
-
|
| 51 |
-
# Check if local file exists
|
| 52 |
-
local_file = os.path.join(DATASET_PATH, DATASET_FILENAME)
|
| 53 |
-
local_data = []
|
| 54 |
-
|
| 55 |
-
if os.path.exists(local_file):
|
| 56 |
-
# Read local data
|
| 57 |
-
with open(local_file, 'r') as f:
|
| 58 |
-
for line in f:
|
| 59 |
-
try:
|
| 60 |
-
local_data.append(json.loads(line))
|
| 61 |
-
except json.JSONDecodeError:
|
| 62 |
-
continue
|
| 63 |
-
|
| 64 |
-
# Merge data (using IDs to avoid duplicates)
|
| 65 |
-
all_items = {}
|
| 66 |
-
for item in remote_data + local_data:
|
| 67 |
-
all_items[item['id']] = item
|
| 68 |
-
|
| 69 |
-
# Write back merged data
|
| 70 |
-
with open(local_file, 'w') as f:
|
| 71 |
-
for item in all_items.values():
|
| 72 |
-
f.write(json.dumps(item) + '\n')
|
| 73 |
-
|
| 74 |
-
print(f"Synced {len(all_items)} feedback items")
|
| 75 |
-
return True
|
| 76 |
-
|
| 77 |
-
except Exception as e:
|
| 78 |
-
print(f"Dataset {DATASET_REPO} does not exist yet or could not be accessed: {e}")
|
| 79 |
-
return False
|
| 80 |
-
|
| 81 |
-
except Exception as e:
|
| 82 |
-
print(f"Error syncing dataset: {e}")
|
| 83 |
-
return False
|
| 84 |
-
|
| 85 |
-
# Call sync on startup
|
| 86 |
-
sync_dataset_from_hub()
|
| 87 |
-
|
| 88 |
# Feedback storage functions
|
| 89 |
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
| 90 |
"""Save feedback to a local JSONL file"""
|
|
@@ -150,17 +93,49 @@ def push_feedback_to_hub(hf_token=None):
|
|
| 150 |
print(f"Error pushing feedback data to Hub: {e}")
|
| 151 |
return False
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
# Function to handle the research feedback submission
|
| 154 |
-
def submit_research_feedback(
|
| 155 |
"""Save user feedback both locally and to HuggingFace Hub"""
|
| 156 |
-
# Print debug information
|
| 157 |
-
print(f"Saving feedback with conversation history containing {len(conv_history)} messages")
|
| 158 |
-
if conv_history and len(conv_history) > 0:
|
| 159 |
-
print(f"First message: {conv_history[0]['role']}: {conv_history[0]['content'][:30]}...")
|
| 160 |
-
print(f"Last message: {conv_history[-1]['role']}: {conv_history[-1]['content'][:30]}...")
|
| 161 |
-
|
| 162 |
# Save locally first
|
| 163 |
-
feedback_id = save_feedback_locally(
|
| 164 |
|
| 165 |
# Get token from environment variable
|
| 166 |
env_token = os.environ.get("HF_TOKEN")
|
|
@@ -175,114 +150,29 @@ def submit_research_feedback(conv_history, satisfaction, feedback_text):
|
|
| 175 |
|
| 176 |
return status_msg
|
| 177 |
|
| 178 |
-
# Initial state - set up at app start
|
| 179 |
-
def initialize_state():
|
| 180 |
-
"""Initialize the conversation state - this could load previous sessions or start fresh"""
|
| 181 |
-
return [] # Start with empty conversation history
|
| 182 |
-
|
| 183 |
# Create the Gradio blocks interface
|
| 184 |
with gr.Blocks() as demo:
|
| 185 |
-
#
|
| 186 |
-
|
| 187 |
|
| 188 |
with gr.Row():
|
| 189 |
with gr.Column(scale=3):
|
| 190 |
-
#
|
| 191 |
-
def
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
state =
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
# Copy history to state if state is empty but history exists
|
| 198 |
-
if len(state) == 0 and len(history) > 0:
|
| 199 |
-
state = history.copy()
|
| 200 |
-
print(f"Copied {len(history)} messages from history to state")
|
| 201 |
