Spaces:
Running
Running
AAAAAAyq
commited on
Commit
·
4d26566
1
Parent(s):
d910d42
Add application file
Browse files- .gitattributes +1 -0
- app.py +94 -0
- assets/sa_10039.jpg +3 -0
- assets/sa_11025.jpg +3 -0
- assets/sa_1309.jpg +3 -0
- assets/sa_192.jpg +3 -0
- assets/sa_414.jpg +3 -0
- assets/sa_561.jpg +3 -0
- assets/sa_862.jpg +3 -0
- assets/sa_8776.jpg +3 -0
- checkpoints/FastSAM.pt +3 -0
- requirements.txt +17 -0
.gitattributes
CHANGED
|
@@ -33,3 +33,4 @@ saved_model/**/* filter=lfs diff=lfs merge=lfs -text
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
| 33 |
*.zip filter=lfs diff=lfs merge=lfs -text
|
| 34 |
*.zst filter=lfs diff=lfs merge=lfs -text
|
| 35 |
*tfevents* filter=lfs diff=lfs merge=lfs -text
|
| 36 |
+
*.jpg filter=lfs diff=lfs merge=lfs -text
|
app.py
ADDED
|
@@ -0,0 +1,94 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from ultralytics import YOLO
|
| 2 |
+
from PIL import Image
|
| 3 |
+
import numpy as np
|
| 4 |
+
import matplotlib.pyplot as plt
|
| 5 |
+
import gradio as gr
|
| 6 |
+
import io
|
| 7 |
+
# import cv2
|
| 8 |
+
|
| 9 |
+
model = YOLO('checkpoints/FastSAM.pt') # load a custom model
|
| 10 |
+
|
| 11 |
+
def show_mask(annotation, ax, random_color=False, bbox=None, points=None):
|
| 12 |
+
if random_color : # random mask color
|
| 13 |
+
color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 14 |
+
else:
|
| 15 |
+
color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
| 16 |
+
if type(annotation) == dict:
|
| 17 |
+
annotation = annotation['segmentation']
|
| 18 |
+
mask = annotation
|
| 19 |
+
h, w = mask.shape[-2:]
|
| 20 |
+
mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 21 |
+
# draw box
|
| 22 |
+
if bbox is not None:
|
| 23 |
+
x1, y1, x2, y2 = bbox
|
| 24 |
+
ax.add_patch(plt.Rectangle((x1, y1), x2 - x1, y2 - y1, fill=False, edgecolor='b', linewidth=1))
|
| 25 |
+
# draw point
|
| 26 |
+
if points is not None:
|
| 27 |
+
ax.scatter([point[0] for point in points], [point[1] for point in points], s=10, c='g')
|
| 28 |
+
ax.imshow(mask_image)
|
| 29 |
+
return mask_image
|
| 30 |
+
|
| 31 |
+
def post_process(annotations, image, mask_random_color=False, bbox=None, points=None):
|
| 32 |
+
# image = cv2.imread(image_path)
|
| 33 |
+
# image = cv2.cvtColor(image, cv2.COLOR_BGR2RGB)
|
| 34 |
+
plt.figure(figsize=(10, 10))
|
| 35 |
+
plt.imshow(image)
|
| 36 |
+
for i, mask in enumerate(annotations):
|
| 37 |
+
show_mask(mask, plt.gca(),random_color=mask_random_color,bbox=bbox,points=points)
|
| 38 |
+
plt.axis('off')
|
| 39 |
+
|
| 40 |
+
# create a BytesIO object
|
| 41 |
+
buf = io.BytesIO()
|
| 42 |
+
|
| 43 |
+
# save plot to buf
|
| 44 |
+
plt.savefig(buf, format='png', bbox_inches='tight', pad_inches=0.0)
|
| 45 |
+
# plt.savefig('buffer/tmp.png', bbox_inches='tight', pad_inches=0.0)
|
| 46 |
+
|
| 47 |
+
# use PIL to open the image
|
| 48 |
+
