Upload 2 files
Browse filesAdded app.py & requirements.txt
- app.py +120 -0
- requirements.txt +15 -0
app.py
ADDED
|
@@ -0,0 +1,120 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import gradio as gr
|
| 2 |
+
import torch
|
| 3 |
+
from transformers import AutoModel, AutoTokenizer
|
| 4 |
+
import spaces
|
| 5 |
+
import os
|
| 6 |
+
import tempfile
|
| 7 |
+
from PIL import Image, ImageDraw
|
| 8 |
+
import re # Import thΖ° viα»n regular expression
|
| 9 |
+
|
| 10 |
+
# --- 1. Load Model and Tokenizer (Done only once at startup) ---
|
| 11 |
+
print("Loading model and tokenizer...")
|
| 12 |
+
model_name = "deepseek-ai/DeepSeek-OCR"
|
| 13 |
+
tokenizer = AutoTokenizer.from_pretrained(model_name, trust_remote_code=True)
|
| 14 |
+
# Load the model to CPU first; it will be moved to GPU during processing
|
| 15 |
+
model = AutoModel.from_pretrained(
|
| 16 |
+
model_name,
|
| 17 |
+
_attn_implementation="flash_attention_2",
|
| 18 |
+
trust_remote_code=True,
|
| 19 |
+
use_safetensors=True,
|
| 20 |
+
)
|
| 21 |
+
model = model.eval()
|
| 22 |
+
print("β
Model loaded successfully.")
|
| 23 |
+
|
| 24 |
+
# --- Helper function to find pre-generated result images ---
|
| 25 |
+
def find_result_image(path):
|
| 26 |
+
for filename in os.listdir(path):
|
| 27 |
+
if "grounding" in filename or "result" in filename:
|
| 28 |
+
try:
|
| 29 |
+
image_path = os.path.join(path, filename)
|
| 30 |
+
return Image.open(image_path)
|
| 31 |
+
except Exception as e:
|
| 32 |
+
print(f"Error opening result image {filename}: {e}")
|
| 33 |
+
return None
|
| 34 |
+
|
| 35 |
+
# --- 2. Main Processing Function (UPDATED for multi-bbox drawing) ---
|
| 36 |
+
@spaces.GPU
|
| 37 |
+
def process_ocr_task(image, model_size, task_type, ref_text):
|
| 38 |
+
"""
|
| 39 |
+
Processes an image with DeepSeek-OCR for all supported tasks.
|
| 40 |
+
Now draws ALL detected bounding boxes for ANY task.
|
| 41 |
+
"""
|
| 42 |
+
if image is None:
|
| 43 |
+
return "Please upload an image first.", None
|
| 44 |
+
|
| 45 |
+
print("π Moving model to GPU...")
|
| 46 |
+
model_gpu = model.cuda().to(torch.bfloat16)
|
| 47 |
+
print("β
Model is on GPU.")
|
| 48 |
+
|
| 49 |
+
with tempfile.TemporaryDirectory() as output_path:
|
| 50 |
+
# Build the prompt... (same as before)
|
| 51 |
+
if task_type == "π Free OCR":
|
| 52 |
+
prompt = "<image>\nFree OCR."
|
| 53 |
+
elif task_type == "π Convert to Markdown":
|
| 54 |
+
prompt = "<image>\n<|grounding|>Convert the document to markdown."
|
| 55 |
+
elif task_type == "π Parse Figure":
|
| 56 |
+
prompt = "<image>\nParse the figure."
|
| 57 |
+
else:
|
| 58 |
+
prompt = "<image>\nFree OCR."