-
|
| 202 |
-
# Add user message to state
|
| 203 |
-
state.append({"role": "user", "content": message})
|
| 204 |
-
|
| 205 |
-
# Process with the model (this doesn't modify the original history)
|
| 206 |
-
input_text = tokenizer.apply_chat_template(state, tokenize=False, add_generation_prompt=True)
|
| 207 |
-
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 208 |
-
|
| 209 |
-
# Create a streamer
|
| 210 |
-
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 211 |
-
|
| 212 |
-
# Set up generation parameters
|
| 213 |
-
generation_kwargs = {
|
| 214 |
-
"input_ids": inputs,
|
| 215 |
-
"max_new_tokens": 1024,
|
| 216 |
-
"temperature": float(temperature),
|
| 217 |
-
"top_p": float(top_p),
|
| 218 |
-
"do_sample": True,
|
| 219 |
-
"streamer": streamer,
|
| 220 |
-
"eos_token_id": 128009,
|
| 221 |
-
}
|
| 222 |
-
|
| 223 |
-
# Run generation in a separate thread
|
| 224 |
-
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 225 |
-
thread.start()
|
| 226 |
-
|
| 227 |
-
# Yield from the streamer as tokens are generated
|
| 228 |
-
response = ""
|
| 229 |
-
for new_text in streamer:
|
| 230 |
-
response += new_text
|
| 231 |
-
# For each partial response, yield the text only
|
| 232 |
-
# We'll update the state after generation is complete
|
| 233 |
-
yield response
|
| 234 |
-
|
| 235 |
-
# After generation completes, update our state with the final response
|
| 236 |
-
state.append({"role": "assistant", "content": response})
|
| 237 |
-
|
| 238 |
-
# Return the updated state
|
| 239 |
-
return state
|
| 240 |
-
|
| 241 |
-
# Create a wrapper that connects to ChatInterface but also updates our state
|
| 242 |
-
def chat_with_state(message, history, temperature, top_p):
|
| 243 |
-
# This function is what interfaces with the ChatInterface
|
| 244 |
-
nonlocal conv_state
|
| 245 |
-
|
| 246 |
-
# Access the current state
|
| 247 |
-
current_state = conv_state.value if conv_state.value else []
|
| 248 |
-
|
| 249 |
-
# Call the main function that generates responses and updates state
|
| 250 |
-
# This is a generator function, so we need to iterate through its outputs
|
| 251 |
-
response_gen = enhanced_predict(message, history, temperature, top_p, current_state)
|
| 252 |
-
|
| 253 |
-
# For each response, yield it and also update our state at the end
|
| 254 |
-
last_response = None
|
| 255 |
-
for response in response_gen:
|
| 256 |
-
last_response = response
|
| 257 |
-
yield response
|
| 258 |
-
|
| 259 |
-
# After generation is complete, update our state
|
| 260 |
-
if last_response is not None:
|
| 261 |
-
# Create a full copy of the history plus the new exchange
|
| 262 |
-
updated_state = []
|
| 263 |
-
# Add all previous history
|
| 264 |
-
for msg in history:
|
| 265 |
-
updated_state.append(msg.copy())
|
| 266 |
-
# Add new exchange
|
| 267 |
-
updated_state.append({"role": "user", "content": message})
|
| 268 |
-
updated_state.append({"role": "assistant", "content": last_response})
|
| 269 |
-
|
| 270 |
-
# Store in our state
|
| 271 |
-
conv_state.value = updated_state
|
| 272 |
-
|
| 273 |
-
# Debug
|
| 274 |
-
print(f"Updated conversation state with {len(updated_state)} messages")
|
| 275 |
-
if updated_state:
|
| 276 |
-
last_msg = updated_state[-1]
|
| 277 |
-
print(f"Last message: {last_msg['role']}: {last_msg['content'][:30]}...")