img = Image.open(buf)
|
| 49 |
+
|
| 50 |
+
# don't forget to close the buffer
|
| 51 |
+
buf.close()
|
| 52 |
+
return img
|
| 53 |
+
|
| 54 |
+
|
| 55 |
+
# def show_mask(annotation, ax, random_color=False):
|
| 56 |
+
# if random_color : # 掩膜颜色是否随机决定
|
| 57 |
+
# color = np.concatenate([np.random.random(3), np.array([0.6])], axis=0)
|
| 58 |
+
# else:
|
| 59 |
+
# color = np.array([30 / 255, 144 / 255, 255 / 255, 0.6])
|
| 60 |
+
# mask = annotation.cpu().numpy()
|
| 61 |
+
# h, w = mask.shape[-2:]
|
| 62 |
+
# mask_image = mask.reshape(h, w, 1) * color.reshape(1, 1, -1)
|
| 63 |
+
# ax.imshow(mask_image)
|
| 64 |
+
|
| 65 |
+
# def post_process(annotations, image):
|
| 66 |
+
# plt.figure(figsize=(10, 10))
|
| 67 |
+
# plt.imshow(image)
|
| 68 |
+
# for i, mask in enumerate(annotations):
|
| 69 |
+
# show_mask(mask.data, plt.gca(),random_color=True)
|
| 70 |
+
# plt.axis('off')
|
| 71 |
+
|
| 72 |
+
# 获取渲染后的像素数据并转换为PIL图像
|
| 73 |
+
|
| 74 |
+
return pil_image
|
| 75 |
+
|
| 76 |
+
|
| 77 |
+
# post_process(results[0].masks, Image.open("../data/cake.png"))
|
| 78 |
+
|
| 79 |
+
def predict(inp):
|
| 80 |
+
results = model(inp, device='0', retina_masks=True, iou=0.7, conf=0.25, imgsz=1024)
|
| 81 |
+
pil_image = post_process(results[0].masks, inp)
|
| 82 |
+
return pil_image
|
| 83 |
+
|
| 84 |
+
|
| 85 |
+
demo = gr.Interface(fn=predict,
|
| 86 |
+
inputs=gr.inputs.Image(type='pil'),
|
| 87 |
+
outputs=gr.outputs.Image(type='pil'),
|
| 88 |
+
examples=[["assets/sa_192.jpg"], ["assets/sa_414.jpg"],
|
| 89 |
+
["assets/sa_561.jpg"], ["assets/sa_862.jpg"],
|
| 90 |
+
["assets/sa_1309.jpg"], ["assets/sa_8776.jpg"],
|
| 91 |
+
["assets/sa_10039.jpg"], ["assets/sa_11025.jpg"],],
|
| 92 |
+
)
|
| 93 |
+
|
| 94 |
+
demo.launch()
|
assets/sa_10039.jpg
ADDED
|
Git LFS Details
|
assets/sa_11025.jpg
ADDED
|
Git LFS Details
|
assets/sa_1309.jpg
ADDED
|
Git LFS Details
|
assets/sa_192.jpg
ADDED
|
Git LFS Details
|
assets/sa_414.jpg
ADDED
|
Git LFS Details
|
assets/sa_561.jpg
ADDED
|
Git LFS Details
|
assets/sa_862.jpg
ADDED
|
Git LFS Details
|
assets/sa_8776.jpg
ADDED
|
Git LFS Details
|
checkpoints/FastSAM.pt
ADDED
|
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
version https://git-lfs.github.com/spec/v1
|
| 2 |
+
oid sha256:c0be4e7ddbe4c15333d15a859c676d053c486d0a746a3be6a7a9790d52a9b6d7
|
| 3 |
+
size 144943063
|
requirements.txt
ADDED
|
@@ -0,0 +1,17 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
# Base-----------------------------------
|
| 2 |
+
matplotlib>=3.2.2
|
| 3 |
+
opencv-python>=4.6.0
|
| 4 |
+
Pillow>=7.1.2
|
| 5 |
+
PyYAML>=5.3.1
|
| 6 |
+
requests>=2.23.0
|
| 7 |
+
scipy>=1.4.1
|
| 8 |
+
torch>=1.7.0
|
| 9 |
+
torchvision>=0.8.1
|
| 10 |
+
tqdm>=4.64.0
|
| 11 |
+
|
| 12 |
+
pandas>=1.1.4
|
| 13 |
+
seaborn>=0.11.0
|
| 14 |
+
|
| 15 |
+
# Ultralytics-----------------------------------
|
| 16 |
+
ultralytics
|
| 17 |
+
|