Spaces:
Running
Running
| import torch | |
| import torch.nn as nn | |
| import torch._utils | |
| import torch.nn.functional as F | |
| class SpatialGather_Module(nn.Module): | |
| """ | |
| Aggregate the context features according to the initial | |
| predicted probability distribution. | |
| Employ the soft-weighted method to aggregate the context. | |
| """ | |
| def __init__(self, cls_num=0, scale=1): | |
| super(SpatialGather_Module, self).__init__() | |
| self.cls_num = cls_num | |
| self.scale = scale | |
| def forward(self, feats, probs): | |
| batch_size, c, h, w = probs.size(0), probs.size(1), probs.size(2), probs.size(3) | |
| probs = probs.view(batch_size, c, -1) | |
| feats = feats.view(batch_size, feats.size(1), -1) | |
| feats = feats.permute(0, 2, 1) # batch x hw x c | |
| probs = F.softmax(self.scale * probs, dim=2) # batch x k x hw | |
| ocr_context = torch.matmul(probs, feats) \ | |
| .permute(0, 2, 1).unsqueeze(3).contiguous() # batch x k x c | |
| return ocr_context | |
| class SpatialOCR_Module(nn.Module): | |
| """ | |
| Implementation of the OCR module: | |
| We aggregate the global object representation to update the representation for each pixel. | |
| """ | |
| def __init__(self, | |
| in_channels, | |
| key_channels, | |
| out_channels, | |
| scale=1, | |
| dropout=0.1, | |
| norm_layer=nn.BatchNorm2d, | |
| align_corners=True, opt=None): | |
| super(SpatialOCR_Module, self).__init__() | |
| self.object_context_block = ObjectAttentionBlock2D(in_channels, key_channels, scale, | |
| norm_layer, align_corners) | |
| _in_channels = 2 * in_channels | |
| self.conv_bn_dropout = nn.Sequential( | |
| nn.Conv2d(_in_channels, out_channels, kernel_size=1, padding=0, bias=False), | |
| nn.Sequential(norm_layer(out_channels), nn.ReLU(inplace=True)), | |
| nn.Dropout2d(dropout) | |
| ) | |
| def forward(self, feats, proxy_feats): | |
| context = self.object_context_block(feats, proxy_feats) | |
| output = self.conv_bn_dropout(torch.cat([context, feats], 1)) | |
| return output | |
| class ObjectAttentionBlock2D(nn.Module): | |
| ''' | |
| The basic implementation for object context block | |
| Input: | |
| N X C X H X W | |
| Parameters: | |
| in_channels : the dimension of the input feature map | |
| key_channels : the dimension after the key/query transform | |
| scale : choose the scale to downsample the input feature maps (save memory cost) | |
| bn_type : specify the bn type | |
| Return: | |
| N X C X H X W | |
| ''' | |
| def __init__(self, | |
| in_channels, | |
| key_channels, | |
| scale=1, | |
| norm_layer=nn.BatchNorm2d, | |
| align_corners=True): | |
| super(ObjectAttentionBlock2D, self).__init__() | |
| self.scale = scale | |
| self.in_channels = in_channels | |
| self.key_channels = key_channels | |
| self.align_corners = align_corners | |
| self.pool = nn.MaxPool2d(kernel_size=(scale, scale)) | |
| self.f_pixel = nn.Sequential( | |
| nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels, | |
| kernel_size=1, stride=1, padding=0, bias=False), | |
| nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)), | |
| nn.Conv2d(in_channels=self.key_channels, out_channels=self.key_channels, | |
| kernel_size=1, stride=1, padding=0, bias=False), | |
| nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)) | |
| ) | |
| self.f_object = nn.Sequential( | |
| nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels, | |
| kernel_size=1, stride=1, padding=0, bias=False), | |
| nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)), | |
| nn.Conv2d(in_channels=self.key_channels, out_channels=self.key_channels, | |
| kernel_size=1, stride=1, padding=0, bias=False), | |
| nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)) | |
| ) | |
| self.f_down = nn.Sequential( | |
| nn.Conv2d(in_channels=self.in_channels, out_channels=self.key_channels, | |
| kernel_size=1, stride=1, padding=0, bias=False), | |
| nn.Sequential(norm_layer(self.key_channels), nn.ReLU(inplace=True)) | |
| ) | |
| self.f_up = nn.Sequential( | |
| nn.Conv2d(in_channels=self.key_channels, out_channels=self.in_channels, | |
| kernel_size=1, stride=1, padding=0, bias=False), | |
| nn.Sequential(norm_layer(self.in_channels), nn.ReLU(inplace=True)) | |
| ) | |
| def forward(self, x, proxy): | |
| batch_size, h, w = x.size(0), x.size(2), x.size(3) | |
| if self.scale > 1: | |
| x = self.pool(x) | |
| query = self.f_pixel(x).view(batch_size, self.key_channels, -1) | |
| query = query.permute(0, 2, 1) | |
| key = self.f_object(proxy).view(batch_size, self.key_channels, -1) | |
| value = self.f_down(proxy).view(batch_size, self.key_channels, -1) | |
| value = value.permute(0, 2, 1) | |
| sim_map = torch.matmul(query, key) | |
| sim_map = (self.key_channels ** -.5) * sim_map | |
| sim_map = F.softmax(sim_map, dim=-1) | |
| # add bg context ... | |
| context = torch.matmul(sim_map, value) | |
| context = context.permute(0, 2, 1).contiguous() | |
| context = context.view(batch_size, self.key_channels, *x.size()[2:]) | |
| context = self.f_up(context) | |
| if self.scale > 1: | |
| context = F.interpolate(input=context, size=(h, w), | |
| mode='bilinear', align_corners=self.align_corners) | |
| return context | |