|
| 278 |
|
| 279 |
# Create ChatInterface
|
| 280 |
chatbot = gr.ChatInterface(
|
| 281 |
chat_with_state,
|
| 282 |
additional_inputs=[
|
|
|
|
| 283 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
| 284 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
| 285 |
],
|
|
|
|
| 286 |
type="messages"
|
| 287 |
)
|
| 288 |
|
|
@@ -317,10 +207,10 @@ with gr.Blocks() as demo:
|
|
| 317 |
feedback_modal
|
| 318 |
)
|
| 319 |
|
| 320 |
-
# Connect the submit button to the submit_research_feedback function
|
| 321 |
submit_button.click(
|
| 322 |
submit_research_feedback,
|
| 323 |
-
inputs=[
|
| 324 |
outputs=response_text
|
| 325 |
)
|
| 326 |
|
|
|
|
| 5 |
import os
|
| 6 |
import json
|
| 7 |
import uuid
|
| 8 |
+
from datasets import Dataset
|
| 9 |
from huggingface_hub import HfApi, login
|
| 10 |
import time
|
| 11 |
|
|
|
|
| 28 |
# Ensure feedback directory exists
|
| 29 |
os.makedirs(DATASET_PATH, exist_ok=True)
|
| 30 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 31 |
# Feedback storage functions
|
| 32 |
def save_feedback_locally(conversation, satisfaction, feedback_text):
|
| 33 |
"""Save feedback to a local JSONL file"""
|
|
|
|
| 93 |
print(f"Error pushing feedback data to Hub: {e}")
|
| 94 |
return False
|
| 95 |
|
| 96 |
+
# Modified predict function to update conversation state
|
| 97 |
+
@spaces.GPU(duration=120)
|
| 98 |
+
def predict(message, history, state, temperature, top_p):
|
| 99 |
+
# Update history with user message
|
| 100 |
+
history.append({"role": "user", "content": message})
|
| 101 |
+
|
| 102 |
+
|
| 103 |
+
input_text = tokenizer.apply_chat_template(history, tokenize=False, add_generation_prompt=True)
|
| 104 |
+
inputs = tokenizer.encode(input_text, return_tensors="pt").to(device)
|
| 105 |
+
|
| 106 |
+
# Create a streamer
|
| 107 |
+
streamer = TextIteratorStreamer(tokenizer, skip_prompt=True, skip_special_tokens=True)
|
| 108 |
+
|
| 109 |
+
# Set up generation parameters
|
| 110 |
+
generation_kwargs = {
|
| 111 |
+
"input_ids": inputs,
|
| 112 |
+
"max_new_tokens": 1024,
|
| 113 |
+
"temperature": float(temperature),
|
| 114 |
+
"top_p": float(top_p),
|
| 115 |
+
"do_sample": True,
|
| 116 |
+
"streamer": streamer,
|
| 117 |
+
}
|
| 118 |
+
|
| 119 |
+
# Run generation in a separate thread
|
| 120 |
+
thread = Thread(target=model.generate, kwargs=generation_kwargs)
|
| 121 |
+
thread.start()
|
| 122 |
+
|
| 123 |
+
# Yield from the streamer as tokens are generated
|
| 124 |
+
partial_text = ""
|
| 125 |
+
for new_text in streamer:
|
| 126 |
+
partial_text += new_text
|
| 127 |
+
yield partial_text, state
|
| 128 |
+
|
| 129 |
+
# After full generation, update state with assistant's response
|
| 130 |
+
history.append({"role": "assistant", "content": partial_text})
|
| 131 |
+
state = history.copy()
|
| 132 |
+
return partial_text, state
|
| 133 |
+
|
| 134 |
# Function to handle the research feedback submission
|
| 135 |
+
def submit_research_feedback(conversation_state, satisfaction, feedback_text):
|
| 136 |
"""Save user feedback both locally and to HuggingFace Hub"""
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 137 |
# Save locally first
|
| 138 |
+
feedback_id = save_feedback_locally(conversation_state, satisfaction, feedback_text)
|
| 139 |
|
| 140 |
# Get token from environment variable
|
| 141 |
env_token = os.environ.get("HF_TOKEN")
|
|
|
|
| 150 |
|
| 151 |
return status_msg
|
| 152 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 153 |
# Create the Gradio blocks interface
|
| 154 |
with gr.Blocks() as demo:
|
| 155 |
+
# State to track conversation history
|
| 156 |
+
conversation_state = gr.State([])
|
| 157 |
|
| 158 |
with gr.Row():
|
| 159 |
with gr.Column(scale=3):
|
| 160 |
+
# Custom chat function wrapper to update state
|
| 161 |
+
def chat_with_state(message, history, state, temperature, top_p):
|
| 162 |
+
for partial_response, updated_state in predict(message, history, state, temperature, top_p):
|
| 163 |
+
# Update our state with each yield
|
| 164 |
+
state = updated_state
|
| 165 |
+
yield partial_response, state
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 166 |
|
| 167 |
# Create ChatInterface
|
| 168 |
chatbot = gr.ChatInterface(
|
| 169 |
chat_with_state,
|
| 170 |
additional_inputs=[
|
| 171 |
+
conversation_state,
|
| 172 |
gr.Slider(0.1, 2.0, value=0.7, step=0.1, label="Temperature"),
|
| 173 |
gr.Slider(0.1, 1.0, value=0.9, step=0.05, label="Top-P")
|
| 174 |
],
|
| 175 |
+
additional_outputs=[conversation_state],
|
| 176 |
type="messages"
|
| 177 |
)
|
| 178 |
|
|
|
|
| 207 |
feedback_modal
|
| 208 |
)
|
| 209 |
|
| 210 |
+
# Connect the submit button to the submit_research_feedback function with the current conversation state
|
| 211 |
submit_button.click(
|
| 212 |
submit_research_feedback,
|
| 213 |
+
inputs=[conversation_state, satisfaction, feedback_text],
|
| 214 |
outputs=response_text
|
| 215 |
)
|
| 216 |
|