|
| 59 |
+
|
| 60 |
+
temp_image_path = os.path.join(output_path, "temp_image.png")
|
| 61 |
+
image.save(temp_image_path)
|
| 62 |
+
|
| 63 |
+
# Configure model size... (same as before)
|
| 64 |
+
size_configs = {
|
| 65 |
+
"Tiny": {"base_size": 512, "image_size": 512, "crop_mode": False},
|
| 66 |
+
"Small": {"base_size": 640, "image_size": 640, "crop_mode": False},
|
| 67 |
+
"Base": {"base_size": 1024, "image_size": 1024, "crop_mode": False},
|
| 68 |
+
"Large": {"base_size": 1280, "image_size": 1280, "crop_mode": False},
|
| 69 |
+
"Gundam (Recommended)": {"base_size": 1024, "image_size": 640, "crop_mode": True},
|
| 70 |
+
}
|
| 71 |
+
config = size_configs.get(model_size, size_configs["Gundam (Recommended)"])
|
| 72 |
+
|
| 73 |
+
print(f"π Running inference with prompt: {prompt}")
|
| 74 |
+
text_result = model_gpu.infer(
|
| 75 |
+
tokenizer,
|
| 76 |
+
prompt=prompt,
|
| 77 |
+
image_file=temp_image_path,
|
| 78 |
+
output_path=output_path,
|
| 79 |
+
base_size=config["base_size"],
|
| 80 |
+
image_size=config["image_size"],
|
| 81 |
+
crop_mode=config["crop_mode"],
|
| 82 |
+
save_results=True,
|
| 83 |
+
test_compress=True,
|
| 84 |
+
eval_mode=True,
|
| 85 |
+
)
|
| 86 |
+
|
| 87 |
+
print(f"====\nπ Text Result: {text_result}\n====")
|
| 88 |
+
|
| 89 |
+
return text_result
|
| 90 |
+
|
| 91 |
+
# --- 3. Build the Gradio Interface (UPDATED) ---
|
| 92 |
+
with gr.Blocks(title="π³DeepSeek-OCRπ³", theme=gr.themes.Soft()) as demo:
|
| 93 |
+
gr.Markdown(
|
| 94 |
+
"""
|
| 95 |
+
# π³ Full Demo of DeepSeek-OCR π³
|
| 96 |
+
|
| 97 |
+
**π‘ How to use:**
|
| 98 |
+
1. **Upload an image** using the upload box.
|
| 99 |
+
2. Select a **Resolution**. `Gundam` is recommended for most documents.
|
| 100 |
+
3. Choose a **Task Type**:
|
| 101 |
+
- **π Free OCR**: Extracts raw text from the image.
|
| 102 |
+
- **π Convert to Markdown**: Converts the document into Markdown, preserving structure.
|
| 103 |
+
- **π Parse Figure**: Extracts structured data from charts and figures.
|
| 104 |
+
"""
|
| 105 |
+
)
|
| 106 |
+
|
| 107 |
+
with gr.Row():
|
| 108 |
+
with gr.Column(scale=1):
|
| 109 |
+
image_input = gr.Image(type="pil", label="πΌοΈ Upload Image", sources=["upload", "clipboard"])
|
| 110 |
+
model_size = gr.Dropdown(choices=["Tiny", "Small", "Base", "Large", "Gundam (Recommended)"], value="Gundam (Recommended)", label="βοΈ Resolution Size")
|
| 111 |
+
task_type = gr.Dropdown(choices=["π Free OCR", "π Convert to Markdown", "π Parse Figure"], value="π Convert to Markdown", label="π Task Type")
|
| 112 |
+
submit_btn = gr.Button("Process Image", variant="primary")
|
| 113 |
+
|
| 114 |
+
with gr.Column(scale=2):
|
| 115 |
+
output_text = gr.Textbox(label="π Text Result", lines=15, show_copy_button=True)
|
| 116 |
+
output_image = gr.Image(label="πΌοΈ Image Result (if any)", type="pil")
|
| 117 |
+
|
| 118 |
+
# --- 4. Launch the App ---
|
| 119 |
+
if __name__ == "__main__":
|
| 120 |
+
demo.queue(max_size=20).launch(share=True)
|
requirements.txt
ADDED
|
@@ -0,0 +1,15 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
torch==2.6.0
|
| 2 |
+
transformers==4.46.3
|
| 3 |
+
tokenizers==0.20.3
|
| 4 |
+
einops
|
| 5 |
+
addict
|
| 6 |
+
easydict
|
| 7 |
+
gradio>=4.0.0
|
| 8 |
+
spaces>=0.20.0
|
| 9 |
+
Pillow>=10.0.0
|
| 10 |
+
safetensors>=0.4.0
|
| 11 |
+
accelerate>=0.24.0
|
| 12 |
+
sentencepiece>=0.1.99
|
| 13 |
+
protobuf>=3.20.0
|
| 14 |
+
torchvision
|
| 15 |
+
flash-attn @ https://github.com/Dao-AILab/flash-attention/releases/download/v2.7.3/flash_attn-2.7.3+cu12torch2.6cxx11abiFALSE-cp310-cp310-linux_x86_64.whl
|