Commit
·
2cf5554
1
Parent(s):
355835e
Blah
Browse files- app.py +14 -3
- requirements.txt +2 -1
app.py
CHANGED
|
@@ -2,6 +2,8 @@ import numpy as np
|
|
| 2 |
from PIL import Image
|
| 3 |
import gradio as gr
|
| 4 |
from ultralytics import YOLO
|
|
|
|
|
|
|
| 5 |
|
| 6 |
# Load the YOLO model
|
| 7 |
m_raw_model = YOLO("M-Raw.pt")
|
|
@@ -22,10 +24,19 @@ def snap(image, model, conf, iou):
|
|
| 22 |
results = s_raw_model(image, conf=conf, iou=iou)
|
| 23 |
|
| 24 |
# Convert the results list into an output image
|
| 25 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
# Convert the resulting image to a PIL image
|
| 28 |
-
resulting_image = Image.fromarray(
|
| 29 |
|
| 30 |
# Get the labels
|
| 31 |
labels = results.pandas().xyxy[0]["name"].values
|
|
@@ -38,7 +49,7 @@ def snap(image, model, conf, iou):
|
|
| 38 |
|
| 39 |
demo = gr.Interface(
|
| 40 |
snap,
|
| 41 |
-
[gr.Image(source="webcam", tool=None, streaming=True), gr.inputs.Radio(["M-Raw", "S-Raw", "N-Raw"]), gr.Slider(0, 1, value=0.6, label="Classifier Confidence Threshold"), gr.Slider(0, 1, value=0.7, label="IoU Threshold")],
|
| 42 |
["image"],
|
| 43 |
title="Baybayin Instance Detection"
|
| 44 |
)
|
|
|
|
| 2 |
from PIL import Image
|
| 3 |
import gradio as gr
|
| 4 |
from ultralytics import YOLO
|
| 5 |
+
from ultralytics.yolo.utils.ops import scale_image
|
| 6 |
+
import cv2
|
| 7 |
|
| 8 |
# Load the YOLO model
|
| 9 |
m_raw_model = YOLO("M-Raw.pt")
|
|
|
|
| 24 |
results = s_raw_model(image, conf=conf, iou=iou)
|
| 25 |
|
| 26 |
# Convert the results list into an output image
|
| 27 |
+
for result in results:
|
| 28 |
+
classes = result.boxes.cls.cpu().numpy()
|
| 29 |
+
probs = result.boxes.conf.cpu().numpy()
|
| 30 |
+
boxes = result.boxes.xyxy[0].cpu().numpy()
|
| 31 |
+
|
| 32 |
+
for i in range(len(boxes)):
|
| 33 |
+
x1, y1, x2, y2 = boxes[i]
|
| 34 |
+
x1, y1, x2, y2 = int(x1), int(y1), int(x2), int(y2)
|
| 35 |
+
cv2.rectangle(image, (x1, y1), (x2, y2), (0, 255, 0), 2)
|
| 36 |
+
cv2.putText(image, f"{classes[i]} {probs[i]:.2f}", (x1, y1), cv2.FONT_HERSHEY_SIMPLEX, 1, (0, 255, 0), 2)
|
| 37 |
|
| 38 |
# Convert the resulting image to a PIL image
|
| 39 |
+
resulting_image = Image.fromarray(image)
|
| 40 |
|
| 41 |
# Get the labels
|
| 42 |
labels = results.pandas().xyxy[0]["name"].values
|
|
|
|
| 49 |
|
| 50 |
demo = gr.Interface(
|
| 51 |
snap,
|
| 52 |
+
[gr.Image(source="webcam", tool=None, streaming=True), gr.inputs.Radio(["M-Raw", "S-Raw", "N-Raw"], value="M-Raw"), gr.Slider(0, 1, value=0.6, label="Classifier Confidence Threshold"), gr.Slider(0, 1, value=0.7, label="IoU Threshold")],
|
| 53 |
["image"],
|
| 54 |
title="Baybayin Instance Detection"
|
| 55 |
)
|
requirements.txt
CHANGED
|
@@ -1,4 +1,5 @@
|
|
| 1 |
numpy
|
| 2 |
Pillow
|
| 3 |
ultralytics==8.0.21
|
| 4 |
-
gradio
|
|
|
|
|
|
| 1 |
numpy
|
| 2 |
Pillow
|
| 3 |
ultralytics==8.0.21
|
| 4 |
+
gradio
|
| 5 |
+
opencv-python
|